The present application claims priority from Japanese Patent Application No. 2020-091493 filed on May 26, 2020, the contents of which are incorporated herein by reference in their entirety.
The present disclosure relates to a coaxial terminal that can be used in an electronic component testing apparatus that tests an electronic component to be tested (DUT: Device Under Test) such as a semiconductor integrated circuit element, and a coaxial connector, a wiring board, and an electronic component test apparatus that include the coaxial terminal.
A conventional coaxial terminal includes a ground terminal that has a tubular body and a signal terminal that is disposed inside the tubular body, and the ground terminal has a plurality of contact portions that contacts the circuit board (e.g., refer to Patent Document 1).
In the connector using the coaxial terminal described above, it is required to arrange more coaxial terminals in a high density and miniaturize the coaxial terminal itself. On the other hand, if the coaxial terminal is simply miniaturized, there is a case where it is impossible to satisfy the desired electrical characteristics.
One or more embodiments of the present disclosure provide a coaxial terminal capable of ensuring desired electrical characteristics while reducing the size, and a coaxial connector, a wiring board, and an electronic component testing apparatus that include the coaxial terminal.
[1] A coaxial terminal according to one or more embodiments of the present disclosure is a coaxial terminal including a signal terminal, a tubular ground terminal that covers the signal terminal, and an insulating member that is interposed between the signal terminal and the ground terminal, and the signal terminal includes a first main body that is covered by the insulating member, a first contact piece that extends from the first main body to one side, and a second contact piece that extends from the first main body to another side, and the insulating member has an opening that a part of the first main body is exposed from the insulating member through, and a following formula (1) is satisfied.
L2≥½×L1 (1)
In the above formula (1), L1 is a length of the insulating member along an axial direction of the coaxial terminal, and L2 is a length of the opening along the axial direction.
[2] In the above embodiments, a following formula (2) may be satisfied, and a whole of the first main body along a width direction of the coaxial terminal may be exposed from the insulating member through the opening.
W2>W1 (2)
In the above formula (2), W1 is a width of a portion of the first main body exposed through the opening, and W2 is a width of the opening.
[3] In the above embodiments, the ground terminal includes a tubular second main body that holds the signal terminal via the insulating member, a third contact piece that extends from the second main body to one side, and a fourth contact piece that extends from the second main body to another side, and the second main body has a cutout that is open at one end of the second main body, and a following formula (3) may be satisfied.
W4>W3 (3)
In the above formula (3), W3 is a width of a portion of the signal terminal that faces the cutout, and W4 is a width of the cutout.
[4] A coaxial connector according to one or more embodiments of the present disclosure is a coaxial connector including a plurality of the coaxial terminals described above, and a housing that holds the coaxial terminals.
[5] A wiring board according to one or more embodiments of the present disclosure includes the coaxial connector described above, and a wiring board body that the coaxial connector is mounted on, and the wiring board body includes a first wiring pattern that the second contact piece of the signal terminal is in contact with, and a second wiring pattern that the fourth contact piece of the ground terminal is in contact with.
[6] An electronic component testing apparatus according to one or more embodiments of the present disclosure is an electronic component testing apparatus that tests a DUT and is an electronic component testing apparatus includes the wiring board described above.
According to one or more embodiments of the present disclosure, since a part of the first main body of the signal terminal is exposed from the insulating member through the opening and the length L1 of the insulating member and the length L2 of the opening satisfies the relationship of the above formula (1), it is possible to interpose much air that has the relative dielectric constant lower than resin thereof between the signal terminal and the ground terminal. Therefore, in one or more embodiments of the present disclosure, it is possible to maintain the impedance of the coaxial terminal even when the coaxial terminal is miniaturized, and it is possible to ensure the desired electrical characteristics while miniaturizing the coaxial terminal.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
As shown in
The wiring board body 10 is a printed wiring board that includes an insulating substrate 11 having an electrical insulation, and wiring patterns 12 and 13 (refer to
The number of coaxial connectors 20 mounted on the wiring board main body 10 is not particularly limited, it is possible to mount any number of coaxial connectors 20 to the wiring board main body 10. For example, when the wiring board 1 is used in the application of the electronic component testing apparatus 100, the number of coaxial connectors 20 mounted on the wiring board main body 10 is set in accordance with the number of sockets 121 (refer to
The coaxial connector 20 includes a plurality of coaxial terminals 30, and a housing 70 that holds the coaxial terminals 30, as shown in
The number of coaxial terminals that coaxial connector has is not particularly limited to the above. For example, as shown in
The counterpart coaxial terminal 91 that is connected to the end of the coaxial cable 90 (refer to
As shown in
The signal terminal 40 is made of a material having a conductivity such as, for example, a metal material and is formed by performing a bending process after punching a metal plate material. As shown in
The main body 41 in the present embodiment corresponds to an example of the “first main body,” the upper contact piece 42 in the present embodiment corresponds to an example of the “first contact piece,” and the lower contact piece 43 in the present embodiment corresponds to an example of the “second contact piece.”
