The present disclosure relates generally to the implantable portion of implantable cochlear stimulation (or “ICS”) systems.
ICS systems are used to help the profoundly deaf perceive a sensation of sound by directly exciting the intact auditory nerve with controlled impulses of electrical current. Ambient sound pressure waves are picked up by an externally worn microphone and converted to electrical signals. The electrical signals, in turn, are processed by a sound processor, converted to a pulse sequence having varying pulse widths, rates, and/or amplitudes, and transmitted to an implanted receiver circuit of the ICS system. The implanted receiver circuit is connected to an implantable electrode array that has been inserted into the cochlea of the inner ear, and electrical stimulation current is applied to varying electrode combinations to create a perception of sound. The electrode array may, alternatively, be directly inserted into the cochlear nerve without residing in the cochlea. A representative ICS system is disclosed in U.S. Pat. No. 5,824,022, which is entitled “Cochlear Stimulation System Employing Behind-The-Ear Sound processor With Remote Control” and incorporated herein by reference in its entirety. Examples of commercially available ICS sound processors include, but are not limited to, the Advanced Bionics Harmony™ BTE sound processor, the Advanced Bionics Naída CI Q Series BTE sound processors and the Advanced Bionics Neptune™ body worn sound processor.
As alluded to above, some ICS systems include an implantable cochlear stimulator (or “cochlear implant”), a sound processor unit (e.g., a body worn processor or behind-the-ear processor), and a microphone that is part of, or is in communication with, the sound processor unit. The cochlear implant communicates with the sound processor unit and, some ICS systems include a headpiece that is in communication with both the sound processor unit and the cochlear implant. The headpiece communicates with the cochlear implant by way of a transmitter (e.g., an antenna) on the headpiece and a receiver (e.g., an antenna) on the implant. Optimum communication is achieved when the transmitter and the receiver are aligned with one another. To that end, the headpiece and the cochlear implant may include respective positioning magnets that are attracted to one another, and that maintain the position of the headpiece transmitter over the implant receiver. The implant magnet may, for example, be located within a pocket in the cochlear implant housing. The skin and subcutaneous tissue that separates the headpiece magnet and implant magnet is sometimes referred to as the “skin flap,” which is frequently 3 mm to 10 mm thick.
The magnitude of the retention force between the headpiece magnet and implant magnet is an important aspect of an ICS system. If the force is too low, the headpiece will not remain in place on the head during typical activities. If, on the other hand, the force is too high, the pressure on the skin flap can result is discomfort and tissue necrosis. The magnitude of the retention force is dictated by the strength of the magnets and the distance between the magnets, which is a function of the thickness of the skin flap. The strength of the headpiece magnet is frequently selected during the post-implantation headpiece fitting processes.
The present inventors have determined that conventional cochlear implants are susceptible to improvement. For example, the magnets in many conventional cochlear implants are disk-shaped and have north and south magnetic dipoles that are aligned in the axial direction of the disk. Such magnets are not compatible with magnetic resonance imaging (“MRI”) systems. In particular, the cochlear implant 10 illustrated in
One proposed solution involves surgically removing the implant magnet 14 prior to the MRI procedure and then surgically replacing the implant magnet thereafter. The present inventor has determined that removal and reinsertion can be problematic because some patients will have many MRI procedures during their lifetimes, and repeated surgeries can result in skin necrosis at the implant site.
Another proposed solution involves the use of rotatable magnets. Referring to
Although the cochlear implant illustrated in
A cochlear implant in accordance with one of the present inventions may include a cochlear lead, an antenna, a stimulation processor, and a magnet apparatus, associated with the antenna, including a case and a magnet assembly, having a spine and at least one magnet that is secured to the spine, that is located within the case and is rotatable relative to the case. A system in accordance with one of the present inventions includes such a cochlear implant and a headpiece.
There are a number of advantages associated with such apparatus and systems. For example, the spine protects the at least one magnet from impacts forces that could damage the at least one magnet and impair rotation.
