This application claims priority to China application no. 201020631828.4 filed on Nov. 25, 2010, which is hereby incorporated by reference in its entirety.
The present invention relates to combination lock technology, and in particular code changing mechanisms for mechanical combination locks.
At present, secrecy performance of commonly used mechanical combination locks is weak, and it is troublesome during the code changing.
For example, the lock needs to be disassembled for code changing while changing a single code key in conventional code changing manner, therefore it is very troublesome. Especially with regard to the code changing mechanism of the mechanical combination lock with vast code information, the structure is more complex, so it is easy to break down and service lift is not long. Moreover, capability of preventing code cracking of conventional mechanical combination lock is not robust enough, and it is easily cracked by a thief.
An object of the present invention is to provide a code changing mechanism for a mechanical combination lock, by which the code can be changed without disassembling any component. The mechanism thus allows for the convenient, swift, flexible and reliable exchanging of codes.
A further object is to efficiently prevent cracking of lock code via the gap between keys by external force, so as to enhance the anti-crack capability.
The object of the present invention is implemented via the following technical solution.
A code changing mechanism for a mechanical combination lock is provided, comprising function keys and two rows of code number keys provided on the combination lock body, wherein the function keys comprises a reset key, characterized in that, said code changing mechanism further comprises a code changing rack, an intermediate gear, a code changing lock core provided with a code changing keyhole, and code changing gear modules connected with each code number key, wherein each code changing gear module comprises a code changing gear and a code controlling chip; a groove for resetting code is provided on the code changing gear; the code controlling chip is inserted in the groove of the code changing gear to form a code reset site, and a code free site is also provided between the code controlling chip and the code changing gear; a left straight rack and a right straight rack with left and right tips opposite each other are arranged on the code changing rack, and the left straight rack and the right straight rack on the code changing rack engage with a corresponding row of code changing gears, respectively; the code changing lock core coaxially connects with the intermediate gear, and the intermediate gear engages with two opposing code changing gears thereof.
Preferably the code changing gear may be formed as a whole with a gear and coaxial cylinders connected to both end surfaces of the gear, and a stepped coaxial hole is provided on the code changing gear; said groove is provided in the cylinder on one end of the code changing gear; a barrel-shaped stepped rotary shaft is coaxially provided in the stepped coaxial hole of the code changing gear, and a slot is provided on the stepped rotary shaft at one end corresponding to the groove, width of the groove equals to width of the slot on the stepped rotary shaft; an upper protrusion and a lower protrusion apart from each other with a spacing distance are provided on both sides of the code controlling chip, and thickness of either of the upper protrusions and the lower protrusions is smaller than the width of the groove on the code changing gear; and the code controlling chip is installed in a cavity of the stepped rotary shaft, and the lower protrusions on both sides of the code controlling chip are able to be inserted into the groove.
Preferably a movable anti-crack steel code sheet may be provided under each of said function keys and said two rows of code number keys, wherein key holes corresponding to the code number key holes and the function key holes on the panel are provided on the movable steel sheet, and each key hole is communicatively connected with a locking groove, width of which is smaller than width of each key; a row of individual key holes connect with each other via the corresponding locking grooves, and the steel sheet is movable.
Compared to the prior art, embodiments of the present invention possess the following advantages.
According to an embodiment of the present invention, the code changing mechanism for changing the code is provided in the combination lock body. The conventional code changing manner that the lock needs to be disassembled while changing the code of single key is improved to the present code changing manner outside the lock.
Without any tools, and without disassembling the lock, the code can be changed to any desired one by clockwise rotating the affiliated special key of the lock with a certain degree in the code changing keyhole, thus the code changing mechanism of the present invention is convenient, swift, flexible and reliable.
When provided in the combination lock, the anti-crack steel code sheet is a movable sheet provided under the keys. Thus when external forces rotate the handle knob of the lock, all the keys will be locked by the anti-crack steel code sheet and cannot be pressed down. This efficiently prevents a thief from cracking the lock code by external force applied via the gaps of the keys.
Details of the code changing mechanism of the mechanical combination lock according to embodiments of the present invention are described with reference to figures as below.
As shown in
A handle knob 3 is provided on an outside panel 1 of the combination lock body, and an inner handle knob 8 and a main pin seat 7 are provided on an inside cover plate 13 of the combination lock body. Function keys and two rows of code number keys 2 are provided on the combination lock body.