A pair of the upper contact pieces 42 protrudes toward the +Z direction from the upper end 411 of the main body 41. The pair of upper contact pieces 42 are opposed to each other in the X direction and is elastically deformable in a direction away from each other. Each of the upper contact pieces 42 has a contact portion 421 having a substantially U-shaped at the tip. The interval between the upper contact pieces 42 is narrower as approaching the tips and is narrowest between the contact portions 421. Further, each of the upper contact piece 42 has claws 422 protruding toward the Y direction in the vicinity of the root portion of the upper contact piece 42.
When the counterpart coaxial terminal 91 is fitted to the coaxial terminal 30, the signal terminal 92 (refer to
In contrast, the lower contact piece 43 is connected to the lower end 412 of the main body 41 at the root portion 431. Since this root portion 431 is curved, the lower contact piece 43 protrudes obliquely downward from the lower end 412 of the main body 41. The lower contact piece 43 is elastically deformable upward with the root portion 431 as a fulcrum. The lower contact piece 43 has a substantially U-shaped contact portion 432 at its tip. When the coaxial connector 20 is mounted on the wiring board body 10, the contact portion 432 contacts the signal wiring pattern 12 (refer to
The insulating member 50 is made of a material having an electrical insulation such as, for example, a resin material. As shown in
Further, the insulating member 50 of the present embodiment has an opening 51 which is open in the −Y direction. As shown in
L2≥½×L1 (4)
In the above formula (4), L1 is the length of the insulating member 50 along the axial direction (Z direction) of the coaxial terminal 30, L2 is the length of the opening 51 along the axial direction (Z direction).
Here, if the coaxial terminal is simply miniaturized (reduced diameter), the impedance of the coaxial terminal is lowered because the insulating member interposed between the signal terminal and the ground terminal is thin. On the other hand, in the present embodiment, since the opening 51 satisfying the above formula (4) is formed in the insulating member 50, it is possible to interpose much air that has the relative dielectric constant lower than resin thereof between the signal terminal 40 and the ground terminal 60. Therefore, it is possible to maintain the impedance of the coaxial terminal 30 even when the coaxial terminal 30 is miniaturized.
Further, the opening 51 may have a width to satisfy the following formula (5). As a result, it is possible to make the opening 51 sufficiently large.
W2>W1 (5)
In the above formula (5), W1 is the width of the portion of the main body 41 exposed through the opening 51 and is the width along the width direction (X direction) substantially orthogonal to the axial direction (Z direction) of the coaxial terminal 30. W2 is the width of the opening 51 along the width direction (X direction).
As shown in
The first half-tubular member 61 is made of a material having a conductivity such as, for example, a metal material and is formed by performing a bending process after punching a metal plate material. The first half-tubular member 61 includes a main body 62, a pair of upper contact pieces 63, and a pair of inner contact pieces 64. The main body 62 has a half-octagonal tubular shape corresponding to the outer peripheral surface of the insulating member 50. The upper contact pieces 63 extend from the main body 62 in the +Z direction side. On the other hand, the lower inner contact pieces 64 extend from the main body 62 in the −Z direction side. The main body 62, the upper contact pieces 63, and the inner contact pieces 64 are integrally formed.
