The present disclosure relates to a coaxial microstrip line conversion circuit for use in an input/output section of an electronic device such as a microwave or millimeter-wave band radar device, communication equipment and the like.
In an electronic device such as a radar device or communication equipment, a coaxial connector is widely used as an input/output interface for a high-frequency signal. A strip line including a microstrip line is widely used as means for propagating a high-frequency signal within an electronic device.
As a method of connecting a coaxial connector and a microstrip line, Japanese Utility Model Laying-Open No. 2-36202 describes in FIG. 1 (see PTD 1) a configuration in which a connector core of a coaxial connector and a microstrip line are connected by a gold ribbon.
However, considering the deformation and the like caused by a difference in linear expansion during temperature change between a housing to which the coaxial connector is attached and a substrate on which the microstrip line is formed, a gap is provided between the housing and the substrate as shown in FIG. 2 of PTD 1. Thus, there is a concern about leakage of a high-frequency signal (electric wave) through this gap.
As means for solving this problem, a method has been used of directly connecting a central conductor of a coaxial connector and a microstrip line in a closed space, as in FIGS. 1 and 2 of Japanese Patent Laying-Open No. 5-259713 (see PTD 2).
PTD 1: Japanese Utility Model Laying-Open No. 2-36202 (FIGS. 1 and 2)
PTD 2: Japanese Patent Laying-Open No. 5-259713 (FIGS. 1 and 2)
However, the method described in PTD 2 is problematic because the central conductor of the coaxial connector, a dielectric substrate and the like are deformed due to temperature change, causing stress concentration at a connection between the central conductor of the coaxial connector and the microstrip line, resulting in breakage.
The present disclosure has been made in order to solve the problem as described above, and an object of the present disclosure is to provide a coaxial microstrip line conversion circuit that connects a coaxial connector and a microstrip line, in which leakage of a high-frequency signal through a gap between a housing and a substrate is eliminated, and in which stress is not produced at a connection between the coaxial connector and the microstrip line, thereby improving the reliability of this connection.
A coaxial microstrip line conversion circuit according to the present disclosure includes: a waveguide having a first through hole, and a second through hole spaced apart from the first through hole and having such a dimension as to cut off a transmission frequency; a coaxial line having an outer conductor, a central conductor having a projection projecting from an axial end of the outer conductor, and an insulator provided between the outer conductor and the central conductor; and a microstrip line having a ground conductor provided on one surface of an insulating substrate, and a strip line provided on the other surface of the insulating substrate opposite to the one surface and having a projection projecting axially from the ground conductor, in the coaxial line, the outer conductor being connected to an outer wall of the waveguide, and the projection of the central conductor being inserted through the first through hole into the waveguide, in the microstrip line, the ground conductor being connected to an inner wall of the second through hole, and the projection of the strip line being inserted through the second through hole into the waveguide.
In a coaxial microstrip line conversion circuit of the present disclosure, since a coaxial line and a microstrip line are connected through a waveguide section, leakage of a high-frequency signal through a gap between a housing and a substrate is eliminated, and stress is not produced at a connection between a coaxial connector and the microstrip line, thereby improving the reliability of an electronic device.
In all embodiments of the present disclosure, reference to both
A first embodiment of the present disclosure will now be described using
The coaxial microstrip line conversion circuit according to the first embodiment of the present disclosure includes a waveguide section formed of a first waveguide 102 having a coaxial connector insertion hole 119 serving as a first through hole; and a second waveguide 109 having a microstrip line insertion hole 111 serving as a second through hole which is spaced apart from coaxial connector insertion hole 119 and which has such a dimension as to cut off a transmission frequency. The coaxial microstrip line conversion circuit further includes a coaxial connector 104 having: an outer conductor; a central conductor 112 having a projection projecting from an axial end of the outer conductor; and an insulator provided between the outer conductor and central conductor 112. The coaxial microstrip line conversion circuit further includes a substrate 106 having a microstrip line formed of a ground conductor 115 provided on one surface of a dielectric substrate 118; and a signal line 113 provided on the other surface of insulating dielectric substrate 118 opposite to the one surface, and formed of a strip line having a projection projecting axially from ground conductor 115.
