The present disclosure relates generally to the implantable portion of implantable cochlear stimulation (or “ICS”) systems.
ICS systems are used to help the profoundly deaf perceive a sensation of sound by directly exciting the intact auditory nerve with controlled impulses of electrical current. Ambient sound pressure waves are picked up by an externally worn microphone and converted to electrical signals. The electrical signals, in turn, are processed by a sound processor, converted to a pulse sequence having varying pulse widths, rates and/or amplitudes, and transmitted to an implanted receiver circuit of the ICS system. The implanted receiver circuit is connected to an implantable electrode array that has been inserted into the cochlea of the inner ear, and electrical stimulation current is applied to varying electrode combinations to create a perception of sound. The electrode array may, alternatively, be directly inserted into the cochlear nerve without residing in the cochlea. A representative ICS system is disclosed in U.S. Pat. No. 5,824,022, which is entitled “Cochlear Stimulation System Employing Behind-The-Ear Sound processor With Remote Control” and incorporated herein by reference in its entirety. Examples of commercially available ICS sound processors include, but are not limited to, the Harmony™ BTE sound processor, the Naida™ CI Q Series sound processor and the Neptune™ body worn sound processor, which are available from Advanced Bionics.
As alluded to above, some ICS systems include an implantable cochlear stimulator (or “cochlear implant”), a sound processor unit (e.g., a body worn processor or behind-the-ear processor), and a microphone that is part of, or is in communication with, the sound processor unit. The cochlear implant communicates with the sound processor unit and, some ICS systems include a headpiece that is in communication with both the sound processor unit and the cochlear implant. The headpiece communicates with the cochlear implant by way of a transmitter (e.g., an antenna) on the headpiece and a receiver (e.g., an antenna) on the implant. Optimum communication is achieved when the transmitter and the receiver are aligned with one another. To that end, the headpiece and the cochlear implant may include respective positioning magnets that are attracted to one another, and that maintain the position of the headpiece transmitter over the implant receiver. The implant magnet may, for example, be located within a pocket in the cochlear implant housing.
One example of a conventional cochlear implant (or “implantable cochlear stimulator”) is the cochlear implant 10 illustrated in
There are some instances where it is necessary to remove the magnet from a conventional cochlear implant, and then reinsert the magnet, in situ, i.e., with the cochlear implant accessed by way of an incision in the skin. To that end, the positioning magnet 24 is carried within an internal magnet pocket 26 and can be inserted into, and removed from, the housing pocket by way of a magnet aperture 28 that extends through the housing top wall 30. The positioning magnet 24 has a diameter of 10.5 mm and a thickness of 2.2 mm. The magnet 22 is larger than the magnet aperture 28, i.e., the outer perimeter of the magnet is greater than the perimeter of the magnet aperture. The portion of the top wall 30 between the aperture 28 and the outer edge 32 of the magnet 24 forms a retainer 34 that, absent deformation of the aperture and retainer, prevents the magnet from coming out of the housing 12. During installation and removal, the aperture 28 and retainer 34 are stretched or otherwise deformed so that the magnet 24 can pass through the aperture 28.
The present inventors have determined that conventional cochlear implants are susceptible to improvement. For example, removal and replacement of the implant magnet by way of the aperture may be required because some conventional cochlear implants are not compatible with magnetic resonance imaging (“MRI”) systems. As illustrated in
Reorientation of the magnet 24 can place significant stress on the dermis (or “skin”), which cause significant pain. Prior to rotation (
As alluded to above, magnet rotation may be avoided by surgically removing the magnet prior to the MRI procedure. However, in addition to the issues associated with the removal/replacement surgery, the presence of the magnet aperture 28 can lead to the formation of biofilm and can allow ingress of bacteria and microbes. Accordingly, the present inventors have determined that a solution which allows an MRI procedure to be performed without magnet removal/replacement surgery, thereby eliminating the need for the magnet aperture, would be desirable.
A cochlear implant in accordance with one of the present inventions includes a cochlear lead, a housing, a magnet apparatus, located within the flexible housing, including a first partial disk shaped magnet member and a second partial disk shaped magnet member spaced apart from the first partial disk shaped magnet member, an antenna within the housing, and a stimulation processor. The present inventions also include systems with such a cochlear implant in combination with a headpiece, as well as systems with such a cochlear implant in combination with both a headpiece and a sound processor.