The above described and many other features of the present inventions will become apparent as the inventions become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
Detailed descriptions of the exemplary embodiments will be made with reference to the accompanying drawings.
The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions.
As illustrated for example in
The exemplary case 102 is not limited to any particular configuration, size or shape. In the illustrated implementation, the exemplary case 102 includes a top wall 112, a bottom wall 114, and a cylindrical side wall 116 between the top and bottom walls. As used herein, the word “top” refers to a structure or surface that, post implantation, faces the skin and (if present) the associated headpiece, and the word “bottom” refers to a structure or surface that, post implantation, faces bone. In the illustrated implementation, the case 102 is assembled from a base 118 that includes the bottom wall 114 and a portion of the side wall 116, and a cover 120 that includes the top wall 112 and another portion of the side wall 116. The base 118 and the cover 120 may be secured to one another in such a manner that a hermetic seal is formed between the cover and the base. Suitable techniques for securing the cover 120 to the base 118 include, for example, seam welding with a laser welder.
Turning to the exemplary magnet assembly 104, and although the spine is not limited to any particular shape, the exemplary spine 106 has a shape similar to an “I” beam and includes a web 122 and a pair of flanges 124 with curved outer surfaces 126 (
Referring to
Referring to
The spine 106 protects the magnets 108 and 110, especially those formed from somewhat brittle sintered materials, from impact forces that act on the exterior surface of case 102. For example, in those instances where impact forces IF are aligned with any portion of the spine 106 (i.e., the web 122 or the flanges 124) and are of sufficient magnitude to bend the top wall 112 of the case 102, the inner surface 144 will at most contact the spine. The inner surface 144 of the top wall 112 will not come into contact with the magnets 108 and 110, as shown in
In those instances where the impact forces IF on the case top wall 112 are not aligned with any portion of the spine 106 (
It should also be noted that regardless of whether or not the impact forces IF are aligned with the spine 106, deformation of the case top wall 112 will not reach the point at which plastic (or “permanent”) deformation occurs. Rather, the deformation will remain within the elastic (or “temporary”) range and the case top wall 112 will return to its original shape when the impact force IF is removed.
With respect to materials, the case 102 and the spine 106 may be formed from biocompatible paramagnetic metals, such as titanium or titanium alloys, and/or biocompatible non-magnetic plastics such as polyether ether ketone (PEEK), low-density polyethylene (LDPE), high-density polyethylene (HDPE), ultra-high-molecular-weight polyethylene (UHMWPE), polytetrafluoroethylene (PTFE) and polyamide. In particular, exemplary metals include commercially pure titanium (e.g., Grade 2) and the titanium alloy Ti-6Al-4V (Grade 5), while exemplary metal thicknesses of the case 102 may range from 0.20 mm to 0.25 mm. The magnets 108 and 110 may be formed from sintered materials such as, but not limited to, neodymium-iron-boron (Nd2Fe14B), isotropic neodymium, anisotropic neodymium, and samarium-cobalt (Sm2Co17), which have relatively high magnetic strength, but can be somewhat brittle. The magnets 108 and 110 may be stable magnets that are magnetized prior to assembly. In other instances, such as the magnet assemblies 104d and 104e described below with reference to
With respect to size and shape, the case 102 may have an overall size and shape similar to that of conventional cochlear implant magnets so that the magnet apparatus 100 can be substituted for a conventional magnet in an otherwise conventional cochlear implant. In some implementations, the outer diameter that may range from about 9 mm to about 16 mm and the outer thickness may range from about 2.3 mm to about 2.7 mm. In the context of the present magnet apparatus, the word “about” means +/−8%. The height H (