At coaxial connector 104 serving as a coaxial line, a flange, which is the outer conductor, is connected by a screw 105 to an outer wall of first waveguide 102 around coaxial connector insertion hole 119, and the projection of central conductor 112 is inserted through coaxial connector insertion hole 119 into first waveguide 102 of the waveguide section. Substrate 106 having the microstrip line has ground conductor 115 connected to an inner wall of microstrip line insertion hole 111. The projection of signal line 113 formed of the strip line is inserted through microstrip line insertion hole 111 into second waveguide 109 serving as the waveguide section. Ground conductor 115 is not inserted into second waveguide 109, and only the projection of signal line 113 is inserted into second waveguide 109. Here, coaxial connector insertion hole 119 is provided in the outer wall of the H plane of first waveguide 102. Microstrip line insertion hole 111 is provided in an outer wall of the H plane of second waveguide 109. Coaxial connector insertion hole 119 and microstrip line insertion hole 111 are spaced apart from each other in a waveguide axis direction of the waveguide section formed of first waveguide 102 and second waveguide 109.
The coaxial microstrip line conversion circuit according to the first embodiment of the present disclosure is characterized by being broadly formed of a coaxial line—waveguide converter 1 and a waveguide—microstrip line converter 2. In coaxial line—waveguide converter 1, a first housing 101 made of a conductive material such as resin plated with a metal or metal material such as aluminum or stainless steel has first waveguide 102 formed therein, where first waveguide 102 has a shorting plate 103 at its one end in the waveguide axis direction. Coaxial connector 104 is fixed to first housing 101 by screw 105. In contrast, waveguide—microstrip line converter 2 is formed of substrate 106 having the microstrip line, and a second housing 107. Similarly to first housing 101, second housing 107 is made of a conductive material such as resin plated with a metal or metal material such as aluminum or stainless steel. Second housing 107 has: second waveguide 109 being identical to first waveguide 102 in cross-sectional shape when viewed in the waveguide axis direction, and having a shorting plate 108 at its one end in the waveguide axis direction; and microstrip line insertion hole 111 having such a dimension as to cut off a used frequency in order to obtain electrical isolation from an electronic device internal space 110. In other words, microstrip line insertion hole 111 has such a dimension that the propagation of a high-frequency signal of a used frequency through the space portion of microstrip line insertion hole 111 in a waveguide mode is suppressed. Since the high-frequency signal of the used frequency is transmitted through microstrip line insertion hole 111 on the microstrip line formed on substrate 106 having the microstrip line, there are no problems with the transmission of the high-frequency signal.
Spatial isolation in a transmission (propagation) direction of the high-frequency signal in microstrip line insertion hole 111 is simply expressed by the following equation (1). The transmission (propagation) direction of the high-frequency signal in microstrip line insertion hole 111 is a direction that connects an opening at the second waveguide 109 side and an opening at the electronic device internal space 110 side of microstrip line insertion hole 111.
where α represents the amount of spatial isolation [dB/mm] per unit length, λc represents the wavelength [mm] of a cutoff frequency, and λ represents the wavelength [mm] of a transmission frequency.
In the equation (1), wavelength λc of the cutoff frequency in microstrip line insertion hole 111 is determined by the space in a direction orthogonal to the direction in which the high-frequency signal proceeds, that is, the space between opposed wall surfaces within microstrip line insertion hole 111. Thus, the wavelength of the cutoff frequency is expressed as λc=2דthe space in a direction orthogonal to the direction in which the high-frequency signal proceeds, that is, the space between opposed wall surfaces within microstrip line insertion hole 111.” Here, the cutoff frequency is determined as fc=light speed/λc. Accordingly, in order to maximize the amount of spatial isolation per unit length, it is important to reduce the space between the opposed wall surfaces within microstrip line insertion hole 111.