A cochlear implant in accordance with one of the present inventions includes a cochlear lead including a plurality of electrodes, a flexible housing including a magnet pocket, a top wall above the magnet pocket that does not include an opening into the magnet pocket, and a bottom wall below the magnet pocket that does not include an opening into the magnet pocket, a magnetic element, located within the magnet pocket, that defines a diameter, a thickness and the diameter to thickness ratio (“DtoT ratio”) that is 2.5 or less, an antenna within the housing, and a stimulation processor. The present inventions also include systems with such a cochlear implant in combination with a headpiece, as well as systems with such a cochlear implant in combination with both a headpiece and a sound processor.
There are a number of advantages associated with such apparatus and systems. For example, when torque applied to the magnet apparatus by a strong magnetic field rotates the magnet apparatus, the increase in distance between the bone and skin (as well as the associated stress on the dermis and pain) will be far less than that associated with a conventional cochlear implant. As a result, surgical removal of the cochlear implant magnet prior to an MRI procedure, and then surgical replacement thereafter, is not required and the magnet aperture may be omitted.
The above described and many other features of the present inventions will become apparent as the inventions become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
Detailed descriptions of the exemplary embodiments will be made with reference to the accompanying drawings.
The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions.
One example of a cochlear implant (or “implantable cochlear stimulator”) in accordance with the present inventions is the cochlear implant 100 illustrated in
Turning to
The exemplary first and second magnet portions 126a and 126b are respectively located within magnet pockets 136a and 136b in the housing antenna portion 125 which, in their unstressed states, have sizes and shapes corresponding to those of the first and second magnet portions. In the illustrated implementation, the magnet portions 126a and 126b are embedded within the housing 102 such that, when the cochlear implant 100 is in its flat state (
Although the present inventions are not so limited, the magnet portions 126a and 126b of the exemplary magnet apparatus 124 include respective magnetic elements 146a and 146b (
Reorientation of the magnet portions 126a and 126b of the exemplary magnet apparatus 124 causes significantly less stress on the dermis and, accordingly, less pain than conventional implant magnets. Such rotation may be imparted by an MRI magnetic field. Prior to rotation when the cochlear implant is in the flat state (
It should be noted here that for a given rotational magnitude (e.g., about 75 degrees in
The present magnet assembles (and associated magnet portions) are not limited to the configuration illustrated in
Turning to
Although the amount of allowed rotation may vary from one implementation to another, the flexible strap 350 in the illustrated implementation allows the magnet portions 226a and 226b to rotate up to approximately 135 degrees form the flat-state orientation illustrated in
Referring to
The exemplary magnetic element 446 may have a DtoT ratio of 2.5 or less. To that end, the exemplary magnetic element 446 has a diameter DIA of 7.1 mm, a thickness T of 2.8 mm, and a DtoT ratio of 2.5. In another exemplary embodiment, the magnetic element may have a diameter DIA of 6.5 mm, a thickness T of 3.5 mm, and a DtoT ratio of 1.9. In other embodiments, the DtoT ratio may range from 2.5 to 1.9, with magnetic element diameters of 7.1 or less, and magnet thicknesses of 2.8 or more. The dimensions magnet apparatus also include the thin housing 448, which adds about 0.2 to 0.3 mm to the diameters and thicknesses discussed above. For purposes of comparison, the conventional magnet 24 illustrated in
Referring to
As illustrated in
The exemplary body worn sound processor 500 in the exemplary ICS system 50 includes a housing 502 in which and/or on which various components are supported. Such components may include, but are not limited to, sound processor circuitry 504, a headpiece port 506, an auxiliary device port 508 for an auxiliary device such as a mobile phone or a music player, a control panel 510, one or microphones 512, and a power supply receptacle 514 for a removable battery or other removable power supply 516 (e.g., rechargeable and disposable batteries or other electrochemical cells). The sound processor circuitry 504 converts electrical signals from the microphone 512 into stimulation data. The exemplary headpiece 600 includes a housing 602 and various components, e.g., a RF connector 604, a microphone 606, an antenna (or other transmitter) 608 and a positioning magnet apparatus 610, that are carried by the housing. The magnet apparatus 610 may consist of a single magnet or may consist of one or more magnets and a shim. The headpiece 600 may be connected to the sound processor headpiece port 506 by a cable 612. The positioning magnet apparatus 610 is attracted to the magnet apparatus 124 of the cochlear stimulator 100, thereby aligning the antenna 608 with the antenna 108. The stimulation data and, in many instances power, is supplied to the headpiece 600. The headpiece 600 transcutaneously transmits the stimulation data, and in many instances power, to the cochlear implant 100 by way of a wireless link between the antennas. The stimulation processor 118 converts the stimulation data into stimulation signals that stimulate the electrodes 114 of the electrode array 112.
