CODEBOOK DESIGN METHOD FOR MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM AND METHOD FOR USING THE CODEBOOK

Abstract
A multiple input multiple output (MIMO) communication method using a codebook is provided. The MIMO communication method may use one or more codebooks and the codebooks may change according to a transmission rank, a channel state of a user terminal, and/or a number of feedback bits. The one or more codebooks may be adaptively updated according to a time correlation coefficient of a channel.
Description
BACKGROUND

1. Field


The following description relates to a codebook that is used in a multiple input multiple output (MIMO) communication system.


2. Description of the Related Art


A number of researches are being conducted to provide various types of multimedia services such as voice services and to support high quality and high speed of data transmission in a wireless communication environment. Technologies associated with a multiple input multiple output (MIMO) communication system using multiple channels are in rapid development.


In a MIMO communication system, a base station and terminals may use a codebook in order to appropriately cope with a channel environment. A particular space may be quantized into a plurality of codewords. The plurality of codewords that is generated by quantizing the particular space may be stored in the base station and the terminals. Each of the codewords may be a vector or a matrix according to the dimension of a channel matrix.


For example, each of the terminals may select a matrix or a vector corresponding to channel information from matrices or vectors included in a codebook, based on a channel that is formed between the base station and each of the terminals. The base station may also receive the selected matrix or vector based on the codebook to thereby recognize the channel information. The selected matrix or vector may be used where the base station performs beamforming or transmits a transmission signal via multiple antennas.


Accordingly, there is a need for a well-designed codebook in order to improve a performance of a MIMO communication system.


SUMMARY

In one general aspect, a multiple input multiple output (MIMO) communication method includes storing a codebook that includes at least one matrix or vector, determining a transmission rank corresponding to a number of data streams, generating, using the at least one matrix or vector that is included in the codebook, a precoding matrix according to a channel state of at least one user terminal and the transmission rank, and precoding the data streams using the precoding matrix.


In another general aspect, a MIMO communication method includes storing a codebook that includes at least one matrix or vector, updating the codebook according to a time correlation coefficient (ρ) of a channel that is formed between at least one user terminal and a base station, generating a precoding matrix using at least one matrix or vector included in the updated codebook, and precoding the data streams using the precoding matrix.


The updating of the precoding matrix may include updating a previous precoding matrix to a new precoding matrix.


The updating of the codebook may include updating the codebook using the following Equation,








Θ
~

i

=



arg





min



Θ
~

i










Ψ
i



(

ρ
,

Θ
i


)


-


Θ
~

i




F

.






Here, Ψi(ρ,Θi)=ρI+√{square root over (1−ρ2)}Θi, i=1, 2, 3, . . . , 2B, B denotes a number of feedback bits, Θi denotes a unitary matrix or a diagonal matrix as an ith element of the codebook {θ}={Θ1, . . . , Θ2B}, I denotes an identity matrix, ∥x∥F denotes a Frobenious norm for X, and {tilde over (Θ)}i denotes an ith element of the updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}.


Where a singular value decomposition (SVD) is performed for Ψi(ρ,Θi), Ψi(ρ,Θi) may be expressed as ΦiΛiBi*. B*i denotes a conjugate matrix of Bi. The above equation








Θ
~

i

=



arg





min



Θ
~

i









Ψ
i



(

ρ
,

Θ
i


)


-


Θ
~

i




F






may be optimized to {tilde over (Θ)}iiBi*. The codebook may be updated using {tilde over (Θ)}iiBi*.


The updating of the codebook may include updating the codebook using the following Equation, {tilde over (Θ)}i=[Ψi(ρ,Θi)*Ψi(ρ,Θi)]−1/2Ψi(ρ,Θi). Here, {tilde over (Θ)}i denotes an ith element of the updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}. i=1, 2, 3, 2B, Ψi(ρ,Θi)=ρI+√{square root over (1−ρ2)}Θi, Θi denotes a unitary matrix or a diagonal matrix as an ith element of the codebook {θ}={Θ1, . . . , Θ2B}, and I denotes an identity matrix.


In still another general aspect, a base station for a single user multiple input multiple output (MIMO) communication system, includes a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and a precoder to precode a data stream to be transmitted using the codebook, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









The precoder may calculate a precoding matrix based on at least one codeword matrix among the codeword matrices, and precodes the data stream using the precoding matrix.


The base station may further include an information receiver to receive feedback information from a terminal, wherein the precoder may precode the data stream using the feedback information and the codebook.


The precoder may calculate a precoding matrix based on a codeword matrix corresponding to the feedback information among the codeword matrices, and precode the data stream using the precoding matrix.


The feedback information may include index information of a codeword matrix preferred by the terminal among the codeword matrices.


The base station may further include four transmit antennas, wherein the codebook may be used for transmission rank 1.


In still another general aspect, a base station for a multi-user MIMO communication system, includes a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and a precoder to precode at least one data stream to be transmitted using the codebook, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









The base station may further include an information receiver to receive feedback m information from at least two terminals, wherein the precoder may precode the at least one data stream using at least one of the feedback information received from the at least two terminals, and the codebook.


In still another general aspect, a terminal for a MIMO communication system, includes a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and a feedback unit to feed back, to a base station, feedback information associated with a preferred codeword matrix among the codeword matrices, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









The terminal may further include a channel estimation unit to estimate a channel between the base station and the terminal, wherein the feedback unit may feed back, to the base station, the feedback information determined based on the estimated channel.


In still another general aspect, a storage medium is provided where a codebook used by a base station and at least one terminal of a MIMO communication system is stored, wherein the codebook includes codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1, and the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









In still another general aspect, a precoding method of a base station for a single user MIMO communication system, includes accessing a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and precoding a data stream to be transmitted using the codebook, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









The precoding may include calculating a precoding matrix based on at least one codeword matrix among the codeword matrices, and precoding the data stream using the precoding matrix.


The method may further include receiving feedback information from a terminal, wherein the precoding may include precoding the data stream using the feedback information and the codebook.


In still another general aspect, a precoding method of a base station for a multi-user MIMO communication system, includes accessing a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and precoding at least one data stream to be transmitted using the codebook, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









In still another general aspect, an operating method of a terminal for a MIMO communication system, includes accessing a memory where a codebook including 4×1 codeword matrices C1,1, C2,1, C3,1, C4,1, C5,1, C6,1, C7,1, C8,1, C9,1, C10,1, C11,1, C12,1, C13,1, C14,1, C15,1, and C16,1 is stored, and feeding back, to a base station, feedback information associated with a preferred codeword matrix among the codeword matrices, wherein the codeword matrices are defined by the following table:

















C1,1 =
C2,1 =
C3,1 =
C4,1 =


  0.5000
−0.5000
−0.5000
  0.5000


−0.5000
−0.5000
  0.5000
     0 − 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


−0.5000
  0.5000
−0.5000
     0 − 0.5000i


C5,1 =
C6,1 =
C7,1 =
C8,1 =


−0.5000
−0.5000
  0.5000
  0.5000


     0 − 0.5000i
     0 + 0.5000i
  0.5000
     0 + 0.5000i


  0.5000
  0.5000
  0.5000
  0.5000


     0 + 0.5000i
     0 − 0.5000i
  0.5000
     0 + 0.5000i


C9,1 =
C10,1 =
C11,1 =
C12,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i


  0.5000
−0.5000
  0.5000
−0.5000


−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C13,1 =
C14,1 =
C15,1 =
C16,1 =


  0.5000
  0.5000
  0.5000
  0.5000


  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i


     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


−0.3536 + 0.3536i
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









The method may further include estimating a channel between the base station and the terminal, and generating the feedback information based on the estimated channel.


Other features will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the attached drawings, discloses exemplary embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating a multiple input multiple output (MIMO) communication system according to an exemplary embodiment.



FIG. 2 is a block diagram illustrating a configuration of a base station according to an exemplary embodiment.



FIG. 3 is a flowchart illustrating a MIMO communication method according to an exemplary embodiment.



FIG. 4 is a flowchart illustrating a MIMO communication method according to another exemplary embodiment.





Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The elements may be exaggerated for clarity and convenience.


DETAILED DESCRIPTION

The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the systems, apparatuses and/or methods described herein will be suggested to those of ordinary skill in the art. Also, description of well-known functions and constructions are omitted to increase clarity and conciseness.


Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.



FIG. 1 illustrates a multiple input multiple output (MIMO) communication system according to an exemplary embodiment. The MIMO communication system may be a closed loop MIMO communication system.


Referring to FIG. 1, the MIMO communication system includes a base station 110 and a plurality of users (user 1, user 2, user nu) 120, 130, and 140. While FIG. 1 shows an example of a multi-user MIMO communication system, it is understood that the disclosed systems, apparatuses and/or methods may be applicable to a single user MIMO communication system. Herein, the term “closed-loop” may indicate that the plurality of users (user 1, user 2, user nu) 120, 130, and 140 may feedback, to the base station 110, feedback data containing channel information and the base station 110 may generate a transmission signal based on the feedback data. Also, a codebook according to exemplary embodiments to be described later may be applicable to an open-loop MIMO communication system as well as the closed-loop MIMO communication system. Accordingly, it is understood that exemplary embodiments are not limited to the closed-loop MIMO communication system.


A plurality of antennas may be installed in the base station 110. A single antenna or a plurality of antennas may be installed in each of the users (user 1, user 2, user nu) 120, 130, and 140. A channel may be formed between the base station 110 and each of the users (user 1, user 2, user nu) 120, 130, and 140. Signals may be transmitted and received via each formed channel.


The base station 110 may transmit a single data stream or at least two data streams to the plurality of users (user 1, user 2, user nu) 120, 130, and 140. In this instance, the base station 110 may adopt a spatial division multiplex access (SDMA) scheme or SDM scheme. The base station 110 may select a precoding matrix from matrices included in a codebook and generate a transmission signal using the selected precoding matrix.


For example, the base station 110 may transmit pilot signals to the plurality of users (user 1, user 2, user nu) 120, 130, and 140 via downlink channels, respectively. The pilot signals may be well known to the base station 110 and the plurality of users (user 1, user 2, user nu) 120, 130, and 140.


A terminal corresponding to each of the users (user 1, user 2, user nu) 120, 130, and 140 may perform receiving a well-known signal transmitted from the base station 110, estimating a channel that is formed between the base station 110 and each of the users (user 1, user 2, user nu) 120, 130, and 140 using a pilot signal, selecting at least one matrix or vector from a codebook, and feeding back information associated with the selected at least one matrix or vector. The codebook may be designed according to descriptions that will be made later with reference to FIGS. 2 through 4. The codebook may be updated according to a channel state.


Specifically, each of the users (user 1, user 2, user nu) 120, 130, and 140 may estimate the channel formed between the base station 110 and each of the users (user 1, user 2, user nu) 120, 130, and 140 using the pilot signal. Each of the users (user 1, user 2, user nu) 120, 130, and 140 may select, as a preferred vector, any one vector from vectors that are included in a pre-stored codebook, or may select, as a preferred matrix, any one matrix from matrices that are included in the codebook.


For example, each of the users (user 1, user 2, user nu) 120, 130, and 140 may select, as the preferred vector or the preferred matrix, any one vector or any one matrix from 2B vectors or 2B matrices according to an achievable data transmission rate or a signal-to-interference and noise ratio (SINR). Here, B denotes a number of feedback bits. Each of the users (user 1, user 2, user nu) 120, 130, and 140 may determine its own preferred transmission rank. The transmission rank may correspond to a number of data streams.


Each of the users (user 1, user 2, user nu) 120, 130, and 140 may feedback, to the base station 110, information associated with the selected preferred vector or preferred matrix (hereinafter, referred to as channel information). The channel information used herein may include channel state information, channel quality information, or channel direction information.


The base station 110 may receive channel information of each of the users (user 1, user 2, user nu) 120, 130, and 140 to thereby determine a precoding matrix. The base station 110 may select a portion or all of the users (user 1, user 2, user nu) 120, 130, and 140 according to various types of selection algorithms such as a semi-orthogonal user selection (SUS) algorithm, a greedy user selection (GUS) algorithm, and the like.


The same codebook as the codebook that is stored in the plurality of users (user 1, user 2, user nu) 120, 130, and 140 may be pre-stored in the base station 110. The base station 110 may determine the precoding matrix based on matrices included in the pre-stored codebook using the channel information that is fed back from the plurality of users (user 1, user 2, user nu) 120, 130, and 140. The base station 110 may determine the precoding matrix to maximize a total data transmission rate, that is, a sum rate.


The base station 110 may precode data streams S1 and SN based on the determined precoding matrix to thereby generate a transmission signal. A process of generating the transmission signal by the base station 110 may be referred to as “beamforming”.


A channel environment between the base station 110 and the plurality of users (user 1, user 2, user nu) 120, 130, and 140 may be variable. Where the base station 110 and the plurality of users (user 1, user 2, user nu) 120, 130, and 140 use a fixed codebook, it may be difficult to adaptively cope with the varying channel environment. Although it will be described in detail later, the base station 110 and the plurality of users (user 1, user 2, user nu) 120, 130, and 140 may adaptively cope with the varying channel environment to thereby update the codebook. The base station 110 may generate a new precoding matrix. In particular, the base station 110 may update a previous precoding matrix to the new precoding matrix using the updated codebook.



FIG. 2 illustrates a configuration of a base station according to an exemplary embodiment.


Referring to FIG. 2, a base station according to an exemplary embodiment includes a layer mapping unit 210, a MIMO encoding unit 220, a precoder 230, and Nt physical antennas 240.


At least one codeword for at least one user may be mapped to at least one layer. Where the dimension of codeword x is NC×1, the layer mapping unit 210 may map the codeword x to the at least one layer using a matrix P with the dimension of Ns×Nc. Here, Ns denotes a number of layers or a number of effective antennas. Accordingly, it is possible to acquire the following Equation 1:






s=Px  (1).


The MIMO encoding unit 220 may perform space-time modulation for s using a matrix function M with the dimension of Ns×Ns. The MIMO encoding unit 220 may perform space-frequency block coding, spatial multiplexing, and the like, according to a transmission rank.


The precoder 230 may precode outputs, that is, data streams of the MIMO encoding unit 220 to thereby generate the transmission signal to be transmitted via the physical antennas 240. The dimension or the number of outputs, that is, the data streams of the MIMO encoding unit 220 may indicate the transmission rank. The precoder 230 may generate the transmission signal using a precoding matrix U with the dimension of Nt×Ns. Accordingly, it is possible to acquire the following Equation 2:






z=UM(s)  (2).