To facilitate rotation of the magnet assembly 104, lubricious friction reducing material may be provided between the case 102 and the magnet assembly. For example, the magnet apparatus 100a illustrated in
Other exemplary magnet apparatus, which include magnet assemblies with spines, are illustrated in
One example of a cochlear implant (or “implantable cochlear stimulator”) including the present magnet apparatus 100 (or 100a-100e) is the cochlear implant 200 illustrated in
Turning to
The exemplary body worn sound processor 300 in the exemplary ICS system 60 includes a housing 302 in which and/or on which various components are supported. Such components may include, but are not limited to, sound processor circuitry 304, a headpiece port 306, an auxiliary device port 308 for an auxiliary device such as a mobile phone or a music player, a control panel 310, one or more microphones 312, and a power supply receptacle 314 for a removable battery or other removable power supply 316 (e.g., rechargeable and disposable batteries or other electrochemical cells). The sound processor circuitry 304 converts electrical signals from the microphone 312 into stimulation data. The exemplary headpiece 400 includes a housing 402 and various components, e.g., a RF connector 404, a microphone 406, an antenna (or other transmitter) 408 and a disk-shaped positioning magnet 410, that are carried by the housing. The headpiece 400 may be connected to the sound processor headpiece port 306 by a cable 412. The positioning magnet 410 is attracted to the magnet apparatus 100 of the cochlear stimulator 200, thereby aligning the antenna 408 with the antenna 208.
In at least some implementations, the headpiece positioning magnet 410 will be complementary to the implant magnet apparatus 100 (or 100a-100e). For example, because the volume of magnet material in the magnet apparatus may be reduced due to presence of the spine 106, as compared to a similarly sized conventional magnet apparatus which lacks a spine, the strength of the positioning magnet 410 may be increased, as compared to that of a positioning magnet intended for use with similarly sized conventional magnet apparatus. The positioning magnet 410 may also be freely rotatable (over 360°) about an axis A relative to the housing 402 and antenna 408, and have N-S orientations corresponding to that of the implant magnet apparatus 100 (or 100a-100e), as shown in
The stimulation data and, in many instances power, is supplied to the headpiece 400. The headpiece 400 transcutaneously transmits the stimulation data, and in many instances power, to the cochlear implant 200 by way of a wireless link between the antennae. The stimulation processor 214a converts the stimulation data into stimulation signals that stimulate the electrodes 212a of the electrode array 212.
In at least some implementations, the cable 412 will be configured for forward telemetry and power signals at 49 MHz and back telemetry signals at 10.7 MHz. It should be noted that, in other implementations, communication between a sound processor and a headpiece and/or auxiliary device may be accomplished through wireless communication techniques. Additionally, given the presence of the microphone(s) 312 on the sound processor 300, the microphone 406 may be also be omitted in some instances. The functionality of the sound processor 300 and headpiece 400 may also be combined into a single head wearable sound processor. Examples of head wearable sound processors are illustrated and described in U.S. Pat. Nos. 8,811,643 and 8,983,102, which are incorporated herein by reference in their entirety.
Although the inventions disclosed herein have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. The inventions include any combination of the elements from the various species and embodiments disclosed in the specification that are not already described. It is intended that the scope of the present inventions extend to all such modifications and/or additions and that the scope of the present inventions is limited solely by the claims set forth below.
This application is a continuation of U.S. application Ser. No. 16/603,868, filed Oct. 9, 2019, which issued as U.S. Pat. No. 11,364,384, which is the U.S. National Stage of PCT App. Ser. No. PCT/US2017/029464, filed Apr. 25, 2017.