The pair of upper contact pieces 63 protrude from the upper end 621 of the main body 62 toward the +Z direction. The upper contact pieces 63 are disposed at both ends in the circumferential direction of the main body 62, is opposed to each other in the X direction, and is elastically deformable in a direction away from each other. Further, each of the upper contact pieces 63 has a substantially U-shaped contact portion 631 at the tip and is inclined toward the inside as it approaches the tip. When the counterpart coaxial terminal 91 is fitted to the coaxial terminal 30, the contact portion 631 is electrically connected to the ground terminal 93 (refer to
A pair of lower cutouts 623 are formed in the lower end 622 of the main body 62. A root portion 641 of the inner contact piece 64 is connected to the upper edge of the lower cutout 623, and the inner contact piece 64 is bent outward at the root portion 641. Each of the inner contact pieces 64 has a bent portion 642 bent inward and has a substantially L-shape as a whole. The inner contact piece 64 is elastically deformable upward with the root portion 641 and the bent portion 642 as fulcrums. The inner contact piece 64 has a contact portion 643 at the tip. When the coaxial connector 20 is mounted on the wiring board body 10, the contact portion 643 contacts the ground wiring pattern 13 (refer to
The main body 62 has a pair of projecting portions 624. The projecting portions 624 are respectively formed in the vicinity of both ends of the main body 62 and project toward the outside (X direction) of the main body 62.
Like the first half-tubular member 61 described above, the second half-tubular member 65 is also made of a conductive material such as, for example, a metal material and is formed by performing a bending process after punching a metal plate material. The second half-tubular member 65 includes a main body 66 and a pair of outer contact pieces 67. Main body 66 has a half-octagonal tubular shape corresponding to the outer peripheral surface of the insulating member 50. The lower outer contact piece 67 extends from the main body 66 toward the −Z direction side. The main body 62 and the outer contact piece 67 are integrally formed. The second half-tubular member 65 has no upper contact piece.
Like the main body 62 of the first half-tubular member 61 described above, a pair of lower cutouts 663 are formed in the lower end 662 of the main body 66. The root portion 671 of the outer contact piece 67 is connected to the upper edge of the lower cutout 663, and the outer contact piece 67 is bent inward at the root portion 671. Each of the outer contact pieces 67 has a bent portion 672 bent outward and has a substantially L-shape as a whole. The outer contact piece 67 is elastically deformable upward with the root portion 671 and the bent portion 672 as fulcrums. The outer contact piece 67 has a contact portion 673 at the tip. When the coaxial connector 20 is mounted on the wiring board body 10, the contact portion 673 contacts the ground wiring pattern 13 (refer to
The main body 66 has an upper cutout 664, a plurality of (four in the present example) claws 665, and a pair of through holes 666. The upper cutout 664 is disposed in the center of the circumferential direction of the main body 66 and is open at the upper end 661 of the main body 66. The claws 665 respectively project from both ends of the main body 66 in the +Y direction. The through hole 666 is formed in the vicinity of both ends of the main body 66 so as to correspond to the protrusion 624 of the first half-tubular member 61.
In the present embodiment, the upper cutout 664 of the main body 66 satisfies the following formula (6), and the signal terminal 40 that is covered by the main body 60a of the ground terminal 60 has a portion that is exposed through the cutout 664 as shown in
W4>W3 (6)
In the above formula (6), W3 is the width of the portion of the signal terminal 40 that faces the upper cutout 664 and is the width along the width direction (X direction) substantially orthogonal to the axial direction (Z direction) of the coaxial terminal 30, and W4 is the width of the upper cutout 664 along the width direction (X direction).
As described above, the ground terminal 60 is configured by assembling the first and second half-tubular members 61 and 65 described above. Specifically, as shown in
In the present embodiment, as described above, the coaxial terminal 30 is assembled before the coaxial terminal 30 is inserted into the housing 70. However, the timing of assembling the coaxial terminal 30 is not particularly limited thereto. For example, as described in Japanese Unexamined Patent Application Publication No. 2013-26145, the first and second half-tubular members 61 and 65 may be fixed by utilizing the insertion operation of the coaxial terminal 30 into the housing 70.
The ground terminal 60 of the coaxial terminal 30 assembled as described above includes a main body 60a of substantially octagonal tubular shape composed of the main bodies 62 and 66 of the first and second half-tubular members 61 and 65. As shown in
As shown in
In contrast, as shown in
Further, as shown in
The main body 60a in the present embodiment corresponds to an example of the “second main body.” The upper contact piece 63 in the present embodiment corresponds to an example of the “third contact piece,” and the inner contact piece 64 and the outer contact piece 67 in the present embodiment correspond to an example of the “fourth contact piece.”