Hereinafter, W denotes the precoding matrix and R denotes the transmission rank or the number of effective antennas. Here, the dimension of the precoding matrix W is Nt×R. Where the MIMO encoding unit 220 uses spatial multiplexing, Z may be given by the following Equation 3:









z
=

WB
=



[




u
11




u

1

R















u

Nt





1





u
NtR




]



[




s
1











s
R




]


.






(
3
)







Referring to the above Equation 3, the precoding matrix W may also be referred to as a weighting matrix. The dimension of the precoding matrix W may be determined according to the transmission rank and the number of physical antennas. For example, where the number Nt of physical antennas is four and the transmission rank is 2, the precoding matrix W may be given by the following Equation 4:









W
=


[




W
11




W
12






W
21




W
22






W
31




W
32






W
41




W
42




]

.





(
4
)







Codebook Properties


The codebook used in a closed-loop MIMO communication system or an open-loop MIMO communication system may include a plurality of matrices or a plurality of vectors. A precoding matrix or a precoding vector may be determined based on the plurality of matrices or the plurality of vectors included in the codebook. Therefore, it is desirable to design the codebook well.


1) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is two:


For example, where the number of physical antennas of the base station is two, the codebook used in the single user MIMO communication system according to an exemplary embodiment may be designed as given by the following Equation 5:












W
1

=


1

2


*

[



1


1




1



-
1




]



,






W
2

=


1

2


*

[



1


1




j



-
j




]



,






W
3

=



[



1


0




0




1
+
j


2





]

+

W
1


=


1

2




[



1


1






1
+
j


2







-
1

-
j


2





]




,
and








W
4

=



[



1


0




0




1
+
j


2





]

*

W
2


=



1

2




[



1


1







-
1

+
j


2






1
-
j


2





]


.







(
5
)







In this instance, matrices or vectors included in the codebook for the single user MIMO communication system may be determined as given by the following Table 1:














Transmit Codebook
Transmission
Transmission


Index
Rank 1
Rank 2







1
C1,1 = W1(;, 1)
C1,2 = W1(;, 1 2)


2
C2,1 = W1(;, 2)
C2,2 = W2(;, 1 2)


3
C3,1 = W2(;, 1)
C3,2 = W3(;, 1 2)


4
C4,1 = W2(;, 2)
C4,2 = W4(;, 1 2)


5
C5,1 = W3(;, 1)
n/a


6
C6,1 = W3(;, 2)
n/a


7
C7,1 = W4(;, 1)
n/a


8
C8,1 = W4(;, 2)
n/a









Referring to the above Table 1, Wk(;,n) denotes an nth column vector of Wk, and Wk(;,n m) denotes a matrix that includes the nth column vector and the mth column vector of Wk. Where the transmission rank is 1, the precoding matrix may be any one of W1(;,1), W1(;,2), W2(;,1), W2(;,2), W3(;,1), W3(;,2), W4(;,1), and W4(;,2). Where the transmission rank is 2, the precoding matrix may be any one of W1(;,1 2), W2(;,1 2), W3(;,1 2), and W4(;,1 2).


2) Codebook used in a downlink of a multi-user MIMO communication system performing unitary precoding where a number of physical antennas of a base station is two:


For example, where the number of physical antennas of the base station is two, the codebook used in the downlink of the multi-user MIMO communication system according to an exemplary embodiment may be designed as given by the following Equation 6:











W
1

=


1

2


*

[



1


1




1



-
1




]










W
2

=


1

2


*


[



1


1




j



-
j




]

.







(
6
)







Vectors included in the codebook for the multi-user MIMO communication system performing unitary precoding may be determined as given by the following Table 2:
















Codeword used at




terminal to quantize the



Transmit Codebook Index
channel directions








1
W1(;, 1)



2
W1(;, 2)



3
W2(;, 1)



4
W2(;, 2)









The vectors used in the above Table 2 may be used at the terminal for channel quantization. The matrices used at the base station for precoding may be given by the above Equation 6.


Referring to the above Table 2, where the transmission rank is 1, the precoding matrix may be constructed by appropriately combining W1(;,1), W1(;,2), W2(;,1), and W2(;,2). Here, Wk(;,n) denotes the nth column vector of Wk.


Where the multi-user MIMO communication system performs non-unitary precoding, the codebook used at the terminal for channel quantization may be the same as rank 1 codebook that is used in the single user MIMO communication system. Accordingly, where the m multi-user MIMO communication system performs non-unitary precoding, the codebook may include W1(;,1), W1(;,2), W2(;,1), W2(;,2), W3(;,1), W3(;,2), W4(;,1), and W4(;,2) included in the above Equation 5. The base station may use only a subset of the codebook for this rank 1 single user MIMO communication system.


3) A first example of a codebook used in a downlink of a single user MIMO communication system or a multi-user MIMO communication system where a number of physical antennas of a base station is four:


3-1) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is four:


For example, where the number of physical antennas of the base station is four, the codebook used in the downlink of the single user MIMO communication system according to an exemplary embodiment may be designed as given by the following Equation 7:

















W
1

=


1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


1



-
1




]



,










W
2

=


1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


j



-
j




]



,










W
3

=


1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]



,










W
4

=


1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


1



-
1




]



,






W
5

=


diag


(

1
,
1
,
1
,

-
1


)


*
DFT
*
0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1






-
1



j


1



-
j




]



,
and








W
6

=



diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT

=

0.5
*


[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

.









(
7
)







Here, a rotation matrix is








U
rot

=


1

2




[



1


0



-
1



0




0


1


0


0




1


0


1


0




0


1


0


1



]



,




a quadrature phase shift keying (QPSK) discrete Fourier transform (DFT) matrix is







DFT
=

0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1





1



-
j




-
1



j



]



,




diag(a, b, c, d) is a 4×4 matrix, and diagonal elements of diag(a, b, c, d) are a, b, c, and d, and all the remaining elements are zero.


The matrices included in the codebook for the single user MIMO communication system may be determined according to the transmission rank, as given by the following Table 3:
















Transmit






Codebook
Transmission
Transmission
Transmission
Transmission


Index
Rank 1
Rank 2
Rank 3
Rank 4



















1

C1,1 = W1(;, 2)


C1,2 = W1(;, 1 2)


C1,3 = W1(;, 1 2 3)

C1,4 = W1(;, 1 2 3 4)


2

C2,1 = W1(;, 3)


C2,2 = W1(;, 1 3)


C2,3 = W1(;, 1 2 4)

C2,4 = W2(;, 1 2 3 4)


3

C3,1 = W1(;, 4)


C3,2 = W1(;, 1 4)


C3,3 = W1(;, 1 3 4)

C3,4 = W3(;, 1 2 3 4)


4

C4,1 = W2(;, 2)


C4,2 = W1(;, 2 3)


C4,3 = W1(;, 2 3 4)

C4,4 = W4(;, 1 2 3 4)


5

C5,1 = W2(;, 3)


C5,2 = W1(;, 2 4)


C5,3 = W2(;, 1 2 3)

C5,4 = W5(;, 1 2 3 4)


6

C6,1 = W2(;, 4)


C6,2 = W1(;, 3 4)


C6.3 = W2(;, 1 2 4)

C6,4 = W6(;, 1 2 3 4)


7

C7,1 = W3(;, 1)


C7,2 = W2(;, 1 3)


C7,3 = W2(;, 1 3 4)

n/a


8

C8,1 = W4(;, 1)


C8,2 = W2(;, 1 4)


C8,3 = W2(;, 2 3 4)

n/a


9

C9,1 = W5(;, 1)


C9,2 = W2(;, 2 3)


C9,3 = W3(;, 1 2 3)

n/a


10
C10,1 = W5(;, 2)
C10,2 = W2(;, 2 4)
C10,3 = W3(;, 1 3 4)
n/a


11
C11,1 = W5(;, 3)
C11,2 = W3(;, 1 3)
C11,3 = W4(;, 1 2 3)
n/a


12
C12,1 = W5(;, 4)
C12,2 = W3(;, 1 4)
C12,3 = W4(;, 1 3 4)
n/a


13
C13,1 = W6(;, 1)
C13,2 = W4(;, 1 3)
C13,3 = W5(;, 1 2 3)
n/a


14
C14,1 = W6(;, 2)
C14,2 = W4(;, 1 4)
C14,3 = W5(;, 1 3 4)
n/a


15
C15,1 = W6(;, 3)
C15,2 = W5(;, 1 3)
C15,3 = W6(;, 1 2 4)
n/a


16
C16,1 = W6(;, 4)
C16,2 = W6(;, 2 4)
C16,3 = W6(;, 2 3 4)
n/a









Referring to the above Table 3, where the transmission rank is 4, the precoding matrix may be generated based on any one of W1(;,1 2 3 4), W2(;,1 2 3 4), W3(;,1 2 3 4), W4(;,1 2 3 4), W5(;,1 2 3 4), and W6(;,1 2 3 4). Here, Wk(;,n m o p) denotes a matrix that includes the nth column vector, the mth column vector, an oth column vector, and a pth column vector of Wk.


Where the transmission rank is 3, the precoding matrix may be generated based on any one of W1(;,1 2 3), W1(;,1 2 4), W1(;,1 3 4), W1(;,2 3 4), W2(;,1 2 3), W2(;,1 2 4), W2(;,1 3 4), W2(;,2 3 4), W3(;,1 2 3), W3(;,1 3 4), W4(;,1 2 3), W4(;,1 3 4), W5(;,1 2 3), W5(;,1 3 4), W6(;,1 2 4), and W6(;,2 3 4). Here, Wk(;,n m o) denotes a matrix that includes the nth column vector, the mth column vector, and the oth column vector of Wk.


Where the transmission rank is 2, the precoding matrix may be generated based on any one of W1(;,1 2), W1(;,1 3), W1(;,1 4), W1(;,2 3), W1(;,2 4), W1(;,3 4), W2(;,1 3), W2(;,1 4), W2(;,2 3), W2(;,2 4), W3(;,1 3), W3(;,1 4), W4(;,1 3), W4(;,1 4), W5(;,1 3), and W6(;,2 4). Here, Wk(;,n m) denotes a matrix that includes the nth column vector and the mth column vector of Wk.


Where the transmission rank is 1, the precoding matrix may be generated based on any one of W1(;,2), W1(;,3), W1(;,4), W2(;,2), W2(;,3), W2(;,4), W3(;,1), W4(;,1), W5(;,1), W5(;,2), W5(;,3), W5(;,4), W6(;,1), W6(;,2), W6(;,3), and W6(;,4). Here, Wk(;,n) denotes the nth column vector of Wk.


The codewords included in the above Table 3 may be expressed as follows:


