Number | Name | Date | Kind |
---|---|---|---|
4214366 | Laban | Jul 1980 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4595390 | Hakim et al. | Jun 1986 | A |
4606329 | Hough | Aug 1986 | A |
4612915 | Hough et al. | Sep 1986 | A |
4618949 | Lister | Oct 1986 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
5290281 | Tschakaloff | Mar 1994 | A |
5755762 | Bush | May 1998 | A |
5824022 | Zilberman et al. | Oct 1998 | A |
5945762 | Chen | Aug 1999 | A |
6032677 | Blechman et al. | Mar 2000 | A |
6137889 | Shennib | Oct 2000 | A |
6178353 | Griffith et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6227820 | Jarvik | May 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6461288 | Holcomb | Oct 2002 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6838963 | Zimmerling | Jan 2005 | B2 |
7091806 | Zimmerling et al. | Aug 2006 | B2 |
7127294 | Wang | Oct 2006 | B1 |
7190247 | Zimmerling | Mar 2007 | B2 |
7266208 | Charvin et al. | Sep 2007 | B2 |
7566296 | Zimmerling et al. | Jul 2009 | B2 |
7609061 | Hochmain | Oct 2009 | B2 |
7642887 | Zimmerling | Jan 2010 | B2 |
7680525 | Damadian | Mar 2010 | B1 |
7774069 | Olson et al. | Aug 2010 | B2 |
7856986 | Darley | Dec 2010 | B2 |
7881800 | Daly et al. | Feb 2011 | B2 |
7962224 | Blischak | Jun 2011 | B1 |
7976453 | Zimmerling et al. | Jul 2011 | B2 |
8013699 | Zimmerling | Sep 2011 | B2 |
8027735 | Tziviskos et al. | Sep 2011 | B1 |
8118725 | Zimmerling et al. | Feb 2012 | B2 |
8255058 | Gibson et al. | Aug 2012 | B2 |
8340774 | Hochmair et al. | Dec 2012 | B2 |
8634909 | Zimmerling et al. | Jan 2014 | B2 |
8660658 | Walsh | Feb 2014 | B2 |
8733494 | Leigh | May 2014 | B1 |
8734475 | Ekvall et al. | May 2014 | B2 |
8744106 | Ball | Jun 2014 | B2 |
8758394 | Zimmerling et al. | Jun 2014 | B2 |
8787608 | Van Himbeeck et al. | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8825171 | Thenuwara et al. | Sep 2014 | B1 |
8891795 | Andersson | Nov 2014 | B2 |
8897475 | Ball et al. | Nov 2014 | B2 |
RE45701 | Zimmerling et al. | Sep 2015 | E |
9126010 | Shah et al. | Sep 2015 | B2 |
9162054 | Dalton | Oct 2015 | B2 |
9227064 | Duftner | Jan 2016 | B2 |
9295425 | Ball | Mar 2016 | B2 |
9314625 | Kasic, II et al. | Apr 2016 | B2 |
9352149 | Thenuwara et al. | May 2016 | B2 |
RE46057 | Zimmerling et al. | Jul 2016 | E |
9392382 | Nagl et al. | Jul 2016 | B1 |
9420388 | Ball | Aug 2016 | B2 |
9549267 | Nagl et al. | Jan 2017 | B2 |
9615181 | Nagl et al. | Apr 2017 | B2 |
9656065 | Tourrel et al. | May 2017 | B2 |
9919154 | Lee | Mar 2018 | B2 |
9931501 | Smyth | Apr 2018 | B2 |
10003898 | Bjorn | Jun 2018 | B1 |
10300276 | Lee et al. | May 2019 | B2 |
10463849 | Lee et al. | Nov 2019 | B2 |