The housing 70 is made of an electrically insulating material such as, for example, a resin material and has a substantially rectangular parallelepiped shape as shown in
As shown in
Further, a substantially round cylindrical holding portion 72 is provided inside the holding hole 71. The holding portion 72 is connected to the inner peripheral surface of the holding hole 71 via the connecting portion 73. Further, the holding portion 72 is formed with a through hole 721 that penetrates the holding portion 72 in the vertical direction (Z direction). The through hole 721 has a circular cross-sectional shape with the inner diameter corresponding to the outer diameter of the signal terminal 40.
Then, when the coaxial terminal 30 is inserted from below into the housing 70 (refer to
The plurality of holding holes 71 are arranged in the housing 70 in a staggered (zigzag) manner. Specifically, as shown in
In the first holding hole group 75A at the uppermost row in
On the other hand, although the eighteen holding holes 71 are arranged at equal pitches P1 in the second holding hole group 75B at the second row from the top, the second holding hole group 75B has a missing portion 76 between the sixth and seventh holding holes 71 from the left. Similarly, although the eighteen holding holes 71 are arranged at equal pitches P1 in the fourth holding hole group 75D at the second row from the bottom, the fourth holding hole group 75D has a missing portion 76 between the seventh and eighth holding holes 71 from the right.
The first to fifth holding hole groups 75A to 75E adjacent to each other are arranged in parallel so that the holding holes 71 are offset from each other by half a pitch (P1/2). That is, the holding holes 71 in the mutually adjacent holding hole groups 75A to 75E are arranged alternately. Here, the sixth and seventh holding holes 71 in the second holding hole group 75B are separated by distances equivalent to integer multiples (three times in the present embodiment) of the pitch P1 of the holding holes 71. Similarly, the seventh and eighth holding holes 71 in the fourth holding hole group 75D are also separated by distances equivalent to integer multiples (three times in the present embodiment) of the pitch P1 of the holding holes 71. Therefore, even if the second and fourth hold hole groups 75B, 75D have the missing portions 76, it is possible to arrange the first to fifth holding hole groups 75A to 75E alternately and regularly.
The fixing pins 80 are disposed on both sides of the first holding hole group 75A. Similarly, the fixing pins 80 are arranged on both sides of the fifth holding hole group 75E. In addition, the fixing pin 80 is arranged in the missing portions 76 of the second holding hole group 75B. Similarly, the fixing pin 80 is arranged in the missing portion 76 of the fourth holding hole group 75D. As shown in
Thus, in the present embodiment, since the plurality of fixing pins 80 are arranged at a position asymmetrical with the center of the upper surface of the housing 70 as a symmetrical point, it is possible to prevent mismounting of the coaxial connector 20 to the wiring board body 10. Further, in the present embodiment, since the fixing pins 80 are disposed in the group 75B, 75D of the holding holes 71, it is possible to stably fix the coaxial connector 20 to the wiring board body 10.
Incidentally,
The coaxial connector 20 described above is mounted on the wiring board body 10. The coaxial connector 20 is fixed to the insulating substrate 11 by inserting the fixing pin 80 that protrudes from the housing 70 into the mounting hole (not shown) of the insulating substrate 11.
In the present embodiment, as shown in
Further, in a state where the coaxial connector 20 is mounted on the wiring board body 10, the contact portion 643 of the inner contact piece 64 of the ground terminal 60 is in contact with the ground wiring pattern 13 of the wiring board body 10. At this time, the inner contact piece 64 is elastically deformed with the root portion 641 and the bent portion 642 as fulcrums, and the contact portion 643 is pressed against the ground wiring pattern 13.
In the present embodiment, due to the elastic deformation of the inner contact piece 64, the contact portion 643 of the inner contact piece 64 is moved radially inward of the main body 60a in comparison with the state before the coaxial connector 20 is mounted on the wiring board body 10 (refer to
Similarly, in a state where the coaxial connector 20 is mounted on the wiring board body 10, the contact portion 673 of the outer contact piece 67 of the ground terminal 60 is in contact with the ground wiring pattern 13 of the wiring board body 10. At this time, the outer contact piece 67 is elastically deformed with the root portion 671 and the bent portion 672 as fulcrums, and the contact portion 673 is pressed against the ground wiring pattern 13.