C1,1 =
  0.5000






−0.5000






  0.5000






−0.5000





C2,1 =
−0.5000






−0.5000






  0.5000






  0.5000





C3,1 =
−0.5000






  0.5000






  0.5000






−0.5000





C4,1 =
  0.5000






     0 − 0.5000i






  0.5000






     0 − 0.5000i





C5,1 =
−0005.0






     0 − 0.5000i






  0.5000






     0 + 0.5000i





C6,1 =
−0.5000






     0 + 0.5000i






  0.5000






     0 − 0.5000i





C7,1 =
  0.5000






  0.5000






  0.5000






  0.5000





C8,1 =
  0.5000






     0 + 0.5000i






  0.5000






     0 + 0.5000i





C9,1 =
  0.5000






  0.5000






  0.5000






−0.5000





C10,1 =
  0.5000






     0 + 0.5000i






−0.5000






     0 + 0.5000i





C11,1 =
  0.5000






−0.5000






  0.5000






  0.5000





C12,1 =
  0.5000






     0 − 0.5000i






−0.5000






     0 − 0.5000i





C13,1 =
  0.5000






  0.3536 + 0.3536i






     0 + 0.5000i






−0.3536 + 0.3536i  





C14,1 =
  0.5000






−0.3536 + 0.3536i  






     0 − 0.5000i






  0.3536 + 0.3536i





C15,1 =
  0.5000






−0.3536 − 0.3536i  






     0 + 0.5000i






  0.3536 − 0.3536i





C16,1 =
  0.5000






  0.3536 − 0.3536i






     0 − 0.5000i






−0.3536 − 0.3536i  





C1,2 =
  0.5000
  0.5000





  0.5000
−0.5000





  0.5000
  0.5000





  0.5000
−0.5000




C2,2 =
  0.5000
−0.5000





  0.5000
−0.5000





  0.5000
  0.5000





  0.5000
  0.5000




C3,2 =
  0.5000
−0.5000





  0.5000
  0.5000





  0.5000
  0.5000





  0.5000
−0.5000




C4,2 =
  0.5000
−0.5000





−0.5000
−0.5000





  0.5000
  0.5000





−0.5000
  0.5000




C5,2 =
  0.5000
−0.5000





−0.5000
  0.5000





  0.5000
  0.5000





−0.5000
−0.5000




C6,2 =
−0.5000
−0.5000





−0.5000
  0.5000





  0.5000
  0.5000





  0.5000
−0.5000




C7,2 =
  0.5000
−0.5000





     0 + 0.5000i
     0 − 0.5000i





  0.5000
  0.5000





     0 + 0.5000i
     0 + 0.5000i




C8,2 =
  0.5000
−0.5000





     0 + 0.5000i
     0 + 0.5000i





  0.5000
  0.5000





     0 + 0.5000i
     0 − 0.5000i




C9,2 =
  0.5000
−0.5000





     0 − 0.5000i
     0 − 0.5000i





  0.5000
  0.5000





     0 − 0.5000i
     0 + 0.5000i




C10,2 =
  0.5000
−0.5000





     0 − 0.5000i
     0 + 0.5000i





  0.5000
  0.5000





     0 − 0.5000i
     0 − 0.5000i




C11,2 =
  0.5000
−0.5000





  0.5000
     0 − 0.5000i





  0.5000
  0.5000





  0.5000
     0 + 0.5000i




C12,2 =
  0.5000
−0.5000





  0.5000
     0 + 0.5000i





  0.5000
  0.5000





  0.5000
     0 − 0.5000i




C13,2 =
  0.5000
−0.5000





     0 + 0.5000i
−0.5000





  0.5000
  0.5000





     0 + 0.5000i
  0.5000




C14,2 =
  0.5000
−0.5000





     0 + 0.5000i
  0.5000





  0.5000
  0.5000





     0 + 0.5000i
−0.5000




C15,2 =
  0.5000
  0.5000





  0.5000
−0.5000





  0.5000
  0.5000





−0.5000
  0.5000




C16,2 =
  0.5000
  0.5000





−0.3536 + 0.3536i  
  0.3536 − 0.3536i





     0 − 0.5000i
     0 − 0.5000i





  0.3536 + 0.3536i
−0.3536 − 0.3536i




C1,3 =
  0.5000
  0.5000
−0.5000




  0.5000
−0.5000
−0.5000




  0.5000
  0.5000
  0.5000




  0.5000
−0.5000
  0.5000



C2,3 =
  0.5000
  0.5000
−0.5000




  0.5000
−0.5000
  0.5000




  0.5000
  0.5000
  0.5000




  0.5000
−0.5000
−0.5000



C3,3 =
  0.5000
−0.5000
−0.5000




  0.5000
−0.5000
  0.5000




  0.5000
  0.5000
  0.5000




  0.5000
  0.5000
−0.5000



C4,3 =
  0.5000
−0.5000
−0.5000




−0.5000
−0.5000
  0.5000




  0.5000
  0.5000
  0.5000




−0.5000
  0.5000
−0.5000



C5,3 =
  0.5000
  0.5000
−0.5000




     0 + 0.5000i
     0 − 0.5000i
     0 − 0.5000i




  0.5000
  0.5000
  0.5000




     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i



C6,3 =
  0.5000
  0.5000
−0.5000




     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i




  0.5000
  0.5000
  0.5000




     0 + 0.5000i
     0 − 0.5000i
     0 − 0.5000i



C7,3 =
  0.5000
−0.5000
−0.5000




     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i




  0.5000
  0.5000
  0.5000




     0 + 0.5000i
     0 +0.5000i
     0 − 0.5000i



C8,3 =
  0.5000
−0.5000
−0.5000




     0 − 0.5000i
     0 − 0.5000i
     0 + 0.5000i




  0.5000
  0.5000
  0.5000




     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i



C9,3 =
  0.5000
  0.5000
−0.5000




  0.5000
−0.5000
     0 − 0.5000i




  0.5000
  0.5000
  0.5000




  0.5000
−0.5000
     0 + 0.5000i



C10,3 =
  0.5000
−0.5000
−0.5000




  0.5000
     0 − 0.5000i
     0 + 0.5000i




  0.5000
  0.5000
  0.5000




  0.5000
     0 + 0.5000i
     0 − 0.5000i



C11,3 =
  0.5000
  0.5000
−0.5000




     0 + 0.5000i
     0 − 0.5000i
−0.5000




  0.5000
  0.5000
  0.5000




     0 + 0.5000i
     0 − 0.5000i
  0.5000



C12,3 =
  0.5000
−0.5000
−0.5000




     0 + 0.5000i
−0.5000
  0.5000




  0.5000
  0.5000
  0.5000




     0 + 0.5000i
  0.5000
−0.5000



C13,3 =
  0.5000
  0.5000
  0.5000




  0.5000
     0 + 0.5000i
−0.5000




  0.5000
−0.5000
  0.5000




−0.5000
     0 + 0.5000i
  0.5000



C14,3 =
  0.5000
  0.5000
  0.5000




  0.5000
−0.5000
     0 − 0.5000i




  0.5000
  0.5000
−0.5000




−0.5000
  0.5000
     0 − 0.5000i



C15,3 =
  0.5000
  0.5000
  0.5000




  0.3536 + 0.3536i
−0.3536 + 0.3536i
  0.3536 − 0.3536i




     0 + 0.5000i
     0 − 0.5000i
     0 − 0.5000i




−0.3536 + 0.3536i  
  0.3536 + 0.3536i
−0.3536 − 0.3536i



C16,3 =
  0.5000
  0.5000
  0.5000




−0.3536 + 0.3536i   
−0.3536 − 0.3536i
  0.3536 − 0.3536i




     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i




  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i



C1,4 =
  0.5000
  0.5000
−0.5000
−0.5000



  0.5000
−0.5000
−0.5000
  0.5000



  0.5000
  0.5000
  0.5000
  0.5000



  0.5000
−0.5000
  0.5000
−0.5000


C2,4 =
  0.5000
  0.5000
−0.5000
−0.5000



     0 + 0.5000i
     0 − 0.5000i
     0 − 0.5000i
     0 + 0.5000i



  0.5000
  0.5000
  0.5000
  0.5000



     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i


C3,4 =
  0.5000
  0.5000
−0.5000
−0.5000



  0.5000
−0.5000
     0 − 0.5000i
     0 + 0.5000i



  0.5000
  0.5000
  0.5000
  0.5000



  0.5000
−0.5000
     0 + 0.5000i
     0 − 0.5000i


C4,4 =
  0.5000
  0.5000
−0.5000
−0.5000



     0 + 0.5000i
     0 − 0.5000i
−0.5000
  0.5000



  0.5000
  0.5000
  0.5000
  0.5000



     0 + 0.5000i
     0 − 0.5000i
  0.5000
−0.5000


C5,4 =
  0.5000
  0.5000
  0.5000
  0.5000



  0.5000
     0 + 0.5000i
−0.5000
     0 − 0.5000i



  0.5000
−0.5000
  0.5000
−0.5000



−0.5000
     0 + 0.5000i
  0.5000
     0 − 0.5000i


C6,4 =
  0.5000
  0.5000
  0.5000
  0.5000



  0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
  0.3536 − 0.3536i



     0 + 0.5000i
     0 − 0.5000i
     0 + 0.5000i
     0 − 0.5000i



−0.3536 + 0.3536i  
  0.3536 + 0.3536i
  0.3536 − 0.3536i
−0.3536 − 0.3536i









3-2) Codebook used in a downlink of a multi-user MIMO communication system performing unitary precoding where a number of physical antennas of a base station is four:


For example, where the number of physical antennas of the base station is four, the codebook used in the downlink of the multi-user MIMO communication system according to an exemplary embodiment may be designed using the following Equation 8:











W
3

=


1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]








and










W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*


[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)



2










]

.










(
8
)







The codewords included in the codebook for the multi-user MIMO communication system performing unitary precoding, may be given by the following Table 4:
















codeword used at



Transmit Codebook
terminal for



Index
quantization








1
M1 = W3(;, 1)



2
M2 = W3(;, 2)



3
M3 = W3(;, 3)



4
M4 = W3(;, 4)



5
M5 = W6(;, 1)



6
M6 = W6(;, 2)



7
M7 = W6(;, 3)



8
M8 = W6(;, 4)









Referring to the above Table 4, where the transmission rank of each of users is 1, the precoding matrix may be constructed by appropriately combining W3 (;,1), W3 (;,2), W3 (;,3), W3(;,4), W6(;,1), W6(;,2), W6(;,3), and W6(;,4). Here, Wk(;,n) denotes the nth column vector of Wk.


The codewords included in the above Table 4 may be expressed as follows:


















M1 =
0.5000




0.5000




0.5000




0.5000



M2 =
0.5000




−0.5000




0.5000




−0.5000



M3 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



M4 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



M5 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



M6 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



M7 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



M8 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










3-3) Codebook used in a downlink of a multi-user MIMO communication system performing non-unitary precoding where a number of physical antennas of a base station is four:


For example, codewords included in the codebook used in the downlink of the multi-user MIMO communication system performing non-unitary precoding may be given by the following Table 5. Here, in the multi-user MIMO communication system, a rank of each of the users is 1:
















Transmit Codebook




Index
Rank 1



















1

C1,1 = W1(;, 2)




2

C2,1 = W1(;, 3)




3

C3,1 = W1(;, 4)




4

C4,1 = W2(;, 2)




5

C5,1 = W2(;, 3)




6

C6,1 = W2(;, 4)




7

C7,1 = W3(;, 1)




8

C8,1 = W4(;, 1)




9

C9,1 = W5(;, 1)




10
C10,1 = W5(;, 2)



11
C11,1 = W5(;, 3)



12
C12,1 = W5(;, 4)



13
C13,1 = W6(;, 1)



14
C14,1 = W6(;, 2)



15
C15,1 = W6(;, 3)



16
C16,1 = W6(;, 4)










The codewords included in the above Table 5 may be expressed as follows:


















C1,1 =
0.5000




−0.5000




0.5000




−0.5000



C2,1 =
−0.5000




−0.5000




0.5000




0.5000



C3,1 =
−0.5000




0.5000




0.5000




−0.5000



C4,1 =
0.0005




0 − 0.5000i




0.5000




0 − 0.5000i



C5,1 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



C6,1 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



C7,1 =
0.5000




0.5000




0.5000




0.5000



C8,1 =
0.5000




0 + 0.5000i




0.5000




0 + 0.5000i



C9,1 =
0.5000




0.5000




0.5000




−0.5000



C10,1 =
0.5000




0 + 0.5000i




−0.5000




0 + 0.5000i



C11,1 =
0.5000




−0.5000




0.5000




0.5000



C12,1 =
0.5000




0 − 0.5000i




−0.5000




0 − 0.5000i



C13,1 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



C14,1 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



C15,1 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



C16,1 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










4) A second example of a codebook used in a downlink of a single user MIMO communication system or a multi-user MIMO communication system where a number of physical antennas of a base station is four:


4-1) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is four:


Here, a rotation matrix Urot and a QPSK DFT matrix may be defined as follows.








U
rot

=


1

2




[



1


0



-
1



0




0


1


0



-
1





1


0


1


0




0


1


0


1



]



,
and







DFT
=

0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1





1



-
j




-
1



j



]



,




diag(a, b, c, d) is a 4×4 matrix, and diagonal elements of diag(a, b, c, d) are a, b, c, and d, and all the remaining elements are zero.


Codewords W1, W2, W3, W4, W5, and W6 may be defined as follows:













W
1

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


1



-
1




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




1



-
1



1



-
1





1


1



-
1




-
1





1



-
1




-
1



1



]




















W
2

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


j



-
j




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




j



-
j



j



-
j





1


1



-
1




-
1





j



-
j




-
j



j



]




















W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




1



-
1



j



-
j





1


1



-
1




-
1





1



-
1




-
j



j



]




















W
4

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


1



-
1




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




j



-
j



1



-
1





1


1



-
1




-
1





j



-
j




-
1



1



]




















W
5

=




diag


(

1
,
1
,
1
,

-
1


)


*
DFT







=



0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1






-
1



j


1



-
j




]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the single user MIMO communication system according to the second example may be given by the following Table 6:
















Transmit






Codebook






Index
Rank 1
Rank 2
Rank 3
Rank 4



















1

C1,1 = W1(;, 2)


C1,2 = W1(;, 2 1)


C1,3 = W1(;, 1 2 3)

C1,4 = W1(;, 1 2 3 4)


2

C2,1 = W1(;, 3)


C2,2 = W1(;, 3 1)


C2,3 = W1(;, 1 2 4)

C2,4 = W2(;, 1 2 3 4)


3

C3,1 = W1(;, 4)


C3,2 = W1(;, 4 1)


C3,3 = W1(;, 1 3 4)

C3,4 = W3(;, 1 2 3 4)


4

C4,1 = W2(;, 2)


C4,2 = W1(;, 2 3)


C4,3 = W1(;, 2 3 4)

C4,4 = W4(;, 1 2 3 4)


5

C5,1 = W2(;, 3)


C5,2 = W1(;, 2 4)


C5,3 = W2(;, 1 2 3)

C5,4 = W5(;, 1 2 3 4)


6

C6,1 = W2(;, 4)


C6,2 = W1(;, 3 4)


C6,3 = W2(;, 1 2 4)

C6,4 = W6(;, 1 2 3 4)


7

C7,1 = W3(;, 1)


C7,2 = W2(;, 3 1)


C7,3 = W2(;, 1 3 4)

n/a


8

C8,1 = W4(;, 1)


C8,2 = W2(;, 4 1)


C8,3 = W2(;, 2 3 4)

n/a


9

C9,1 = W5(;, 1)


C9,2 = W2(;, 2 3)


C9,3 = W5(;, 1 2 3)

n/a


10
C10,1 = W5(;, 2)
C10,2 = W2(;, 2 4)
C10,3 = W5(;, 1 2 4)
n/a


11
C11,1 = W5(;. 3)
C11,2 = W3(;, 3 1)
C11,3 = W5(;, 1 3 4)
n/a


12
C12,1 = W5(;, 4)
C12,2 = W3(;, 4 1)
C12,3 = W5(;, 2 3 4)
n/a


13
C13,1 = W6(;, 1)
C13,2 = W4(;, 3 1)
C13,3 = W6(;, 1 2 3)
n/a


14
C14,1 = W6(;, 2)
C14,2 = W4(;, 4 1)
C14,3 = W6(;, 1 2 4)
n/a


15
C15,1 = W6(;, 3)
C15,2 = W5(;, 1 3)
C15,3 = W6(;, 1 3 4)
n/a


16
C16,1 = W6(;, 4)
C16,2 = W6(;, 2 4)
C16,3 = W6(;, 2 3 4)
n/a









The codewords included in the above Table 6 may be expressed as follows:


