10532209 | Lee et al. | Jan 2020 | B2 |
10646712 | Smith et al. | May 2020 | B2 |
10646718 | Smith et al. | May 2020 | B2 |
10806936 | Crawford et al. | Oct 2020 | B2 |
10821279 | Lee et al. | Nov 2020 | B2 |
11097095 | Smith et al. | Aug 2021 | B2 |
11287495 | Smith et al. | Mar 2022 | B2 |
11364384 | Smith et al. | Jun 2022 | B2 |
11471679 | Smith et al. | Oct 2022 | B2 |
11476025 | Lee et al. | Oct 2022 | B2 |
11638823 | Brehm et al. | May 2023 | B2 |
20040012470 | Zimmerling | Jan 2004 | A1 |
20040059423 | Barnes et al. | Mar 2004 | A1 |
20040063072 | Honkura et al. | Apr 2004 | A1 |
20040210103 | Westerkull | Oct 2004 | A1 |
20040230271 | Wang | Nov 2004 | A1 |
20040260362 | Darley | Dec 2004 | A1 |
20050001703 | Zimmerling | Jan 2005 | A1 |
20050004629 | Gibson | Jan 2005 | A1 |
20050062567 | Zimmerling et al. | Mar 2005 | A1 |
20050075694 | Schmeling | Apr 2005 | A1 |
20050075700 | Schommer | Apr 2005 | A1 |
20060015155 | Charvin | Jan 2006 | A1 |
20060116743 | Gibson et al. | Jun 2006 | A1 |
20060244560 | Zimmerling et al. | Nov 2006 | A1 |
20070053536 | Westerkull | Mar 2007 | A1 |
20070126540 | Zimmerling | Jun 2007 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080103350 | Farone | May 2008 | A1 |
20080192968 | Ho et al. | Aug 2008 | A1 |
20080195178 | Kuzma | Aug 2008 | A1 |
20090048580 | Gibson | Feb 2009 | A1 |
20090099403 | Zimmerling et al. | Apr 2009 | A1 |
20090134721 | Zimmerling | May 2009 | A1 |
20090248086 | Parker | Oct 2009 | A1 |
20090248155 | Parker | Oct 2009 | A1 |
20090287278 | Charvin | Nov 2009 | A1 |
20100004716 | Zimmerling et al. | Jan 2010 | A1 |
20100036458 | Duftner et al. | Feb 2010 | A1 |
20100046778 | Crawford et al. | Feb 2010 | A1 |
20100046779 | Crawford et al. | Feb 2010 | A1 |
20110009925 | Leigh et al. | Jan 2011 | A1 |
20110022120 | Ball et al. | Jan 2011 | A1 |
20110068885 | Fullerton et al. | Mar 2011 | A1 |
20110218605 | Cryer | Sep 2011 | A1 |
20110224756 | Zimmerling et al. | Sep 2011 | A1 |
20110255731 | Ball | Oct 2011 | A1 |
20110264172 | Zimmerling et al. | Oct 2011 | A1 |
20120296155 | Ball | Nov 2012 | A1 |
20130018218 | Haller | Jan 2013 | A1 |
20130079749 | Overstreet et al. | Mar 2013 | A1 |
20130150657 | Leigh et al. | Jun 2013 | A1 |
20130182874 | Buehlmann | Jul 2013 | A1 |
20130184804 | Dalton | Jul 2013 | A1 |
20130188813 | Waldmann | Jul 2013 | A1 |
20130261701 | Kuratle | Oct 2013 | A1 |
20130281764 | Bjorn | Oct 2013 | A1 |
20130296994 | Vaishya | Nov 2013 | A1 |
20130343588 | Karunasiri | Dec 2013 | A1 |
20140005750 | Garnham et al. | Jan 2014 | A1 |
20140012069 | Ball | Jan 2014 | A1 |
20140012070 | Nagl et al. | Jan 2014 | A1 |
20140012071 | Nagl et al. | Jan 2014 | A1 |
20140012349 | Zimmerling | Jan 2014 | A1 |