In the present embodiment, due to the elastic deformation of the outer contact piece 67, the contact portion 673 of the outer contact piece 67 is moved radially outward in comparison with the state before the coaxial connector 20 is mounted on the wiring board body 10 (refer to
Thus, the ground terminal 60 is electrically connected to the ground wiring pattern 13 by pressing the contact portions 643, 673 of the inner contact piece 64 and the outer contact piece 67 against the ground wiring pattern 13. In the present embodiment, as shown in
The wiring board 1 with the coaxial connector 20 described above can be used as a performance board 120 or a test module 141 of the electronic component testing apparatus 100 shown in
As shown in
A plurality of sockets 121 that DUT 200 are pressed to by a handler (not shown) are mounted on the top surface of the performance board 120. Although not particularly limited, SoCs (System on a chip), logic devices, and memory device may be exemplified as a specific example of DUT 200 to be tested. A plurality of coaxial connectors 122 are mounted on the underside of the performance board 120. The socket 121 and the coaxial connector 122 are electrically connected via a wiring pattern (not shown) or the like. The coaxial connector 20 described above can be used as the coaxial connector 122.
The motherboard 130 includes a plurality of coaxial cables 131. The coaxial cable 131 has the same configuration as the coaxial cable 90 described above. The upper end of the coaxial cable 131 is held by a holder 132 that is provided in the upper portion of the motherboard 130, and the lower end of the coaxial cable 131 is also held by a holder 133 that is provided in the lower portion of the motherboard 130. When the performance board 120 is attached to the motherboard 130, the coaxial connector 122 of the performance board 120 and the coaxial terminal at one end of the coaxial cable 131 of the motherboard 130 are fitted to each other.
Test head body 140 includes a plurality of test modules 141 (pin electronics cards). A coaxial connector 142 is mounted on the upper edge of each test module 141. When the motherboard 130 is attached to the test head body 140, the coaxial terminal at the other end of the coaxial cable 131 of the motherboard 130 and the coaxial connector 142 of the test head body 140 are fitted to each other. The coaxial connector 20 described above can be used as the coaxial connector 142. Each test module 141 is connected to a tester 150 via a cable 151, generates a test signal in response to an instruction from the tester 150, and sends to DUT 200.
As described above, in the present embodiment, since a part of the main body 41 of the signal terminal 40 is exposed from the insulating member 50 through the opening 51 and the length L1 of the insulating member 50 and the length L2 of the opening 51 satisfy the relationship of the above formula (4), it is possible to interpose more much air that has the relative dielectric constant lower than resin thereof between the signal terminal 40 and the ground terminal 60. Therefore, it is possible to maintain the impedance of the coaxial terminal 20 even when the coaxial terminal 20 is miniaturized, and it is possible to ensure the desired electrical characteristics while miniaturizing the coaxial terminal 20.
Although the disclosure has been described with respect to only a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present invention. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-091493 | May 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4795352 | Capp | Jan 1989 | A |
5662480 | Togashi | Sep 1997 | A |
6210182 | Elco | Apr 2001 | B1 |
7695289 | Sato | Apr 2010 | B1 |
8657625 | Wagata | Feb 2014 | B2 |
8690583 | Uesaka | Apr 2014 | B2 |
9583854 | Uesaka | Feb 2017 | B2 |
9608388 | Kondo | Mar 2017 | B2 |
20090011619 | Akama | Jan 2009 | A1 |
20090203259 | Nguyen | Aug 2009 | A1 |
20100003851 | Akama | Jan 2010 | A1 |
20110279140 | Uesaka et al. | Nov 2011 | A1 |
20110285415 | Uesaka | Nov 2011 | A1 |
20130189866 | Wagata et al. | Jul 2013 | A1 |
20150207247 | Regnier | Jul 2015 | A1 |
20180006416 | Lloyd et al. | Jan 2018 | A1 |
20180034175 | Lloyd | Feb 2018 | A1 |
20180120906 | Reed et al. | May 2018 | A1 |
20180366890 | Lloyd et al. | Dec 2018 | A1 |
20190245288 | Lloyd et al. | Aug 2019 | A1 |
20200225716 | Reed et al. | Jul 2020 | A1 |
20210203104 | Chen | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
113725642 | Nov 2021 | CN |
2011-238495 | Nov 2011 | JP |
2013-26145 | Feb 2013 | JP |
10-2013-0012571 | Feb 2013 | KR |
10-2017-0102011 | Sep 2017 | KR |
Entry |
---|
Office Action issued in corresponding Korean Application No. 10-2021-0029943 dated Jul. 18, 2022 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20210376529 A1 | Dec 2021 | US |