C1,1 =
0.5000






−0.5000



0.5000



−0.5000


C2,1 =
0.5000



0.5000



−0.5000



−0.5000


C3,1 =
0.5000



−0.5000



−0.5000



0.5000


C4,1 =
0.5000



0 − 0.5000i



0.5000



0 − 0.5000i


C5,1 =
0.5000



0 + 0.5000i



−0.5000



0 − 0.5000i


C6,1 =
0.5000



0 − 0.5000i



−0.5000



0 + 0.5000i


C7,1 =
0.5000



0.5000



0.5000



0.5000


C8,1 =
0.5000



0 + 0.5000i



0.5000



0 + 0.5000i


C9,1 =
0.5000



0.5000



0.5000



−0.5000


C10,1 =
0.5000



0 + 0.5000i



−0.5000



0 + 0.5000i


C11,1 =
0.5000



−0.5000



0.5000



0.5000


C12,1 =
0.5000



0 − 0.5000i



−0.5000



0 − 0.5000i


C13,1 =
0.5000



0.3536 + 0.3536i



0 + 0.5000i



−0.3536 + 0.3536i


C14,1 =
0.5000



−0.3536 + 0.3536i



0 − 0.5000i



0.3536 + 0.3536i


C15,1 =
0.5000



−0.3536 − 0.3536i



0 + 0.5000i



0.3536 − 0.3536i


C16,1 =
0.5000



0.3536 − 0.3536i



0 − 0.5000i



−0.3536 − 0.3536i


C1,2 =
0.5000
0.5000



−0.5000
0.5000



0.5000
0.5000



−0.5000
0.5000


C2,2 =
0.5000
0.5000



0.5000
0.5000



−0.5000
0.5000



−0.5000
0.5000


C3,2 =
0.5000
0.5000



−0.5000
0.5000



−0.5000
0.5000



0.5000
0.5000


C4,2 =
0.5000
0.5000



−0.5000
0.5000



0.5000
−0.5000



−0.5000
−0.5000


C5,2 =
0.5000
0.5000



−0.5000
−0.5000



0.5000
−0.5000



−0.5000
0.5000


C6,2 =
0.5000
0.5000



0.5000
−0.5000



−0.5000
−0.5000



−0.5000
0.5000


C7,2 =
0.5000
0.5000



0 + 0.5000i
0 + 0.5000i



−0.5000
0.5000



0 − 0.5000i
0 + 0.5000i


C8,2 =
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i



−0.5000
0.5000



0 + 0.5000i
0 + 0.5000i


C9,2 =
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i



0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i


C10,2 =
0.5000
0.5000



0 − 0.5000i
0 − 0.5000i



0.5000
−0.5000



0 − 0.5000i
0 + 0.5000i


C11,2 =
0.5000
0.5000



0 + 0.5000i
0.5000



−0.5000
0.5000



0 − 0.5000i
0.5000


C12,2 =
0.5000
0.5000



0 − 0.5000i
0.5000



−0.5000
0.5000



0 + 0.5000i
0.5000


C13,2 =
0.5000
0.5000



0.5000
0 + 0.5000i



−0.5000
0.5000



−0.5000
0 + 0.5000i


C14,2 =
0.5000
0.5000



−0.5000
0 + 0.5000i



−0.5000
0.5000



0.5000
0 + 0.5000i


C15,2 =
0.5000
0.5000



0.5000
−0.5000



0.5000
0.5000



−0.5000
0.5000


C16,2 =
0.5000
0.5000



−0.3536 + 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
−0.3536 − 0.3536i


C1,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000


C2,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
−0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
0.5000


C3,3 =
0.5000
0.5000
0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000



0.5000
−0.5000
0.5000


C4,3 =
0.5000
0.5000
0.5000



−0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000



−0.5000
−0.5000
0.5000


C5,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i


C6,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i


C7,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i


C8,3 =
0.5000
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i
0 + 0.5000i


C9,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000



0.5000
−0.5000
0.5000



−0.5000
0 + 0.5000i
0.5000


C10,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



−0.5000
0 + 0.5000i
0 − 0.5000i


C11,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0 − 0.5000i



0.5000
0.5000
−0.5000



−0.5000
0.5000
0 − 0.5000i


C12,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
−0.5000
0 − 0.5000i



−0.5000
0.5000
−0.5000



0 + 0.5000i
0.5000
0 − 0.5000i


C13,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 − 0.3536i


C14,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
−0.3536 − 0.3536i


C15,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 + 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i


C16,3 =
0.5000
0.5000
0.5000



−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i


C1,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000
−0.5000



0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
−0.5000
0.5000


C2,4 =
0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i
0 + 0.5000i


C3,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0 + 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
0 − 0.5000i
0 + 0.5000i


C4,4 =
0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0.5000
−0.5000



0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
−0.5000
0.5000


C5,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000
0 − 0.5000i



0.5000
−0.5000
0.5000
−0.5000



−0.5000
0 + 0.5000i
0.5000
0 − 0.5000i


C6,4 =
0.5000
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i









4-2) Codebook used in a downlink of a multi-user MIMO communication system performing unitary precoding where a number of physical antennas of a base station is four:


For example, the codebook used in the downlink of the multi-user MIMO communication system according to the second example may be designed by appropriately combining two matrices W3 and W6 as follows:













W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]








=



0.5
*

[



1


1



-
1




-
1





1



-
1




-
j



j




1


1


1


1




1



-
1



j



-
j




]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the multi-user MIMO communication system according to the second example may be given by the following Table 7:















Transmit Codebook




Index
Rank 1








1
M1 = W3(;, 1)



2
M2 = W3(;, 2)



3
M3 = W3(;, 3)



4
M4 = W3(;, 4)



5
M5 = W6(;, 1)



6
M6 = W6(;, 2)



7
M7 = W6(;, 3)



8
M8 = W6(;, 4)









The codewords included in the above Table 7 may be expressed as follows:


















M1 =
0.5000




0.5000




0.5000




0.5000



M2 =
0.5000




−0.5000




0.5000




−0.5000



M3 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



M4 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



M5 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



M6 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



M7 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



M8 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










4-3) Codebook used in a downlink of a multi-user MIMO communication system performing non-unitary precoding where a number of physical antennas of a base station is four:


For example, where the number of physical antennas of the base station is four, the codewords included in the codebook used in the downlink of the multi-user MIMO communication system performing non-unitary precoding may be given by the following Table 8:















Transmit Codebook
Transmission



Index
Rank 1


















1

C1,1 = W1(;, 2)




2

C2,1 = W1(;, 3)




3

C3,1 = W1(;, 4)




4

C4,1 = W2(;, 2)




5

C5,1 = W2(;, 3)




6

C6,1 = W2(;, 4)




7

C7,1 = W3(;, 1)




8

C8,1 = W4(;, 1)




9

C9,1 = W5(;, 1)




10
C10,1 = W5(;, 2)



11
C11,1 = W5(;, 3)



12
C12,1 = W5(;, 4)



13
C13,1 = W6(;, 1)



14
C14,1 = W6(;, 2)



15
C15,1 = W6(;, 3)



16
C16,1 = W6(;, 4)









The codewords included in the above Table 8 may be expressed as follows:


















C1,1 =
0.5000




−0.5000




0.5000




−0.5000



C2,1 =
−0.5000




−0.5000




0.5000




0.5000



C3,1 =
−0.5000




0.5000




0.5000




−0.5000



C4,1 =
0.5000




0 − 0.5000i




0.5000




0 − 0.5000i



C5,1 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



C6,1 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



C7,1 =
0.5000




0.5000




0.5000




0.5000



C8,1 =
−0.5000




0 + 0.5000i




0.5000




0 + 0.5000i



C9,1 =
0.5000




0.5000




0.5000




−0.5000



C10,1 =
0.5000




0 + 0.5000i




−0.5000




0 + 0.5000i



C11,1 =
0.5000




−0.5000




0.5000




0.5000



C12,1 =
0.5000




0 − 0.5000i




−0.5000




0 − 0.5000i



C13,1 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



C14,1 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



C15,1 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



C16,1 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










5) A third example of a codebook used in a downlink of a single user MIMO communication system or a multi-user MIMO communication system where a number of physical antennas of a base station is four:


5-1) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is four:


Here, a rotation matrix Urot and a QPSK DFT matrix may be defined as follows.








U
rot

=


1

2




[



1


0



-
1



0




0


1


0



-
1





1


0


1


0




0


1


0


1



]



,
and







DFT
=

0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1





1



-
j




-
1



j



]



,




diag(a, b, c, d) is a 4×4 matrix, and diagonal elements of diag(a, b, c, d) are a, b, c, and d, and all the remaining elements are zero.


Codewords W1, W2, W3, W4, W5, and W6 may be defined as follows:













W
1

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


1



-
1




]








=



0.5
*

[



1


1



-
1




-
1





1



-
1




-
1



1




1


1


1


1




1



-
1



1



-
1




]




















W
2

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


j



-
j




]








=



0.5
*

[



1


1



-
1




-
1





j



-
j




-
j



j




1


1


1


1




j



-
j



j



-
j




]




















W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]








=



0.5
*

[



1


1



-
1




-
1





1



-
1




-
j



j




1


1


1


1




1



-
1



j



-
j




]




















W
4

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


1



-
1




]








=



0.5
*

[



1


1



-
1




-
1





j



-
j




-
1



1




1


1


1


1




j



-
j



1



-
1




]




















W
5

=




diag


(

1
,
1
,
1
,

-
1


)


*
DFT







=



0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1






-
1



j


1



-
j




]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the single user MIMO communication system according to the third example may be given by the following Table 9:
















Transmit






Codebook






Index
Rank 1
Rank 2
Rank 3
Rank 4



















1

C1,1 = W1(;, 2)


C1,2 = W1(;, 2 1)


C1,3 = W1(;, 1 2 3)

C1,4 = W1(;, 1 2 3 4)


2

C2,1 = W1(;, 3)


C2,2 = W1(;, 3 1)


C2,3 = W1(;, 1 2 4)

C2,4 = W2(;, 1 2 3 4)


3

C3,1 = W1(;, 4)


C3,2 = W1(;, 4 1)


C3,3 = W1(;, 1 3 4)

C3,4 = W3(;, 1 2 3 4)


4

C4,1 = W2(;, 2)


C4,2 = W1(;, 2 3)


C4,3 = W1(;, 2 3 4)

C4,4 = W4(;, 1 2 3 4)


5

C5,1 = W2(;, 3)


C5,2 = W1(;, 2 4)


C5,3 = W2(;, 1 2 3)

C5,4 = W5(;, 1 2 3 4)


6

C6,1 = W2(;, 4)


C6,2 = W1(;, 3 4)


C6,3 = W2(;, 1 2 4)

C6,4 = W6(;, 1 2 3 4)


7

C7,1 = W3(;, 1)


C7,2 = W2(;, 3 1)


C7,3 = W2(;, 1 3 4)

n/a


8

C8,1 = W4(;, 1)


C8,2 = W2(;, 4 1)


C8,3 = W2(;, 2 3 4)

n/a


9

C9,1 = W5(;, 1)


C9,2 = W2(;, 2 3)


C9,3 = W5(;, 1 2 3)

n/a


10
C10,1 = W5(;, 2)
C10,2 = W2(;, 2 4)
C10,3 = W5(;, 1 2 4)
n/a


11
C11,1 = W5(;, 3)
C11,2 = W3(;, 3 1)
C11,3 = W5(;, 1 3 4)
n/a


12
C12,1 = W5(;, 4)
C12,2 = W3(;, 4 1)
C12,3 = W5(;, 2 3 4)
n/a


13
C13,1 = W6(;, 1)
C13,2 = W4(;, 3 1)
C13,3 = W6(;, 1 2 3)
n/a


14
C14,1 = W6(;, 2)
C14,2 = W4(;, 4 1)
C14,3 = W6(;, 1 2 4)
n/a


15
C15,1 = W6(;, 3)
C15,2 = W5(;, 1 3)
C15,3 = W6(;, 1 3 4)
n/a


16
C16,1 = W6(;, 4)
C16,2 = W6(;, 2 4)
C16,3 = W6(;, 2 3 4)
n/a









The codewords included in the above Table 9 may be expressed as follows:


















C1,1 =
0.5000






−0.5000



0.5000



−0.5000


C2,1 =
−0.5000



−0.5000



0.5000



0.5000


C3,1 =
−0.5000



0.5000



0.5000



−0.5000


C4,1 =
0.5000



0 − 0.5000i



0.5000



0 − 0.5000i


C5,1 =
−0.5000



0 − 0.5000i



0.5000



0 + 0.5000i


C6,1 =
−0.5000



0 + 0.5000i



0.5000



0 − 0.5000i


C7,1 =
0.5000



0.5000



0.5000



0.5000


C8,1 =
0.5000



0 + 0.5000i



0.5000



0 + 0.5000i


C9,1 =
0.5000



0.5000



0.5000



−0.5000


C10,1 =
0.5000



0 + 0.5000i



−0.5000



0 + 0.5000i


C11,1 =
0.5000



−0.5000



0.5000



0.5000


C12,1 =
0.5000



0 − 0.5000i



−0.5000



0 − 0.5000i


C13,1 =
0.5000



0.3536 + 0.3536i



0 + 0.5000i



−0.3536 + 0.3536i


C14,1 =
0.5000



−0.3536 + 0.3536i



0 − 0.5000i



0.3536 + 0.3536i


C15,1 =
0.5000



−0.3536 − 0.3536i



0 + 0.5000i



0.3536 − 0.3536i


C16,1 =
0.5000



0.3536 − 0.3536i



0 − 0.5000i



−0.3536 − 0.3536i


C1,2 =
0.5000
0.5000



0.5000
−0.5000



0.5000
0.5000



0.5000
−0.5000


C2,2 =
0.5000
−0.5000



0.5000
−0.5000



0.5000
0.5000



0.5000
0.5000


C3,2 =
0.5000
−0.5000



0.5000
0.5000



0.5000
0.5000



0.5000
−0.5000


C4,2 =
0.5000
−0.5000



−0.5000
−0.5000



0.5000
0.5000



−0.5000
0.5000


C5,2 =
0.5000
−0.5000



−0.5000
0.5000



0.5000
0.5000



−0.5000
−0.5000


C6,2 =
−0.5000
−0.5000



−0.5000
0.5000



0.5000
0.5000



0.5000
−0.5000


C7,2 =
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i



0.5000
0.5000



0 + 0.5000i
0 + 0.5000i


C8,2 =
0.5000
−0.5000



0 + 0.5000i
0 + 0.5000i



0.5000
0.5000



0 + 0.5000i
0 − 0.5000i


C9,2 =
0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i



0.5000
0.5000



0 − 0.5000i
0 + 0.5000i


C10,2 =
0.5000
−0.5000



0 − 0.5000i
0 + 0.5000i



0.5000
0.5000



0 − 0.5000i
0 − 0.5000i


C11,2 =
0.5000
−0.5000



0.5000
0 − 0.5000i



0.5000
0.5000



0.5000
0 + 0.5000i


C12,2 =
0.5000
−0.5000



0.5000
0 + 0.5000i



0.5000
0.5000



0.5000
0 − 0.5000i


C13,2 =
0.5000
−0.5000



0 + 0.5000i
−0.5000



0.5000
0.5000



0 + 0.5000i
0.5000


C14,2 =
0.5000
−0.5000



0 + 0.5000i
0.5000



0.5000
0.5000



0 + 0.5000i
−0.5000


C15,2 =
0.5000
0.5000



0.5000
−0.5000



0.5000
0.5000



−0.5000
0.5000


C16,2 =
0.5000
0.5000



−0.3536 + 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
−0.3536 − 0.3536i