20140073842 | Maier | Mar 2014 | A1 |
20140121449 | Kasic et al. | May 2014 | A1 |
20140121586 | Bertrand et al. | May 2014 | A1 |
20140163692 | Van den Heuvel et al. | Jun 2014 | A1 |
20140194668 | Hanson | Jul 2014 | A1 |
20140200645 | Vaishya | Jul 2014 | A1 |
20140336447 | Bjorn et al. | Nov 2014 | A1 |
20140343626 | Thenuwara et al. | Nov 2014 | A1 |
20140343657 | Thenuwara | Nov 2014 | A1 |
20150025613 | Nyberg, II et al. | Jan 2015 | A1 |
20150073205 | Ball et al. | Mar 2015 | A1 |
20150087892 | Tourrel et al. | Mar 2015 | A1 |
20150094521 | Neuman et al. | Apr 2015 | A1 |
20150100109 | Feldman et al. | Apr 2015 | A1 |
20150112407 | Hartley et al. | Apr 2015 | A1 |
20150258334 | Carver | Sep 2015 | A1 |
20150265842 | Ridler | Sep 2015 | A1 |
20150320523 | Way et al. | Nov 2015 | A1 |
20150367126 | Smyth | Dec 2015 | A1 |
20150374989 | Hazard et al. | Dec 2015 | A1 |
20150382114 | Andersson et al. | Dec 2015 | A1 |
20160008596 | Gibson et al. | Jan 2016 | A1 |
20160023006 | Ridler et al. | Jan 2016 | A1 |
20160037273 | Gustafsson | Feb 2016 | A1 |
20160144170 | Gibson et al. | May 2016 | A1 |
20160205484 | Nagl et al. | Jul 2016 | A1 |
20160213936 | Heerlein et al. | Jul 2016 | A1 |
20160310077 | Hunter | Oct 2016 | A1 |
20160310737 | Tourrel et al. | Oct 2016 | A1 |
20160361537 | Leigh | Dec 2016 | A1 |
20160381473 | Gustafsson | Dec 2016 | A1 |
20160381474 | Gustafsson et al. | Dec 2016 | A1 |
20170050027 | Andersson | Feb 2017 | A1 |
20170078808 | Kennes | Mar 2017 | A1 |
20170156010 | Verma et al. | Jun 2017 | A1 |
20170239476 | Lee | Aug 2017 | A1 |
20170347208 | Jurkiewicz | Nov 2017 | A1 |
20180028818 | Anderson et al. | Feb 2018 | A1 |
20180056084 | Alam | Mar 2018 | A1 |
20180110985 | Walter | Apr 2018 | A1 |
20180110986 | Lee | Apr 2018 | A1 |
20180133486 | Smith | May 2018 | A1 |
20180146308 | Leigh et al. | May 2018 | A1 |
20180160241 | Gustafsson et al. | Jun 2018 | A1 |
20180160242 | Sriskandarajah | Jun 2018 | A1 |
20180185634 | Smyth | Jul 2018 | A1 |
20180249262 | Santek | Aug 2018 | A1 |
20180270591 | Kennes | Sep 2018 | A1 |
20180296826 | Lee et al. | Oct 2018 | A1 |
20180303602 | Leigh | Oct 2018 | A1 |
20180304078 | Crawford et al. | Oct 2018 | A1 |
20180369586 | Lee | Dec 2018 | A1 |
20190015662 | Raje et al. | Jan 2019 | A1 |
20190030324 | Grace | Jan 2019 | A1 |
20190046797 | Calixto et al. | Feb 2019 | A1 |
20190053908 | Cook et al. | Feb 2019 | A1 |
20190076649 | Lee | Mar 2019 | A1 |
20190239007 | Kennes | Aug 2019 | A1 |
20190255316 | Lee et al. | Aug 2019 | A1 |
20190298417 | Barrett et al. | Oct 2019 | A1 |
20200114151 | Smith | Apr 2020 | A1 |
20200188660 | Franke | Jun 2020 | A1 |
20200230422 | Gibson et al. | Jul 2020 | A1 |