In at least some implementations, the cable 612 will be configured for forward telemetry and power signals at 49 MHz and back telemetry signals at 10.7 MHz. It should be noted that, in other implementations, communication between a sound processor and a headpiece and/or auxiliary device may be accomplished through wireless communication techniques. Additionally, given the presence of the microphone(s) 512 on the sound processor 500, the microphone 606 may be also be omitted in some instances. The functionality of the sound processor 500 and headpiece 600 may also be combined into a single head wearable sound processor. Examples of head wearable sound processors are illustrated and described in U.S. Pat. Nos. 8,811,643 and 8,983,102, which are incorporated herein by reference in their entirety.
Although the inventions disclosed herein have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. By way of example, but not limitation, the inventions include any combination of the elements from the various species and embodiments disclosed in the specification that are not already described. It is intended that the scope of the present inventions extend to all such modifications and/or additions and that the scope of the present inventions is limited solely by the claims set forth below.
This application claims priority to U.S. Prov. App. Ser. No. 62/422,548, filed Nov. 15, 2016, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4352960 | Dormer et al. | Oct 1982 | A |
4595390 | Hakim et al. | Jun 1986 | A |
4606329 | Hough | Aug 1986 | A |
4618949 | Lister | Oct 1986 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
5290281 | Tschakaloff | Mar 1994 | A |
5755762 | Bush | May 1998 | A |
5824022 | Zilberman et al. | Oct 1998 | A |
5945762 | Chen et al. | Aug 1999 | A |
6178353 | Griffith et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6227820 | Jarvik | May 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6838963 | Zimmerling | Jan 2005 | B2 |
7091806 | Zimmerling et al. | Aug 2006 | B2 |
7190247 | Zimmerling | Mar 2007 | B2 |
7566296 | Zimmerling et al. | Jul 2009 | B2 |
7609061 | Hochmair | Oct 2009 | B2 |
7642887 | Zimmerling | Jan 2010 | B2 |
7680525 | Damadian | Mar 2010 | B1 |
7774069 | Olson et al. | Aug 2010 | B2 |
7856986 | Darley | Dec 2010 | B2 |
7881800 | Daly et al. | Feb 2011 | B2 |
7976453 | Zimmerling et al. | Jul 2011 | B2 |
8013699 | Zimmerling | Sep 2011 | B2 |
8118725 | Zimmerling et al. | Feb 2012 | B2 |
8255058 | Gibson et al. | Aug 2012 | B2 |
8340774 | Hochmair et al. | Dec 2012 | B2 |
8634909 | Zimmerling et al. | Jan 2014 | B2 |
8733494 | Leigh | May 2014 | B1 |
8734475 | Ekvall et al. | May 2014 | B2 |
8744106 | Ball | Jun 2014 | B2 |
8758394 | Zimmerling et al. | Jun 2014 | B2 |
8787608 | Van Himbeeck et al. | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8825171 | Thenuwara et al. | Sep 2014 | B1 |
8891795 | Andersson | Nov 2014 | B2 |
8897475 | Ball et al. | Nov 2014 | B2 |
RE45701 | Zimmerling et al. | Sep 2015 | E |
9126010 | Shah et al. | Sep 2015 | B2 |