C1,3 =
0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000



0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000


C2,3 =
0.5000
0.5000
−0.5000



0.5000
−0.5000
0.5000



0.5000
0.5000
0.5000



0.5000
−0.5000
−0.5000


C3,3 =
0.5000
−0.5000
−0.5000



0.5000
−0.5000
0.5000



0.5000
0.5000
0.5000



0.5000
0.5000
−0.5000


C4,3 =
0.5000
−0.5000
−0.5000



−0.5000
−0.5000
0.5000



0.5000
0.5000
0.5000



−0.5000
0.5000
−0.5000


C5,3 =
0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i


C6,3 =
0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i


C7,3 =
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
0.5000



0 + 0.5000i
0 + 0.5000i
0 − 0.5000i


C8,3 =
0.5000
−0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i


C9,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000



0.5000
−0.5000
0.5000



−0.5000
0 + 0.5000i
0.5000


C10,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



−0.5000
0 + 0.5000i
0 − 0.5000i


C11,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0 − 0.5000i



0.5000
0.5000
−0.5000



−0.5000
0.5000
0 − 0.5000i


C12,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
−0.5000
0 − 0.5000i



−0.5000
0.5000
−0.5000



0 + 0.5000i
0.5000
0 − 0.5000i


C13,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 − 0.3536i


C14,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
−0.3536 − 0.3536i


C15,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 + 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i


C16,3 =
0.5000
0.5000
0.5000



−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i


C1,4 =
0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
−0.5000
0.5000



0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000
−0.5000


C2,4 =
0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i


C3,4 =
0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0 + 0.5000i
0 − 0.5000i


C4,4 =
0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
−0.5000
0.5000



0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0.5000
−0.5000


C5,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000
0 − 0.5000i



0.5000
−0.5000
0.5000
−0.5000



−0.5000
0 + 0.5000i
0.5000
0 − 0.5000i


C6,4 =
0.5000
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i









5-2) Codebook used in a downlink of a multi-user MIMO communication system performing unitary precoding where a number of physical antennas of a base station is four:


For example, the codebook used in the downlink of the multi-user MIMO communication system according to the third example may be designed by appropriately combining two matrices W3 and W6 as follows:













W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]








=



0.5
*

[



1


1



-
1




-
1





1



-
1




-
j



j




1


1


1


1




1



-
1



j



-
j




]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the multi-user MIMO communication system according to the third example may be given by the following Table 10:















Transmit Codebook




Index
Rank 1








1
M1 = W3(;, 1)



2
M2 = W3(;, 2)



3
M3 = W3(;, 3)



4
M4 = W3(;, 4)



5
M5 = W6(;, 1)



6
M6 = W6(;, 2)



7
M7 = W6(;, 3)



8
M8 = W6(;, 4)









The codewords included in the above Table 10 may be expressed as follows:


















M1 =
0.5000




0.5000




0.5000




0.5000



M2 =
0.5000




−0.5000




0.5000




−0.5000



M3 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



M4 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



M5 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



M6 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



M7 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



M8 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










5-3) Codebook used in a downlink of a multi-user MIMO communication system performing non-unitary precoding where a number of physical antennas of a base station is four:


For example, where the number of physical antennas of the base station is four, the codewords included in the codebook used in the downlink of the multi-user MIMO communication system performing non-unitary precoding may be given by the following Table 11:















Transmit Codebook
Transmission



Index
Rank 1


















1

C1,1 = W1(;, 2)




2

C2,1 = W1(;, 3)




3

C3,1 = W1(;, 4)




4

C4,1 = W2(;, 2)




5

C5,1 = W2(;, 3)




6

C6,1 = W2(;, 4)




7

C7,1 = W3(;, 1)




8

C8,1 = W4(;, 1)




9

C9,1 = W5(;, 1)




10
C10,1 = W5(;, 2)



11
C11,1 = W5(;, 3)



12
C12,1 = W5(;, 4)



13
C13,1 = W6(;, 1)



14
C14,1 = W6(;, 2)



15
C15,1 = W6(;, 3)



16
C16,1 = W6(;, 4)









The codewords included in the above Table 11 may be expressed as follows:


















C1,1 =
0.5000




−0.5000




0.5000




−0.5000



C2,1 =
−0.5000




−0.5000




0.5000




0.5000



C3,1 =
−0.5000




0.5000




0.5000




−0.5000



C4,1 =
0.5000




0 − 0.5000i




0.5000




0 − 0.5000i



C5,1 =
−0.5000




0 − 0.5000i




0.5000




0 + 0.5000i



C6,1 =
−0.5000




0 + 0.5000i




0.5000




0 − 0.5000i



C7,1 =
0.5000




0.5000




0.5000




0.5000



C8,1 =
0.5000




0 + 0.5000i




0.5000




0 + 0.5000i



C9,1 =
0.5000




0.5000




0.5000




−0.5000



C10,1 =
0.5000




0 + 0.5000i




−0.5000




0 + 0.5000i



C11,1 =
0.5000




−0.5000




0.5000




0.5000



C12,1 =
0.5000




0 − 0.5000i




−0.5000




0 − 0.5000i



C13,1 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



C14,1 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



C15,1 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



C16,1 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










6) A fourth example of a codebook used in a downlink of a single user MIMO communication system or a multi-user MIMO communication system where a number of physical antennas of a base station is four:


6-1) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is four:


Here, a rotation matrix Urot and a QPSK DFT matrix may be defined as follows.







U
rot

=



1

2




[



1


0



-
1



0




0


1


0



-
1





1


0


1


0




0


1


0


1



]







and








DFT
=

0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1





1



-
j




-
1



j



]



,




diag(a, b, c, d) is a 4×4 matrix, and diagonal elements of diag(a, b, c, d) are a, b, c, and d, and all the remaining elements are zero.


Codewords W1, W2, W3, W4, W5, and W6 may be defined as follows:













W
1

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


1



-
1




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




1



-
1



1



-
1





1


1



-
1




-
1





1



-
1




-
1



1



]




















W
2

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


j



-
j




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




j



-
j



j



-
j





1


1



-
1




-
1





j



-
j




-
j



j



]




















W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




1



-
1



j



-
j





1


1



-
1




-
1





1



-
1




-
j



j



]




















W
4

=




1

2


*

U
rot

*

[



1


1


0


0




j



-
j



0


0




0


0


1


1




0


0


1



-
1




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




j



-
j



1



-
1





1


1



-
1




-
1





j



-
j




-
1



1



]




















W
5

=




diag


(

1
,
1
,
1
,

-
1


)


*
DFT







=



0.5
*

[



1


1


1


1




1


j



-
1




-
j





1



-
1



1



-
1






-
1



j


1



-
j




]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the single user MIMO communication system according to the fourth example may be given by the following


Table 12:
















Transmit






Codebook
Transmission
Transmission
Transmission
Transmission


Index
Rank 1
Rank 2
Rank 3
Rank 4



















1

C1,1 = W1(;, 2)


C1,2 = W1(;, 1 2)


C1,3 = W1(;, 1 2 3)

C1,4 = W1(;, 1 2 3 4)


2

C2,1 = W1(;, 3)


C2,2 = W1(;, 1 3)


C2,3 = W1(;, 1 2 4)

C2,4 = W2(;, 1 2 3 4)


3

C3,1 = W1(;, 4)


C3,2 = W1(;, 1 4)


C3,3 = W1(;, 1 3 4)

C3,4 = W3(;, 1 2 3 4)


4

C4,1 = W2(;, 2)


C4,2 = W1(;, 2 3)


C4,3 = W1(;, 2 3 4)

C4,4 = W4(;, 1 2 3 4)


5

C5,1 = W2(;, 3)


C5,2 = W1(;, 2 4)


C5,3 = W2(;, 1 2 3)

C5,4 = W5(;, 1 2 3 4)


6

C6,1 = W2(;, 4)


C6,2 = W1(;, 3 4)


C6,3 = W2(;, 1 2 4)

C6,4 = W6(;, 1 2 3 4)


7

C7,1 = W3(;, 1)


C7,2 = W2(;, 1 3)


C7,3 = W2(;, 1 3 4)

n/a


8

C8,1 = W4(;, 1)


C8,2 = W2(;, 1 4)


C8,3 = W2(;, 2 3 4)

n/a


9

C9,1 = W5(;, 1)


C9,2 = W2(;, 2 3)


C9,3 = W3(;, 1 2 3)

n/a


10
C10,1 = W5(;, 2)
C10,2 = W2(;, 2 4)
C10,3 = W3(;, 1 3 4)
n/a


11
C11,1 = W5(;, 3)
C11,2 = W3(;, 1 3)
C11,3 = W4(;, 1 2 3)
n/a


12
C12,1 = W5(;, 4)
C12,2 = W3(;, 1 4)
C12,3 = W4(;, 1 3 4)
n/a


13
C13,1 = W6(;, 1)
C13,2 = W4(;, 1 3)
C13,3 = W5(;, 1 2 3)
n/a


14
C14,1 = W6(;, 2)
C14,2 = W4(;, 1 4)
C14,3 = W5(;, 1 3 4)
n/a


15
C15,1 = W6(;, 3)
C15,2 = W5(;, 1 3)
C15,3 = W6(;, 1 2 4)
n/a


16
C16,1 = W6(;, 4)
C16,2 = W6(;, 2 4)
C16,3 = W6(;, 2 3 4)
n/a









The codewords included in the above Table 12 may be expressed as follows:


















C1,1 =
0.5000






−0.5000



0.5000



−0.5000


C2,1 =
0.5000



0.5000



−0.5000



−0.5000


C3,1 =
0.5000



−0.5000



−0.5000



0.5000


C4,1 =
0.5000



0 − 0.5000i



0.5000



0 − 0.5000i


C5,1 =
0.5000



0 + 0.5000i



−0.5000



0 − 0.5000i


C6,1 =
0.5000



0 − 0.5000i



−0.5000



0 + 0.5000i


C7,1 =
0.5000



0.5000



0.5000



0.5000


C8,1 =
0.5000



0 + 0.5000i



0.5000



0 + 0.5000i


C9,1 =
0.5000



0.5000



0.5000



−0.5000


C10,1 =
0.5000



0 + 0.5000i



−0.5000



0 + 0.5000i


C11,1 =
0.5000



−0.5000



0.5000



0.5000


C12,1 =
0.5000



0 − 0.5000i



−0.5000



0 − 0.5000i


C13,1 =
0.5000



0.3536 + 0.3536i



0 + 0.5000i



−0.3536 + 0.3536i


C14,1 =
0.5000



−0.3536 + 0.3536i



0 − 0.5000i



0.3536 + 0.3536i


C15,1 =
0.5000



−0.3536 − 0.3536i



0 + 0.5000i



0.3536 − 0.3536i


C16,1 =
0.5000



0.3536 − 0.3536i



0 − 0.5000i



−0.3536 − 0.3536i


C1,2 =
0.5000
0.5000



−0.5000
0.5000



0.5000
0.5000



−0.5000
0.5000


C2,2 =
0.5000
0.5000



0.5000
0.5000



−0.5000
0.5000



−0.5000
0.5000


C3,2 =
0.5000
0.5000



−0.5000
0.5000



−0.5000
0.5000



0.5000
0.5000


C4,2 =
0.5000
0.5000



−0.5000
0.5000



0.5000
−0.5000



−0.5000
−0.5000


C5,2 =
0.5000
0.5000



−0.5000
−0.5000



0.5000
−0.5000



−0.5000
0.5000


C6,2 =
0.5000
0.5000



0.5000
−0.5000



−0.5000
−0.5000



−0.5000
0.5000


C7,2 =
0.5000
0.5000



0 + 0.5000i
0 + 0.5000i



−0.5000
0.5000



0 − 0.5000i
0 + 0.5000i


C8,2 =
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i



−0.5000
0.5000



0 + 0.5000i
0 + 0.5000i


C9,2 =
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i



0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i


C10,2 =
0.5000
0.5000



0 − 0.5000i
0 − 0.5000i



0.5000
−0.5000



0 − 0.5000i
0 + 0.5000i


C11,2 =
0.5000
0.5000



0 + 0.5000i
0.5000



−0.5000
0.5000



0 − 0.5000i
0.5000


C12,2 =
0.5000
0.5000



0 − 0.5000i
0.5000



−0.5000
0.5000



0 + 0.5000i
0.5000


C13,2 =
0.5000
0.5000



0.5000
0 + 0.5000i



−0.5000
0.5000



−0.5000
0 + 0.5000i


C14,2 =
0.5000
0.5000



−0.5000
0 + 0.5000i



−0.5000
0.5000



0.5000
0 + 0.5000i


C15,2 =
0.5000
0.5000



0.5000
−0.5000



0.5000
0.5000



−0.5000
0.5000


C16,2 =
0.5000
0.5000



−0.3536 + 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
−0.3536 − 0.3536i


C1,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000


C2,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
−0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
0.5000


C3,3 =
0.5000
0.5000
0.5000



0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000



0.5000
−0.5000
0.5000


C4,3 =
0.5000
0.5000
0.5000



−0.5000
0.5000
−0.5000



0.5000
−0.5000
−0.5000



−0.5000
−0.5000
0.5000


C5,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i



0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i


C6,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i


C7,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i


C8,3 =
0.5000
0.5000
0.5000



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



0 − 0.5000i
0 − 0.5000i
0 + 0.5000i


C9,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0 + 0.5000i



0.5000
0.5000
−0.5000



0.5000
−0.5000
0 − 0.5000i


C10,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
0 − 0.5000i



0.5000
−0.5000
−0.5000



0.5000
0 − 0.5000i
0 + 0.5000i


C11,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0.5000



0.5000
0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
−0.5000


C12,3 =
0.5000
0.5000
0.5000



0 + 0.5000i
0.5000
−0.5000



0.5000
−0.5000
−0.5000



0 + 0.5000i
−0.5000
0.5000


C13,3 =
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000



0.5000
−0.5000
0.5000



−0.5000
0 + 0.5000i
0.5000


C14,3 =
0.5000
0.5000
0.5000



0.5000
−0.5000
0 − 0.5000i



0.5000
0.5000
−0.5000



−0.5000
0.5000
0 − 0.5000i


C15,3 =
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
−0.3536 − 0.3536i


C16,3 =
0.5000
0.5000
0.5000



−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i


C1,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0.5000
−0.5000



0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
−0.5000
0.5000


C2,4 =
0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
0 − 0.5000i
0 + 0.5000i


C3,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
−0.5000
0 + 0.5000i
0 − 0.5000i



0.5000
0.5000
−0.5000
−0.5000



0.5000
−0.5000
0 − 0.5000i
0 + 0.5000i


C4,4 =
0.5000
0.5000
0.5000
0.5000



0 + 0.5000i
0 − 0.5000i
0.5000
−0.5000



0.5000
0.5000
−0.5000
−0.5000



0 + 0.5000i
0 − 0.5000i
−0.5000
0.5000


C5,4 =
0.5000
0.5000
0.5000
0.5000



0.5000
0 + 0.5000i
−0.5000
0 − 0.5000i



0.5000
−0.5000
0.5000
−0.5000



−0.5000
0 + 0.5000i
0.5000
0 − 0.5000i


C6,4 =
0.5000
0.5000
0.5000
0.5000



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



0 + 0.5000i
0 − 0.5000i
0 + 0.5000i
0 − 0.5000i



−0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 − 0.3536i
−0.3536 − 0.3536i