Since ground conductor 115 and conductor 116 of substrate 106 having the microstrip line are connected by through holes 117, first housing 101 and second housing 107 are electrically connected in
Next,
In this manner, central conductor 112 of coaxial connector 104 and signal line 113 of substrate 106 having the microstrip line are not mechanically connected, and central conductor 112 of coaxial connector 104 and signal line 113 of substrate 106 having the microstrip line are free from each other with respect to contraction and expansion due to temperature change of coaxial connector 104 and substrate 106 having the microstrip line. Accordingly, with respect to the contraction and expansion due to temperature change of coaxial connector 104 and substrate 106 having the microstrip line, stress is not produced between central conductor 112 of coaxial connector 104 and signal line 113 of substrate 106 having the microstrip line, so that a mechanical breakage such as disconnection does not occur, thereby realizing a reliable conversion circuit between a coaxial line and a microstrip line.
In addition, since microstrip line insertion hole 111 serving as the second through hole which will be a gap is structured to have a such a dimension as to cut off a used frequency, unnecessary leakage of a high-frequency signal from an amplifier provided in electronic device internal space 110 to this coaxial microstrip line conversion circuit can be prevented.
A second embodiment of the present disclosure will be described using
As shown in
In
Ground conductor 115 is provided at a portion other than a portion corresponding to the projection of the strip line. Conductor 116 is provided around the signal line formed of the strip line. First waveguide 102 and second waveguide 109 are fixed to each other with substrate 106 interposed therebetween. First waveguide 102 is electrically connected to ground conductor 115, and second waveguide 109 is electrically connected to conductor 116. Accordingly, similarly to the first embodiment of the present disclosure, first housing 101 and second housing 107 are electrically connected, and the space formed by first waveguide 102 and second waveguide 109 serves as an electrically closed space. A similar function and effect to that of the first embodiment is thus produced in this case as well.
A third embodiment of the present disclosure will be described using
In
As shown in
A fourth embodiment of the present disclosure will be described using
A fifth embodiment of the present disclosure will be described using
In the fifth embodiment, coaxial connector 104 and coaxial connector insertion hole 119 are also provided in second housing 107, and coaxial line—waveguide converter 1 is also provided in second waveguide 109. That is, the fifth embodiment is characterized in that coaxial line—waveguide converter 1 in the first embodiment is at the signal line 113 side of substrate 106 having the microstrip line, and conversely, first waveguide 102 having shorting plate 103 is at the ground conductor 115 side of substrate 106 having the microstrip line.
In the fifth embodiment, a dimensional relationship among a space a between central conductor 112 of coaxial connector 104 and shorting plate 108, a space b between a side surface of central conductor 112 and a wall surface of second waveguide 109, and a space c between the tip of central conductor 112 and an inner wall of second waveguide 109 is similar to that of the first embodiment. A space d between signal line 113 and shorting plate 103, and a space h between signal line 113 and central conductor 112 are also similar to those of the first embodiment. A similar function and effect to that of the first embodiment is produced in this fifth embodiment as well.
A sixth embodiment of the present disclosure will be described using
In the sixth embodiment, a disc 112a having a shape of central conductor 112 increased in a radial direction is provided at the tip of the inwardly projecting projection of central conductor 112 of coaxial connector 104. Disc 112a serves to attain favorable reflection characteristics across a wide band at a frequency used by coaxial connector 104.
It is planned that the embodiments disclosed herein will also be practiced in appropriate combination. It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present disclosure is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 coaxial line-waveguide converter; 2 waveguide-microstrip line converter; 101 first housing; 102 first waveguide; 103 shorting plate; 104a flange; 104 coaxial connector; 105 screw; 106 substrate having microstrip line; 107 second housing; 108 shorting plate; 109 second waveguide; 110 electronic device internal space; 111 microstrip line insertion hole (second through hole); 112 central conductor; 113 signal line (strip line); 114 tip of signal line (tip of strip line); 115 ground conductor; 116 conductor; 117 through hole; 118 dielectric substrate; 119 coaxial connector insertion hole (first through hole); 120 transformer.
Number | Date | Country | Kind |
---|---|---|---|
2015-101784 | May 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/064756 | 5/18/2016 | WO | 00 |