The inside cover plate 13, the outside panel 1 and a side wall of lock cavity form a lock cavity of the combination lock body. The outside panel 1 connects with front end of the side wall of the lock cavity; while the inside cover plate 13 is fixed on the back end of the side wall of the lock cavity.
A base plate 14 is provided in the lock cavity. The outside panel 1 is provided with two rows of code number key holes and function key holes, wherein said code number keys are arranged in the code number key holes of the outside panel 1, and said function keys are arranged in the function key holes of the outside panel 1. The function keys comprise a reset key 4. There is a handle knob hole provided on the outside panel 1, and the handle knob 3 is installed in the handle knob hole on the outside panel 1.
As shown in
Each code changing gear module comprises a code changing gear 10 and a code controlling chip 9. A groove 101 for resetting code is provided on the code changing gear 10. The code controlling chip 9 is inserted into the groove 101 of the code changing gear 10 to form a code resetting site. There is also a code free site provided between the code controlling chip 9 and the code changing gear 10.
In
The code changing lock core 6 coaxially connects with the intermediate gear 5, and the intermediate gear 5 engages with two opposing code changing gears thereof.
The code changing gear 10 is formed by a gear and a plurality of coaxial cylinders which are connected to the gear on both surface sides of the gear. A stepped coaxial hole is provided on the code changing gear. The abovementioned groove 101 is provided as a direct access through the wall of the cylinder on one edge side of the code changing gear 10.
A barrel-shaped stepped rotary shaft 102 is coaxially provided in the stepped coaxial hole of the code changing gear. A slot 103 is provided on the stepped rotary shaft 102 at one end corresponding to the groove 101, i.e. the groove 101 and the slot 103 are located at the same side or the same end.
The width of the groove 101 on the code changing gear 10 equals to that of the slot 103 on the stepped rotary shaft 102. The code controlling chip 9 is installed in the cavity of the stepped rotary shaft 102.
An upper protrusion 91 and a lower protrusion 92 apart from each other are provided on both sides of the code controlling chip 9, and the thickness of the two protrusions on both sides of the code controlling chip 9 is smaller than the width of the groove 101 on the code changing gear 10.
When the lower protrusions 92 on two sides of the code controlling chip 9 are inserted into the groove 101 on the code changing gear, the code controlling chip 9 and the code changing gear 10 can rotate simultaneously.
When the lower protrusions 92 of the code controlling chip 9 are separated from the groove 101 on the code changing gear, the code controlling chip 9 and the stepped rotary shaft 102 can rotate simultaneously, while the code changing gear 10 does not rotate.
There is also a push plate 11 provided above the code changing rack 12. Concave stages corresponding to the lower protrusions 92 of each code controlling chip 9 are provided on the push plate 11. Once the lower protrusions 92 of the code controlling chip 9 rise up to the concave stages, the push plate 11 will be able to push the code changing gear 10 to rotate.
As shown in
The width of the locking groove 152 is smaller than the width of each key 2. A row of individual key holes connect with each other via the corresponding locking grooves connected with each key hole.
A cylinder 16 is provided at the root of the handle knob, and two convex parts 161 are provided on the cylinder. A circular-arc surface 153 is provided on one end of the movable sheet 15. An axis of the cylinder 16 at the root of the handle knob coincides with the centerline of the circular-arc surface on the movable sheet 15.
The code changing procedure of the code changing mechanism of the mechanical combination lock according to an embodiment of the present invention comprises:
As shown in
As shown in
Therefore, when a key is pressed down again, the key cannot get through the lock groove 152 since being blocked by the anti-crack steel code sheet, thus the code cannot be reset.
Throughout the description and drawings, example embodiments are given with reference to specific configurations. It will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other specific forms. Those of ordinary skill in the art would be able to practice such other embodiments without undue experimentation. The scope of the present invention, for the purpose of the present patent document, is not limited merely to the specific example embodiments or alternatives of the foregoing description.
Number | Date | Country | Kind |
---|---|---|---|
2010 2 0631828 U | Nov 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6298698 | Nakajima et al. | Oct 2001 | B1 |
6334346 | Wang | Jan 2002 | B1 |
6575004 | Berton et al. | Jun 2003 | B2 |
7043948 | Wang | May 2006 | B1 |
7318331 | Miao | Jan 2008 | B2 |
20080115546 | Hu | May 2008 | A1 |
20080216531 | Waller et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120131968 A1 | May 2012 | US |