6-2) Codebook used in a downlink of a multi-user MIMO communication system performing unitary precoding where a number of physical antennas of a base station is four:


For example, the codebook used in the downlink of the multi-user MIMO communication system according to the fourth example may be designed by appropriately combining subsets of two matrices W3 and W6 as follows:













W
3

=




1

2


*

U
rot

*

[



1


1


0


0




1



-
1



0


0




0


0


1


1




0


0


j



-
j




]

*

[



1


0


0


0




0


1


0


0




0


0



-
1



0




0


0


0



-
1




]








=



0.5
*

[



1


1


1


1




1



-
1



j



-
j





1


1



-
1




-
1





1



-
1




-
j



j



]




















W
6

=




diag


(

1
,


(

1
+
j

)


2


,
j
,


(


-
1

+
j

)


2



)


*
DFT







=



0.5
*

[



1


1


1


1






(

1
+
j

)


2






(


-
1

+
j

)


2






(


-
1

-
j

)


2






(

1
-
j

)


2






j



-
j



j



-
j







(


-
1

+
j

)


2






(

1
+
j

)


2






(

1
-
j

)


2






(


-
1

-
j

)


2





]

















For example, where the number of physical antennas of the base station is four, the matrices or the codewords included in the codebook used in the downlink of the multi-user MIMO communication system according to the fourth example may be given by the following Table 13:
















codeword used at



Transmit Codebook
the mobile station



Index
for quantization








1
M1 = W3(;, 1)



2
M2 = W3(;, 2)



3
M3 = W3(;, 3)



4
M4 = W3(;, 4)



5
M5 = W6(;, 1)



6
M6 = W6(;, 2)



7
M7 = W6(;, 3)



8
M8 = W6(;, 4)









The codewords included in the above Table 13 may be expressed as follows:


















M1 =
0.5000




0.5000




0.5000




0.5000



M2 =
0.5000




−0.5000




0.5000




−0.5000



M3 =
0.5000




0 + 0.5000i




−0.5000




0 − 0.5000i



M4 =
0.5000




0 − 0.5000i




−0.5000




0 + 0.5000i



M5 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



M6 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



M7 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



M8 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










6-3) Codebook used in a downlink of a multi-user MIMO communication system performing non-unitary precoding where a number of physical antennas of a base station is four:


For example, where the number of physical antennas of the base station is four, the codewords included in the codebook used in the downlink of the multi-user MIMO communication system performing non-unitary precoding may be given by the following Table 14:















Transmit Codebook
Transmission



Index
Rank 1


















1

C1,1 = W1(;, 2)




2

C2,1 = W1(;, 3)




3

C3,1 = W1(;, 4)




4

C4,1 = W2(;, 2)




5

C5,1 = W2(;, 3)




6

C6,1 = W2(;, 4)




7

C7,1 = W3(;, 1)




8

C8,1 = W4(;, 1)




9

C9,1 = W5(;, 1)




10
C10,1 = W5(;, 2)



11
C11,1 = W5(;, 3)



12
C12,1 = W5(;, 4)



13
C13,1 = W6(;, 1)



14
C14,1 = W6(;, 2)



15
C15,1 = W6(;, 3)



16
C16,1 = W6(;, 4)









The codewords included in the above Table 14 may be expressed as follows:


















C1,1 =
0.5000




−0.5000




0.5000




−0.5000



C2,1 =
0.5000




0.5000




−0.5000




−0.5000



C3,1 =
0.5000




−0.5000




−0.5000




0.5000



C4,1 =
0.5000




0 − 0.5000i




0.5000




0 − 0.5000i



C5,1 =
0.5000




0 +0.5000i




−0.5000




0 − 0.5000i



C6,1 =
0.5000




0 − 0.5000i




−0.5000




0 + 0.5000i



C7,1 =
0.5000




0.5000




0.5000




0.5000



C8,1 =
0.5000




0 + 0.5000i




0.5000




0 + 0.5000i



C9,1 =
0.5000




0.5000




0.5000




−0.5000



C10,1 =
0.5000




0 + 0.5000i




−0.5000




0 + 0.5000i



C11,1 =
0.5000




−0.5000




0.5000




0.5000



C12,1 =
0.5000




0 − 0.5000i




−0.5000




0 − 0.5000i



C13,1 =
0.5000




0.3536 + 0.3536i




0 + 0.5000i




−0.3536 + 0.3536i



C14,1 =
0.5000




−0.3536 + 0.3536i




0 − 0.5000i




0.3536 + 0.3536i



C15,1 =
0.5000




−0.3536 − 0.3536i




0 + 0.5000i




0.3536 − 0.3536i



C16,1 =
0.5000




0.3536 − 0.3536i




0 − 0.5000i




−0.3536 − 0.3536i










Various examples of codewords according to a transmission rank and a number of antennas in a downlink of a single user MIMO communication system and a multi-user MIMO communication system have been described above. The aforementioned codewords may be modified using various types of schemes or shapes, and thus are not limited to the aforementioned examples. For example, based on the disclosures and teachings provided herein, one skilled in the art may obtain the substantially same codebook by changing phases of columns of the aforementioned codewords, for example, by multiplying a complex exponential and the columns of the codewords. As another example, one skilled in the art may multiply ‘-1’ and the columns of the codewords.


However, a performance or properties of the codebook may not change by changing the phases of the columns of the codewords. Accordingly, it is understood that a codebook generated by changing the phases of the columns of the codewords is the same or equivalent as a codebook including the original codewords prior to the changing of the phases. Also, it is understood that a codebook generated by swapping columns of the original codewords of a codebook is the same or equivalent as the codebook including the original codewords prior to the swapping. Specific values that are included in the codebook generated by changing the phases of the columns of the original codewords, or in the codebook generated by swapping the columns of the original codewords will be omitted herein for conciseness.


Where the number of antennas of the base station is four, the aforementioned codebooks assume that a MIMO communication system generally uses a 4-bit codebook. However, embodiments are not limited thereto. For example, where a 6-bit codebook includes codewords that are the same as or substantially same as aforementioned codewords included in the 4-bit codebook, it is understood that the 6-bit codebook may be equivalent to exemplary codebooks described above.


7) Codebook used in a downlink of a single user MIMO communication system where a number of physical antennas of a base station is eight:


For example, where the number of physical antennas of the base station is eight, the codebook used in the downlink of the single user MIMO communication system may be designed as given by the following Equation 9:










W
0

=



1

8




[



1


1


1


1


1


1


1


1




1





j






π
/
4








j






π
/
2








j





3


π
/
4








j





π







j





5


π
/
4








j





3


π
/
2








j





7


π
/
4







1





j






π
/
2








j





π







j





3


π
/
2





1





j






π
/
2








j





π







j





3


π
/
2







1





j





3


π
/
4








j





3


π
/
2








j






π
/
4








j





π







j





7


π
/
4








j






π
/
2








j





5


π
/
4







1





j





π




1





j





π




1





j





π




1





j





π






1





j





5


π
/
4








j






π
/
2








j





7


π
/
4








j





π







j






π
/
4








j





3


π
/
2








j





3


π
/
4







1





j6






π
/
4








j





π







j






π
/
2





1





j3π
/
2







j





π







j






π
/
2







1





j





7


π
/
4








j





3


π
/
2








j





5


π
/
4








j





π







j





3


π
/
4








j






π
/
2








j






π
/
4






]


.





(
9
)







Matrices included in the codebook for the single user MIMO communication system may be determined as given by the following Table 15:
















Transmit






Codebook
Transmission
Transmission
Transmission
Transmission


Index
Rank 1
Rank 2
Rank 3
Rank 4







1
C1,1 = W0(;, 1)
C1,2 = W0(;, 1 2)
C1,3 = W0(;, 1 2 3)
C1,4 = W0(;, 12 3 4)


2
C2,1 = W0(;, 2)
C2,2 = W0(;, 3 4)
C2,3 = W0(;, 3 4 5)
C2,4 = W0(;, 3 4 5 6)


3
C3,1 = W0(;, 3)
C3,2 = W0(;, 5 6)
C3,3 = W0(;, 5 6 7)
C3,4 = W0(;, 5 6 7 8)


4
C4,1 = W0(;, 4)
C4,2 = W0(;, 7 8)
C4,3 = W0(;, 7 8 1)
C4,4 = W0(;, 7 8 1 2)


5
C5,1 = W0(;, 5)
C5,2 = W0(;, 1 3)
C5,3 = W0(;, 1 3 5)
C5,4 = W0(;, 1 3 5 7)


6
C6,1 = W0(;, 6)
C6,2 = W0(;, 2 4)
C6,3 = W0(;, 2 4 6)
C6,4 = W0(;, 2 4 6 8)


7
C7,1 = W0(;, 7)
C7,2 = W0(;, 5 7)
C7,3 = W0(;, 5 7 1)
C7,4 = W0(;, 5 7 1 4)


8
C8,1 = W0(;, 8)
C8,2 = W0(;, 6 8)
C8,3 = W0(;, 6 8 2)
C8,4 = W0(;, 6 8 2 3)









Referring to the above Table 15, where the transmission rank is 4, the precoding matrix may be generated based on any one of W0(;,1 2 3 4), W0(;,3 4 5 6), W0(;,5 6 7 8), W0(;,7 8 1 2), W0(;,1 3 5 7), W0(;,2 4 6 8), W0(;,5 7 1 4), and W0(;,6 8 2 3). Here, Wk(;,n m o p) denotes a matrix that includes an nth column vector, an mth column vector, an oth column vector, and a pth column vector of Wk.


Where the transmission rank is 3, the precoding matrix may be generated based on any one of W0(;,1 2 3), W0(;,3 4 5), W0(;,5 6 7), W0(;,7 8 1), W0(;,1 3 5), W0(;,2 4 6), W0(;,5 7 1), and W0(;,6 8 2). Here, Wk(;,n m o) denotes a matrix that includes the nth column vector, the mth column vector, and the oth column vector of Wk.


Where the transmission rank is 2, the precoding matrix may be generated based on any one of W0(;,1 2), W0(;,3 4), W0(;,5 6), W0(;,7 8), W0(;,1 3), W0(;,2 4), W0(;,5 7), and W0(;,6 8). Here, Wk(;,n m) denotes a matrix that includes the nth column vector and the mth column vector of Wk.


Where the transmission rank is 1, the precoding matrix may be generated based on any one of W0(;,1), W0(;,2), W0(;,3), W0(;,4), W0(;,5), W0(;,6), W0(;,7), and W0(;,8). Here, Wk(;,n) denotes the nth column vector of Wk.


Updated Codebook


A MIMO communication system according to an exemplary embodiment may update a codebook according to a time correlation coefficient (ρ) of a channel that is formed between at least one user and a base station.


In an environment where a channel varies over time, it may be inappropriate to use a fixed codebook. The MIMO communication system may detect the change in the channel to thereby adaptively update the codebook.


Generally, the channel may be modeled as given by the following Equation 10:






H
τ
=ρ·H
τ-1+Δ  (10),


where Hτ denotes a channel vector or a channel matrix in a τth time instance, ρ denotes the time correlation coefficient greater than 0 and less than 1, and Δ denotes complex noise, and has a normal distribution where the average of Δ is zero and the variance of Δ is 1−ρ.


In a MIMO communication system according to an exemplary embodiment, a terminal may calculate the time correlation coefficient (ρ) according to the above Equation 10. The terminal may feed back the calculated time correlation coefficient (ρ) to the base station. The base station may adaptively update the codebook based on the fed back time correlation coefficient (ρ).


Here, it is assumed that the codebook before the codebook is updated is {θ}={Θ1, . . . , Θ2B} and the updated codebook is {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}. {tilde over (Θ)}i denotes an ith element of the updated codebook and B denotes a number of feedback bits.


Where a precoding matrix used in a (τ−1)th time instance is Fτ-1, the base station according to an aspect may calculate a new precoding matrix Fτ using {tilde over (Θ)}i. {tilde over (Θ)}i is an element of the updated codebook. F0 corresponding to an initial value of Fτ may be the aforementioned precoding matrix with respect to two, four, and eight transmit antennas. Specifically, Fτ may be represented using the previous precoding matrix Fτ-1 and the element {tilde over (Θ)}i of the updated codebook, as given by the following Equation 11:






F
τ={tilde over (Θ)}iFτ-1  (11).


In a multi-user MIMO communication system, Fτ may be a precoding matrix for a single user. Accordingly, Fτ may be different for each user. The base station may generate the precoding matrix by scheduling active terminals to transmit data and by combining Fτ corresponding to each user.


1) Design of {θ}={Θ1, . . . , Θ2B}:


For example, elements or codewords of {θ}={Θ1, . . . , Θ2B} have the dimension of Nt×Nt. Each of the elements may be a unitary matrix. {θ}={Θ1, . . . , Θ2B} may be equally spaced.


Design schemes of {θ}={Θ1, . . . , Θ2B} may vary, however two exemplary schemes will be described here.


(1) Full unitary matrices {θ}={Θ1, . . . , Θ2B} including full unitary matrices may be proposed according to the following Equation 12:













Θ
l

=


Φ
l


D


,

l
=
1

,





,

2
B








Φ
=

[






j





2

π







φ
1

/

2
B






0





0




0





j





2

π







φ
2

/

2
B









0













0




0


0


0





j





2

π







φ

N
t


/

2
B







]








φ
i



{

1
,
2
,





,

2
B


}


,




(
12
)







where D denotes a DFT matrix with the dimension of Nt×Nt.