20200238088 | Smith et al. | Jul 2020 | A1 |
20200330777 | Smith et al. | Oct 2020 | A1 |
20200391023 | Lee et al. | Dec 2020 | A1 |
20210046311 | Brehm et al. | Feb 2021 | A1 |
20210106815 | Smith et al. | Apr 2021 | A1 |
20210156934 | Smith | May 2021 | A1 |
20210299456 | Smith et al. | Sep 2021 | A1 |
20210316136 | Smith et al. | Oct 2021 | A1 |
20210339021 | Brehm et al. | Nov 2021 | A1 |
20220273948 | Calixto et al. | Sep 2022 | A1 |
20230032218 | Smith et al. | Feb 2023 | A1 |
20230061335 | Lee et al. | Mar 2023 | A1 |
20230115968 | Lee et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
212542072 | Feb 2021 | CN |
202006017662 | Sep 2007 | DE |
0241307 | Oct 1987 | EP |
2117489 | May 2010 | EP |
2853287 | Apr 2015 | EP |
2560730 | Nov 2016 | EP |
3138605 | Mar 2017 | EP |
2098198 | Sep 2017 | EP |
3964259 | Mar 2022 | EP |
2727227 | Jul 2020 | RU |
WO9858990 | Dec 1998 | WO |
WO03081976 | Oct 2003 | WO |
WO03092326 | Nov 2003 | WO |
WO2004004416 | Jan 2004 | WO |
WO2004014269 | Feb 2004 | WO |
WO2004014270 | Feb 2004 | WO |
WO2007024657 | Mar 2007 | WO |
WO2009124045 | Oct 2009 | WO |
WO2009124174 | Oct 2009 | WO |
WO2009149069 | Dec 2009 | WO |
WO2010000027 | Jan 2010 | WO |
WO2010083554 | Jul 2010 | WO |
WO2011011409 | Jan 2011 | WO |
WO2011109486 | Sep 2011 | WO |
WO2011133747 | Oct 2011 | WO |
WO2012010195 | Jan 2012 | WO |
WO2013043176 | Mar 2013 | WO |
WO2013063355 | May 2013 | WO |
WO2014011441 | Jan 2014 | WO |
WO2014011582 | Jan 2014 | WO |
WO2014046662 | Mar 2014 | WO |
WO2014164023 | Oct 2014 | WO |
WO2015065442 | May 2015 | WO |
WO2016016821 | Feb 2016 | WO |
WO2016190886 | Dec 2016 | WO |
WO2016191429 | Dec 2016 | WO |
WO2016207856 | Dec 2016 | WO |
WO2017027045 | Feb 2017 | WO |
WO2017027046 | Feb 2017 | WO |
WO2017029615 | Feb 2017 | WO |
WO2017034530 | Mar 2017 | WO |
WO2017046650 | Mar 2017 | WO |
WO2017087004 | May 2017 | WO |
WO2017105510 | Jun 2017 | WO |
WO2017105511 | Jun 2017 | WO |
WO2017105604 | Jun 2017 | WO |
WO2017172566 | Oct 2017 | WO |
WO2018190813 | Oct 2018 | WO |
WO2018191314 | Oct 2018 | WO |
WO2018199936 | Nov 2018 | WO |
WO2018200347 | Nov 2018 | WO |
WO2018217187 | Nov 2018 | WO |
WO2019027745 | Feb 2019 | WO |
WO2019083540 | May 2019 | WO |
WO2019160555 | Aug 2019 | WO |
WO2020092185 | May 2020 | WO |
WO2021201845 | Oct 2021 | WO |
WO2023063934 | Apr 2023 | WO |
WO2023063983 | Apr 2023 | WO |
WO2023064308 | Apr 2023 | WO |
Entry |
---|
U.S. Appl. No. 15/568,469, filed Oct. 21, 2017, 20180110985 A1. |
U.S. Appl. No. 15/770,207, filed Apr. 22, 2018, U.S. Pat. No. 10,806,936. |
U.S. Appl. No. 17/073,322, filed Oct. 17, 2020, 20210170167 A1. |
U.S. Appl. No. 16/060,383, filed Jun. 7, 2018, U.S. Pat. No. 10,532,209. |