9162054 | Dalton | Oct 2015 | B2 |
9227064 | Duftner | Jan 2016 | B2 |
9295425 | Ball | Mar 2016 | B2 |
9314625 | Kasic, II et al. | Apr 2016 | B2 |
9352149 | Thenuwara et al. | May 2016 | B2 |
RE46057 | Zimmerling et al. | Jul 2016 | E |
9392382 | Nagl et al. | Jul 2016 | B2 |
9420388 | Ball | Aug 2016 | B2 |
9549267 | Nagl et al. | Jan 2017 | B2 |
9615181 | Nagl et al. | Apr 2017 | B2 |
9656065 | Tourrel et al. | May 2017 | B2 |
9919154 | Lee | Mar 2018 | B2 |
9931501 | Smyth | Apr 2018 | B2 |
10300276 | Lee et al. | May 2019 | B2 |
10463849 | Lee et al. | Nov 2019 | B2 |
20040012470 | Zimmerling et al. | Jan 2004 | A1 |
20040260362 | Darley | Dec 2004 | A1 |
20050001703 | Zimmerling | Jan 2005 | A1 |
20050004629 | Gibson et al. | Jan 2005 | A1 |
20050062567 | Zimmerling et al. | Mar 2005 | A1 |
20060244560 | Zimmerling et al. | Nov 2006 | A1 |
20070053536 | Westerkull | Mar 2007 | A1 |
20070126540 | Zimmerling | Jun 2007 | A1 |
20080103350 | Farone | May 2008 | A1 |
20080195178 | Kuzma | Aug 2008 | A1 |
20090048580 | Gibson | Feb 2009 | A1 |
20090099403 | Zimmerling et al. | Apr 2009 | A1 |
20090134721 | Zimmerling | May 2009 | A1 |
20090248155 | Parker | Oct 2009 | A1 |
20090287278 | Charvin | Nov 2009 | A1 |
20100004716 | Zimmerling et al. | Jan 2010 | A1 |
20100046778 | Crawford et al. | Feb 2010 | A1 |
20100046779 | Crawford et al. | Feb 2010 | A1 |
20110009925 | Leigh et al. | Jan 2011 | A1 |
20110022120 | Ball et al. | Jan 2011 | A1 |
20110068885 | Fullerton et al. | Mar 2011 | A1 |
20110218605 | Cryer | Sep 2011 | A1 |
20110224756 | Zimmerling et al. | Sep 2011 | A1 |
20110255731 | Ball | Oct 2011 | A1 |
20110264172 | Zimmerling et al. | Oct 2011 | A1 |
20120296155 | Ball | Nov 2012 | A1 |
20130079749 | Overstreet et al. | Mar 2013 | A1 |
20130184804 | Dalton | Jul 2013 | A1 |
20130343588 | Karunasiri | Dec 2013 | A1 |
20140012069 | Ball | Jan 2014 | A1 |
20140012070 | Nagl et al. | Jan 2014 | A1 |
20140012071 | Nagl et al. | Jan 2014 | A1 |
20140012349 | Zimmerling | Jan 2014 | A1 |
20140121449 | Kasic et al. | May 2014 | A1 |
20140121586 | Bertrand et al. | May 2014 | A1 |
20140163692 | Van den Heuvel et al. | Jun 2014 | A1 |
20140343626 | Thenuwara et al. | Nov 2014 | A1 |
20150025613 | Nyberg, II et al. | Jan 2015 | A1 |
20150073205 | Ball et al. | Mar 2015 | A1 |
20150087892 | Tourrel et al. | Mar 2015 | A1 |
20150100109 | Feldman et al. | Apr 2015 | A1 |
20150265842 | Ridker | Sep 2015 | A1 |
20150367126 | Smyth | Dec 2015 | A1 |
20150374989 | Hazard | Dec 2015 | A1 |
20150382114 | Andersson et al. | Dec 2015 | A1 |
20160037273 | Gustafsson | Feb 2016 | A1 |
20160144170 | Gibson et al. | May 2016 | A1 |
20160205484 | Nagl et al. | Jul 2016 | A1 |
20160310737 | Tourrel et al. | Oct 2016 | A1 |
20160361537 | Leigh et al. | Dec 2016 | A1 |
20160381473 | Gustafsson | Dec 2016 | A1 |
20160381474 | Gustafsson et al. | Dec 2016 | A1 |
20170050027 | Andersson et al. | Feb 2017 | A1 |
20170078808 | Kennes | Mar 2017 | A1 |
20170156010 | Verma et al. | Jun 2017 | A1 |