For example, where Nt=4, [φ1, φ2, φ3, φ4] with respect to the number of feedback bits B may be determined as given by the following Table 16:















B
1, φ2, φ3, φ4]








B = 2
[1, 2, 3, 4]



B = 3
[2, 4, 5, 6]



B = 4
[1, 3, 4, 8]



B = 5
[11, 18, 22, 23]









For example, where B=3 and Nt=2, {θ}={Θ1, . . . , Θ2B} may be given by the following Table 17:


















θ1
















-
0.0136

+

0.6753

i





0.7368
-

0.0288

i








-
0.7276

+

0.1198

i






-
0.1489

-

0.6588

i


















θ2












-
0.6021

+

0.6871

i





0.0081
+

0.4065

i








-
0.0729

+

0.4000

i






-
0.4847

-

0.7744

i


















θ3












-
0.0877

-

0.9095

i





0.3790
+

0.1464

i








-
0.3929

-

0.1035

i






-
0.6041

+

0.6856

i


















θ4












-
0.7424

+

0.3706

i





0.2022
-

0.5202

i







0.3856
-

0.4035

i





0.0213
-

0.8295

i


















θ5












-
0.2839

+

0.0675

i






-
0.7744

+

0.5614

i







0.6104
+

0.7363

i






-
0.2582

-

0.1359

i


















θ6












-
0.4786

+

0.1916

i





0.8547
+

0.0614

i








-
0.0827

+

0.8529

i






-
0.2692

+

0.4397

i


















θ7












-
0.1309

-

0.8846

i






-
0.4081

-

0.1838

i







0.1516
+

0.4211

i






-
0.8718

-

0.1992

i


















θ8













-
0.0707

+

0.9650

i






-
0.0601

-

0.2455

i








-
0.1422

+

0.2090

i






-
0.2711

+

0.9288

i







.















(2) Diagonal unitary matrices {θ}={Θ1, . . . , Θ2B} including diagonal unitary matrices may be proposed according to the following Equation 13:












Θ
l

=

Φ
l


,

l
=
1

,





,

2
B








Φ
=

diag


[








j2πφ
1

/

2
B















j2πφ
2

/

2
B




















N
t


/

2
B











]










φ
i




{

1
,
2
,
3
,





,

2
B


}

.






(
13
)







Referring to the above Equation 13, {θ}={Θ1, . . . , Θ2B} may be designed using diagonal matrices. For example, where Nt=4, [φ1, φ2, φ3, φ4] with respect to the number of feedback bits B may be determined as given by the following Table 18:















B
1, φ2, φ3, φ4]








B = 2
[1, 2, 3, 4]



B = 3
[2, 4, 5, 6]



B = 4
[1, 3, 4, 8]



B = 5
[11, 18, 22, 23]









2) Calculation of {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}:


In a MIMO communication system according to an exemplary embodiment, a base station or user terminals may update {θ}={Θ1, . . . , Θ2B} according to a time correlation coefficient (ρ) of a channel to thereby generate a new codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}.


With respect to i=1, 2, 3, . . . , 2B, Ψi(ρ,Θi)=ρI+√{square root over (1−ρ2)}Θi may be calculated. In this instance, the updated codebook may be provided using various types of schemes. Hereinafter, two exemplary schemes will be described. Here, I denotes an identity matrix.


(1) First Scheme:


In the first scheme, the updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} according to an exemplary embodiment may be calculated using the following Equation 14:











Θ
~

i

=


argmin


Θ
~

i










Ψ
i



(

ρ
,

Θ
i


)


-


Θ
~

i




F

.






(
14
)







In the above Equation 14, ∥x∥F denotes a Frobenious norm of x.


Here, it is assumed that where a singular value decomposition (SVD) is performed for Ψi(ρ,Θi)=ρI+√{square root over (1−ρ2)}Θii(ρ,Θi)=ΨiΛiBi*. In this instance, a solution of the above Equation 14 may be calculated using the following Equation 15:





{tilde over (Θ)}iiBi*  (15).


In the first scheme, the updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} may be calculated according to the above Equation 14 or the above equation 15.


(2) Second Scheme:


In the second scheme, the updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} according to an exemplary embodiment may be calculated using the following Equation 16:





{tilde over (Θ)}i=[Ψi(ρ,Θi)*Ψi(ρ,Θi)]−1/2Ψi(ρ,Θi)  (16).


The updated codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} calculated according to the first scheme or the second scheme may be dynamically calculated based on the time correlation coefficient.


The time correlation coefficient may be quantized. Updated codebooks corresponding to the quantized values may be stored in a memory. In this instance, the updated codebooks may have no need to be dynamically calculated. Specifically, where the terminal feeds back the time correlation coefficient to the base station, the base station may select any one codebook from a plurality of updated codebooks that are stored in the memory.










Various





Examples





of





the





updated





Codebook







{

θ
~

}

=

{



Θ
~

1

,





,


Θ
~


2
B



}







{

θ
~

}

=

{



Θ
~

1

,





,


Θ
~


2
B



}






As described above, the updated codebook may be calculated differently according to various parameters. Hereinafter, an example of {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} depending on the number of feedback bits, {θ}={Θ1, . . . , Θ2B}, or design schemes will be described.


1) Where Nt=4, the number of feedback bits B=4, {θ}={Θ1, . . . , Θ2B} includes full unitary matrices, and the first scheme, that is, the above Equation 14 or the above Equation 15 is used, examples of the codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} that is updated according to the time correlation coefficient may follow as:














(1) Time correlation coefficient = 0











{tilde over (Θ)}1 =
0.4619 + 0.1913i
0.4619 + 0.1913i
0.4619 + 0.1913i
0.4619 + 0.1913i



0.1913 + 0.4619i
−0.4619 + 0.1913i
−0.1913 − 0.4619i
0.4619 − 0.1913i



0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}2 =
0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 + 0.3536i
0.3536 + 0.3536i



−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i
0.3536 + 0.3536i



−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}3 =
0.1913 + 0.4619i
0.1913 + 0.4619i
0.1913 + 0.4619i
0.1913 + 0.4619i



−0.4619 − 0.1913i
0.1913 − 0.4619i
0.4619 + 0.1913i
−0.1913 + 0.4619i



−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}4 =
−0.0000 + 0.5000i
−0.0000 + 0.5000i
−0.0000 + 0.5000i
−0.0000 + 0.5000i



−0.0000 − 0.5000i
0.5000 − 0.0000i
0.0000 + 0.5000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}5 =
−0.1913 + 0.4619i
−0.1913 + 0.4619i
−0.1913 + 0.4619i
−0.1913 + 0.4619i



0.4619 − 0.1913i
0.1913 + 0.4619i
−0.4619 + 0.1913i
−0.1913 − 0.4619i



0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}6 =
−0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 + 0.3536i



0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i
0.3536 − 0.3536i



−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}7 =
−0.4619 + 0.1913i
−0.4619 + 0.1913i
−0.4619 + 0.1913i
−0.4619 + 0.1913i



−0.1913 + 0.4619i
−0.4619 − 0.1913i
0.1913 − 0.4619i
0.4619 + 0.1913i



−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}8 =
−0.5000 − 0.0000i
−0.5000 − 0.0000i
−0.5000 − 0.0000i
−0.5000 − 0.0000i



−0.5000 + 0.0000i
−0.0000 − 0.5000i
0.5000 − 0.0000i
0.0000 + 0.5000i



0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}9 =
−0.4619 − 0.1913i
−0.4619 − 0.1913i
−0.4619 − 0.1913i
−0.4619 − 0.1913i



−0.1913 − 0.4619i
0.4619 − 0.1913i
0.1913 + 0.4619i
−0.4619 + 0.1913i



0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}10 =
−0.3536 − 0.3536i
−0.3536 − 0.3536i
−0.3536 − 0.3536i
−0.3536 − 0.3536i



0.3536 − 0.3536i
0.3536 + 0.3536i
−0.3536 + 0.3536i
−0.3536 − 0.3536i



−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}11 =
−0.1913 − 0.4619i
−0.1913 − 0.4619i
−0.1913 − 0.4619i
−0.1913 − 0.4619i



0.4619 + 0.1913i
−0.1913 + 0.4619i
−0.4619 − 0.1913i
0.1913 − 0.4619i



−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}12 =
0.0000 − 0.5000i
0.0000 − 0.5000i
0.0000 − 0.5000i
0.0000 − 0.5000i



0.0000 + 0.5000i
−0.5000 + 0.0000i
−0.0000 − 0.5000i
0.5000 − 0.0000i



0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}13 =
0.1913 − 0.4619i
0.1913 − 0.4619i
0.1913 − 0.4619i
0.1913 − 0.4619i



−0.4619 + 0.1913i
−0.1913 − 0.4619i
0.4619 − 0.1913i
0.1913 + 0.4619i



0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}14 =
0.3536 − 0.3536i
0.3536 − 0.3536i
0.3536 − 0.3536i
0.3536 − 0.3536i



−0.3536 − 0.3536i
0.3536 − 0.3536i
0.3536 + 0.3536i
−0.3536 + 0.3536i



−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i


{tilde over (Θ)}15 =
0.4619 − 0.1913i
0.4619 − 0.1913i
0.4619 − 0.1913i
0.4619 − 0.1913i



0.1913 − 0.4619i
0.4619 + 0.1913i
−0.1913 + 0.4619i
−0.4619 − 0.1913i



−0.0000 − 0.5000i
0.0000 + 0.5000i
−0.0000 − 0.5000i
0.0000 + 0.5000i



−0.5000 + 0.0000i
0.0000 + 0.5000i
0.5000 − 0.0000i
−0.0000 − 0.5000i


{tilde over (Θ)}16 =
0.5000 + 0.0000i
0.5000 + 0.0000i
0.5000 + 0.0000i
0.5000 + 0.0000i



0.5000 − 0.0000i
0.0000 + 0.5000i
−0.5000 + 0.0000i
−0.0000 − 0.5000i



0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 − 0.0000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.0000 − 0.5000i
−0.5000 + 0.0000i
0.0000 + 0.5000i







(2) Time correlation coefficient = 0.7











{tilde over (Θ)}1 =
0.8240 + 0.0189i
0.2994 + 0.2817i
0.2696 + 0.1981i
0.1678 + 0.1077i



0.0126 + 0.4109i
0.4062 − 0.2560i
−0.2069 − 0.5350i
0.5164 + 0.0693i



−0.0798 + 0.3249i
0.0136 − 0.5734i
0.6644 + 0.2768i
0.0282 − 0.2007i



−0.1963 − 0.0353i
−0.2616 + 0.4506i
0.2007 + 0.0282i
0.6376 − 0.4911i


{tilde over (Θ)}2 =
0.7988 + 0.2608i
0.2153 + 0.2412i
0.3405 + 0.2145i
0.1516 + 0.0666i



−0.2412 + 0.2153i
0.2857 − 0.6645i
0.5114 + 0.1398i
0.0769 + 0.2920i



−0.3925 + 0.0891i
0.2627 + 0.4605i
0.2717 − 0.2708i
0.6304 − 0.1112i



0.1543 − 0.0601i
0.1521 − 0.2609i
−0.6304 + 0.1112i
0.6077 + 0.3198i


{tilde over (Θ)}3 =
0.7348 + 0.4182i
0.2456 + 0.2255i
0.0941 + 0.1479i
0.2562 + 0.2788i



−0.3331 + 0.0142i
0.7508 − 0.2853i
0.2798 + 0.2541i
−0.1102 + 0.2979i



−0.0303 − 0.1726i
−0.1277 + 0.3558i
0.6625 − 0.4782i
−0.1775 + 0.3567i



−0.3557 + 0.1300i
0.0122 + 0.3174i
0.3567 + 0.1775i
0.6808 − 0.3653i


{tilde over (Θ)}4 =
0.5441 + 0.0085i
−0.2136 + 0.2732i
−0.1350 + 0.4619i
−0.1789 + 0.5657i



0.2136 − 0.2732i
0.7635 − 0.1612i
−0.1287 + 0.1506i
−0.4619 − 0.1350i



0.4619 + 0.1350i
−0.1506 − 0.1287i
0.7635 − 0.1612i
−0.2732 − 0.2136i



0.5657 + 0.1789i
0.1350 − 0.4619i
−0.2732 − 0.2136i
0.5441 + 0.0085i


{tilde over (Θ)}5 =
0.4414 + 0.5844i
0.1239 + 0.2899i
0.0638 + 0.2469i
−0.0778 + 0.5415i



0.1174 − 0.2926i
0.5415 + 0.4973i
−0.1298 + 0.2643i
−0.4031 − 0.3331i



0.1535 + 0.2037i
−0.1945 − 0.2210i
0.5783 + 0.5124i
−0.0782 − 0.4951i



−0.5300 + 0.1353i
0.2449 + 0.4620i
0.4951 − 0.0782i
0.4191 + 0.0201i


{tilde over (Θ)}6 =
0.4758 + 0.5513i
−0.2076 + 0.2408i
−0.0712 + 0.5514i
−0.1783 + 0.1662i



0.2408 + 0.2076i
0.5396 + 0.4524i
−0.3868 − 0.2803i
0.2279 − 0.3505i



−0.4402 + 0.3396i
0.4717 − 0.0753i
0.3841 + 0.4175i
0.3750 + 0.0139i



0.2436 + 0.0086i
−0.0867 − 0.4090i
−0.3750 − 0.0139i
0.6905 + 0.3849i


{tilde over (Θ)}7 =
0.4042 + 0.4158i
−0.3971 + 0.5424i
−0.3672 − 0.0638i
−0.1717 + 0.2082i



0.1028 + 0.6644i
0.4264 − 0.1701i
0.2303 − 0.1613i
0.3462 + 0.3721i



0.1995 − 0.3148i
−0.1510 + 0.2371i
0.6448 − 0.5523i
−0.0875 + 0.2314i



−0.2383 + 0.1267i
−0.2113 + 0.4622i
0.2314 + 0.0875i
0.6554 − 0.4221i


{tilde over (Θ)}8 =
0.4041 − 0.2684i
−0.2633 − 0.3293i
−0.4370 + 0.0141i
−0.6264 + 0.0574i



−0.2633 − 0.3293i
0.6101 − 0.5655i
0.2477 + 0.0292i
−0.1400 + 0.2200i



0.4370 − 0.0141i
−0.2477 − 0.0292i
0.8442 + 0.0116i
−0.1768 + 0.0493i



0.6264 − 0.0574i
0.1400 − 0.2200i
−0.1768 + 0.0493i
0.6383 + 0.3086i


{tilde over (Θ)}9 =
0.3810 − 0.5349i
−0.3185 − 0.3493i
−0.3206 + 0.0369i
−0.1642 − 0.4627i



0.0218 − 0.4722i
0.8072 − 0.1391i
0.1984 + 0.1319i
−0.2124 + 0.0617i



0.1568 + 0.2821i
−0.1328 − 0.1978i
0.6503 + 0.5464i
−0.1313 − 0.3167i



−0.3288 − 0.3647i
−0.0242 + 0.2198i
0.3167 − 0.1313i
0.6245 − 0.4500i


{tilde over (Θ)}10 =
0.4747 − 0.5482i
−0.1729 − 0.2064i
−0.0676 − 0.5598i
−0.2185 − 0.1898i