U.S. Appl. No. 15/591,054, filed May 9, 2017, U.S. Pat. No. 9,919,154. |
U.S. Appl. No. 16/009,600, filed Jun. 15, 2018, U.S. Pat. No. 10,821,279. |
U.S. Appl. No. 16/403,582, filed May 5, 2019, U.S. Pat. No. 10,463,849. |
U.S. Appl. No. 17/008,291, filed Aug. 21, 2020, U.S. Pat. No. 11,476,025. |
U.S. Appl. No. 16/610,502, filed Nov. 2, 2019, U.S. Pat. No. 11,287,495. |
U.S. Appl. No. 15/568,470, filed Oct. 21, 2017, U.S. Pat. No. 10,300,276. |
U.S. Appl. No. 16/101,390, filed Aug. 10, 2018, 20190046797 A1. |
U.S. Appl. No. 17/680,217, filed Feb. 24, 2022, 20220273948 A1. |
U.S. Appl. No. 15/703,808, filed Sep. 13, 2017, U.S. Pat. No. 10,646,712. |
U.S. Appl. No. 15/805,025, filed Nov. 6, 2017, U.S. Pat. No. 10,646,718. |
U.S. Appl. No. 16/852,457, filed Apr. 18, 2020, 20200238088 A1. |
U.S. Appl. No. 16/499,311, filed Sep. 29, 2019, U.S. Pat. No. 11,097,095. |
U.S. Appl. No. 17/355,225, filed Jun. 23, 2021, 20210316136 A1. |
U.S. Appl. No. 16/603,868, filed Oct. 9, 2019, U.S. Pat. No. 11,364,384. |
U.S. Appl. No. 17/750,352, filed May 22, 2022, 20220280793 A1. |
U.S. Appl. No. 16/754,126, filed Apr. 6, 2020, U.S. Pat. No. 11,471,679. |
U.S. Appl. No. 17/335,161, filed Jun. 1, 2021, 20210339021 A1. |
U.S. Appl. No. 17/346,343, filed Jun. 14, 2021, 20210299456 A1. |
U.S. Appl. No. 17/499,813, filed Oct. 12, 2021. |
U.S. Appl. No. 16/852,457, filed Apr. 18, 2020, U.S. Pat. No. 20200238088 A1. |
U.S. Appl. No. 16/603,868, filed Aug. 9, 2019, U.S. Pat. No. 11,364,384. |
U.S. Appl. No. 17/750,352, filed May 22, 2022. |
U.S. Appl. No. 16/754,126, filed Apr. 6, 2020, 20200330777 A1. |
U.S. Appl. No. 16/060,383, filed Jun. 7, 2018, U.S. Pat. No. 10,535,209. |
U.S. Appl. No. 17/008,291, filed Aug. 31, 2020, 20200391023 A1. |
U.S. Appl. No. 17/680,217, filed Feb. 24, 2022. |
U.S. Appl. No. 16/603,868, filed Oct. 9, 2019, 20200114151 A1. |
Ju Hyun Jeon et al., “Reversing the Polarity of a Cochlear Implant Magnet After Magnetic Resonance Imaging,” Auris Nasus Larynx, vol. 39, No. 4, pp. 415-417, Aug. 1, 2012. |
Teissl et al., “Magnetic Resonance Imaging and Cochlear Implants: Compatibility and Safety Aspects,” Journal of Magnetic Resonance Imaging, Society for Magnetic Resonance Imaging, vol. 9, No. 1, pp. 26-38, Jan. 1, 1999. |
PCT International Search and Written Opinion dated Feb. 5, 2018 for PCT App. Ser. No. PCT/US2017/029464. |
U.S. Appl. No. 17/008,291, filed Aug. 31, 2020, U.S. Pat. No. 11,476,025. |
U.S. Appl. No. 17/965,580, filed Oct. 13, 2022. |
U.S. Appl. No. 17/964,321, filed Oct. 12, 2022. |
Number | Date | Country | |
---|---|---|---|
20220280793 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16603868 | US | |
Child | 17750352 | US |