20170239476 | Lee et al. | Aug 2017 | A1 |
20180028818 | Anderson et al. | Feb 2018 | A1 |
20180110985 | Walter | Apr 2018 | A1 |
20180110986 | Lee | Apr 2018 | A1 |
20180185634 | Smyth | Jul 2018 | A1 |
20190076649 | Lee et al. | Mar 2019 | A1 |
20190255316 | Lee et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2117489 | May 2010 | EP |
2853287 | Apr 2015 | EP |
2560730 | Nov 2016 | EP |
3138605 | Mar 2017 | EP |
WO9858990 | Dec 1998 | WO |
WO03081976 | Oct 2003 | WO |
WO03092326 | Nov 2003 | WO |
WO2004014269 | Feb 2004 | WO |
WO2004014270 | Feb 2004 | WO |
WO2007024657 | Mar 2007 | WO |
WO2009124045 | Oct 2009 | WO |
WO2009124174 | Oct 2009 | WO |
WO2009149069 | Dec 2009 | WO |
WO2010000027 | Jan 2010 | WO |
WO2010083554 | Jul 2010 | WO |
WO2011011409 | Jan 2011 | WO |
WO2011109486 | Sep 2011 | WO |
WO2011133747 | Oct 2011 | WO |
WO2013043176 | Mar 2013 | WO |
WO2013063355 | May 2013 | WO |
WO2014011441 | Jan 2014 | WO |
WO2014011582 | Jan 2014 | WO |
WO2014046662 | Mar 2014 | WO |
WO2014164023 | Oct 2014 | WO |
WO2015065442 | May 2015 | WO |
WO2016016821 | Feb 2016 | WO |
WO2016190886 | Dec 2016 | WO |
WO2016191429 | Dec 2016 | WO |
WO2016207856 | Dec 2016 | WO |
WO2017027045 | Feb 2017 | WO |
WO2017027046 | Feb 2017 | WO |
WO2017029615 | Feb 2017 | WO |
WO2017034530 | Mar 2017 | WO |
WO2017046650 | Mar 2017 | WO |
WO2017087004 | May 2017 | WO |
WO2017105510 | Jun 2017 | WO |
WO2017105511 | Jun 2017 | WO |
WO2017105604 | Jun 2017 | WO |
WO2017172566 | Oct 2017 | WO |
WO2018217187 | Nov 2018 | WO |
WO2019160555 | Aug 2019 | WO |
Entry |
---|
U.S. Appl. No. 15/568,470, filed Oct. 21, 2017, 20180110986A1. |
U.S. Appl. No. 15/703,808, filed Sep. 13, 2017. |
Ju Hyun Jeon et al., “Reversing the Polarity of a Cochlear Implant Magnet After Magnetic Resonance Imaging,” Auris Nasus Larynx, vol. 39, No. 4, pp. 415-417, Aug. 1, 2012. |
Teissl et al., “Magentic Resonance Imaging and Cochlear Implants: Compatibility and Safety Aspects,” Journal of Magnetic Resonance Imaging, Society For Magnetic Resonance Imaging, vol. 9, No. 1, pp. 26-38, Jan. 1, 1999. |
U.S. Appl. No. 16/403,582, filed May 5, 2019. |
U.S. Appl. No. 15/568,469, filed Oct. 21, 2017, 20180110985A1. |
U.S. Appl. No. 15/770,207, filed Apr. 22, 2018, 20180304078 A1. |
U.S. Appl. No. 16/060,383, filed Jun. 7, 2018, 20180369586 A1. |
U.S. Appl. No. 15/591,054, filed May 9, 2017, U.S. Pat. No. 9,919,154. |
U.S. Appl. No. 16/009,600, filed Jun. 15, 2018, 20180296826A1. |
U.S. Appl. No. 16/403,582, filed May 5, 2019, 20190255316A1. |
U.S. Appl. No. 15/568,470, filed Oct. 21, 2017, U.S. Pat. No. 10,300,276. |
U.S. Appl. No. 16/101,390, filed Aug. 10, 2018, 20190046797 A1. |
U.S. Appl. No. 15/703,808, filed Sep. 13, 2017, 20190076649 A1. |
U.S. Appl. No. 15/805,025, filed Nov. 6, 2017, 20180133486 A1. |
U.S. Appl. No. 16/499,311, filed Sep. 29, 2019. |
U.S. Appl. No. 16/603,868, filed Oct. 9, 2019. |
Number | Date | Country | |
---|---|---|---|
20180133486 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62422548 | Nov 2016 | US |