0.2064 − 0.1729i
0.8108 + 0.1633i
−0.3141 + 0.2256i
−0.1773 − 0.2500i



−0.4437 − 0.3480i
0.3816 + 0.0626i
0.3891 − 0.3976i
0.4714 − 0.0288i



0.2887 − 0.0203i
0.0514 − 0.3021i
−0.4714 + 0.0288i
0.6901 + 0.3508i


{tilde over (Θ)}11 =
0.5936 − 0.3846i
−0.3426 − 0.2840i
−0.0888 − 0.3966i
0.0617 − 0.3642i



0.4431 − 0.0414i
0.5668 + 0.5554i
−0.3627 + 0.0575i
0.1153 − 0.1550i



0.0698 − 0.4004i
0.1919 + 0.3131i
0.6732 − 0.3571i
−0.1491 + 0.3114i



−0.3128 − 0.1964i
−0.0472 + 0.1874i
0.3114 + 0.1491i
0.6509 − 0.5323i


{tilde over (Θ)}12 =
0.5830 − 0.5182i
0.4165 − 0.3063i
0.0851 − 0.1869i
−0.0688 − 0.2782i



−0.4165 + 0.3063i
0.3110 − 0.4163i
0.2059 − 0.4840i
0.3694 − 0.2226i



0.1869 + 0.0851i
−0.4840 − 0.2059i
0.7985 − 0.0734i
−0.1812 + 0.0736i



0.2782 − 0.0688i
−0.2226 − 0.3694i
−0.1812 + 0.0736i
0.6517 + 0.5186i


{tilde over (Θ)}13 =
0.7342 − 0.4210i
0.2750 − 0.2455i
0.0978 − 0.1472i
0.2285 − 0.2536i



−0.3680 − 0.0208i
0.6070 − 0.3975i
0.3063 − 0.2895i
0.0993 + 0.3876i



−0.0341 + 0.1734i
−0.1503 − 0.3937i
0.6631 + 0.4741i
−0.1501 − 0.3228i



−0.3218 − 0.1140i
−0.0566 + 0.3960i
0.3228 − 0.1501i
0.6838 − 0.3593i


{tilde over (Θ)}14 =
0.7953 − 0.2408i
0.1812 − 0.1376i
0.3861 − 0.2588i
0.1125 − 0.1704i



−0.1376 − 0.1812i
0.7724 − 0.3493i
0.0589 + 0.3942i
−0.2518 + 0.0856i



−0.4561 − 0.0900i
0.3204 + 0.2371i
0.4276 − 0.2914i
0.5958 − 0.0473i



0.2000 − 0.0409i
0.1176 − 0.2386i
−0.5958 + 0.0473i
0.6547 + 0.3190i


{tilde over (Θ)}15 =
0.8388 − 0.0681i
0.2026 − 0.2099i
0.2129 − 0.1422i
0.3609 − 0.1043i



−0.0052 − 0.2917i
0.8336 + 0.1865i
−0.1005 + 0.3624i
−0.2077 − 0.0248i



−0.0499 − 0.2511i
0.0458 + 0.3733i
0.6797 − 0.3936i
−0.1876 + 0.3753i



−0.3734 − 0.0417i
0.0565 + 0.2013i
0.3753 + 0.1876i
0.6730 − 0.4314i


{tilde over (Θ)}16 =
0.5000 + 0.0000i
0.5000 − 0.0000i
0.5000 − 0.0000i
0.5000 − 0.0000i



0.5000 − 0.0000i
0.3500 + 0.3571i
−0.5000 + 0.0000i
−0.3500 − 0.3571i



0.5000 − 0.0000i
−0.5000 + 0.0000i
0.5000 + 0.0000i
−0.5000 + 0.0000i



0.5000 − 0.0000i
−0.3500 − 0.3571i
−0.5000 + 0.0000i
0.3500 + 0.3571i







(3) Time correlation coefficient = 0.75











{tilde over (Θ)}1 =
0.8690 + 0.0214i
0.2188 + 0.2754i
0.2210 + 0.1977i
0.1689 + 0.0650i



−0.0401 + 0.3494i
0.6156 − 0.2142i
−0.1296 − 0.4964i
0.4124 + 0.1349i



−0.0981 + 0.2799i
0.0702 − 0.5082i
0.7459 + 0.2616i
−0.0157 − 0.1546i



−0.1809 + 0.0046i
−0.2824 + 0.3294i
0.1546 − 0.0157i
0.7464 − 0.4447i


{tilde over (Θ)}2 =
0.8359 + 0.2414i
0.2181 + 0.2150i
0.3079 + 0.1975i
0.1146 + 0.0485i



−0.2150 + 0.2181i
0.8518 − 0.4014i
−0.0143 + 0.1187i
0.0719 + 0.0049i



−0.3574 + 0.0780i
−0.0941 + 0.0738i
0.7736 − 0.0724i
0.4889 + 0.0959i



0.1153 − 0.0467i
−0.0474 − 0.0543i
−0.4889 − 0.0959i
0.7826 + 0.3443i


{tilde over (Θ)}3 =
0.7851 + 0.3865i
0.2318 + 0.1968i
0.0834 + 0.1175i
0.2421 + 0.2497i



−0.3030 + 0.0247i
0.7946 − 0.2645i
0.2495 + 0.2409i
−0.0922 + 0.2782i



−0.0320 − 0.1405i
−0.1271 + 0.3227i
0.7299 − 0.4414i
−0.1761 + 0.3168i



−0.3233 + 0.1282i
0.0213 + 0.2923i
0.3168 + 0.1761i
0.7399 − 0.3380i


{tilde over (Θ)}4 =
0.8392 + 0.0971i
−0.1312 + 0.0624i
−0.2104 + 0.2486i
−0.2774 + 0.2867i



0.1312 − 0.0624i
0.9258 − 0.0994i
0.0168 + 0.0746i
−0.2486 − 0.2104i



0.2486 + 0.2104i
−0.0746 + 0.0168i
0.9258 − 0.0994i
−0.0624 − 0.1312i



0.2867 + 0.2774i
0.2104 − 0.2486i
−0.0624 − 0.1312i
0.8392 + 0.0971i


{tilde over (Θ)}5 =
0.8073 + 0.4105i
−0.1364 + 0.0270i
−0.1749 + 0.2852i
0.1429 + 0.1674i



0.1155 + 0.0774i
0.9269 + 0.3117i
−0.0698 − 0.0265i
−0.1307 + 0.0420i



−0.0525 + 0.3304i
0.0512 − 0.0543i
0.8138 + 0.3954i
−0.1867 − 0.1703i



−0.1000 + 0.1961i
0.1369 + 0.0112i
0.1703 − 0.1867i
0.9156 − 0.1746i


{tilde over (Θ)}6 =
0.6506 + 0.4917i
−0.2158 + 0.2078i
0.0451 + 0.4404i
−0.1767 + 0.1340i



0.2078 + 0.2158i
0.6392 + 0.4148i
−0.3692 − 0.2118i
0.2015 − 0.3284i



−0.2795 + 0.3433i
0.4108 − 0.1113i
0.6123 + 0.3594i
0.3446 − 0.0010i



0.2197 + 0.0302i
−0.0897 − 0.3747i
−0.3446 + 0.0010i
0.7463 + 0.3558i


{tilde over (Θ)}7 =
0.5863 + 0.3742i
−0.3179 + 0.5101i
−0.3244 − 0.0767i
−0.1087 + 0.1791i



0.1360 + 0.5855i
0.5870 − 0.1596i
0.2021 − 0.1067i
0.3167 + 0.3408i



0.1950 − 0.2703i
−0.1458 + 0.1759i
0.7256 − 0.5082i
−0.0862 + 0.2110i



−0.1690 + 0.1238i
−0.1937 + 0.4230i
0.2110 + 0.0862i
0.7312 − 0.3912i


{tilde over (Θ)}8 =
0.6000 − 0.2303i
−0.1410 − 0.2886i
−0.4007 − 0.0035i
−0.5686 + 0.0001i



−0.1410 − 0.2886i
0.7408 − 0.5103i
0.2329 + 0.0072i
−0.1207 + 0.1373i



0.4007 + 0.0035i
−0.2329 − 0.0072i
0.8746 + 0.0112i
−0.1337 + 0.0471i



0.5686 − 0.0001i
0.1207 − 0.1373i
−0.1337 + 0.0471i
0.7338 + 0.2912i


{tilde over (Θ)}9 =
0.6029 − 0.4728i
−0.2392 − 0.3363i
−0.2845 + 0.0504i
−0.0609 − 0.3942i



0.0686 − 0.4070i
0.8593 − 0.1259i
0.1782 + 0.1000i
−0.1608 + 0.0880i



0.1555 + 0.2435i
−0.1263 − 0.1606i
0.7248 + 0.5036i
−0.1354 − 0.2783i



−0.2071 − 0.3409i
0.0198 + 0.1823i
0.2783 − 0.1354i
0.7385 − 0.4076i


{tilde over (Θ)}10 =
0.6506 − 0.4888i
−0.1775 − 0.1796i
0.0470 − 0.4493i
−0.2186 − 0.1485i



0.1796 − 0.1775i
0.8443 + 0.1525i
−0.2983 + 0.1797i
−0.1531 − 0.2353i



−0.2845 − 0.3510i
0.3380 + 0.0838i
0.6092 − 0.3430i
0.4310 + 0.0001i



0.2596 − 0.0496i
0.0582 − 0.2747i
−0.4310 − 0.0001i
0.7479 + 0.3259i


{tilde over (Θ)}11 =
0.6775 − 0.3558i
−0.3232 − 0.2420i
−0.0886 − 0.3653i
0.0747 − 0.3231i



0.3997 − 0.0574i
0.6662 + 0.5107i
−0.3204 + 0.0728i
0.1017 − 0.1186i



0.0580 − 0.3714i
0.1899 + 0.2681i
0.7362 − 0.3312i
−0.1466 + 0.2785i



−0.2699 − 0.1927i
−0.0486 + 0.1485i
0.2785 + 0.1466i
0.7250 − 0.4908i


{tilde over (Θ)}12 =
0.7791 − 0.4435i
0.3342 − 0.0845i
−0.0087 − 0.1186i
−0.0987 − 0.2315i



−0.3342 + 0.0845i
0.6693 − 0.3162i
0.2554 − 0.3374i
0.3444 − 0.1886i



0.1186 − 0.0087i
−0.3374 − 0.2554i
0.8842 − 0.0536i
−0.1304 + 0.0715i



0.2315 − 0.0987i
−0.1886 − 0.3444i
−0.1304 + 0.0715i
0.7284 + 0.4794i


{tilde over (Θ)}13 =
0.7850 − 0.3891i
0.2597 − 0.2125i
0.0868 − 0.1169i
0.2156 − 0.2283i



−0.3339 − 0.0334i
0.6826 − 0.3675i
0.2731 − 0.2737i
0.0922 + 0.3584i



−0.0354 + 0.1412i
−0.1484 − 0.3571i
0.7300 + 0.4377i
−0.1498 − 0.2870i



−0.2934 − 0.1119i
−0.0519 + 0.3664i
0.2870 − 0.1498i
0.7408 − 0.3329i


{tilde over (Θ)}14 =
0.8365 − 0.2221i
0.1578 − 0.1409i
0.3648 − 0.2126i
0.0768 − 0.1482i



−0.1409 − 0.1578i
0.8295 − 0.3201i
0.0078 + 0.3392i
−0.2173 + 0.0483i



−0.4083 − 0.1076i
0.2454 + 0.2344i
0.5836 − 0.2602i
0.5461 − 0.0121i



0.1591 − 0.0504i
0.1195 − 0.1878i
−0.5461 + 0.0121i
0.7319 + 0.2976i


{tilde over (Θ)}15 =
0.8661 − 0.0634i
0.1783 − 0.1981i
0.1869 − 0.1391i
0.3348 − 0.0924i



−0.0140 − 0.2661i
0.8627 + 0.1724i
−0.0912 + 0.3357i
−0.1839 − 0.0098i



−0.0570 − 0.2259i
0.0442 + 0.3451i
0.7395 − 0.3638i
−0.1868 + 0.3326i



−0.3447 − 0.0427i
0.0613 + 0.1737i
0.3326 + 0.1868i
0.7356 − 0.3985i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
−0.0000 − 0.0000i
0.0000 − 0.0000i
−0.0000 − 0.0000i



0.0000 − 0.0000i
0.8750 + 0.3307i
−0.0000 + 0.0000i
0.1250 − 0.3307i



−0.0000 − 0.0000i
0.0000 + 0.0000i
1.0000 + 0.0000i
0.0000 + 0.0000i



0.0000 − 0.0000i
0.1250 − 0.3307i
−0.0000 + 0.0000i
0.8750 + 0.3307i







(4) Time correlation coefficient = 0.8











{tilde over (Θ)}1 =
0.9061 + 0.0305i
0.1493 + 0.2433i
0.1747 + 0.1833i
0.1762 + 0.0374i



−0.0665 + 0.2776i
0.7742 − 0.1303i
−0.0710 − 0.4276i
0.3006 + 0.1544i



−0.1025 + 0.2315i
0.0980 − 0.4222i
0.8156 + 0.2516i
−0.0559 − 0.1279i



−0.1771 + 0.0329i
−0.2577 + 0.2187i
0.1279 − 0.0559i
0.8324 − 0.3755i


{tilde over (Θ)}2 =
0.8719 + 0.2173i
0.2025 + 0.1950i
0.2785 + 0.1658i
0.0839 + 0.0389i



−0.1950 + 0.2025i
0.9136 − 0.2637i
−0.0693 + 0.0285i
0.1003 − 0.0342i



−0.3142 + 0.0797i
−0.0692 − 0.0288i
0.8520 + 0.0152i
0.3953 + 0.0831i



0.0868 − 0.0318i
−0.0951 − 0.0467i
−0.3953 − 0.0831i
0.8408 + 0.3317i


{tilde over (Θ)}3 =
0.8347 + 0.3475i
0.2127 + 0.1663i
0.0722 + 0.0879i
0.2225 + 0.2171i



−0.2680 + 0.0329i
0.8381 − 0.2409i
0.2158 + 0.2220i
−0.0742 + 0.2555i



−0.0331 − 0.1089i
−0.1225 + 0.2844i
0.7956 − 0.3950i
−0.1683 + 0.2717i



−0.2857 + 0.1225i
0.0292 + 0.2645i
0.2717 + 0.1683i
0.7982 − 0.3056i


{tilde over (Θ)}4 =
0.9121 + 0.1709i
−0.0579 + 0.0181i
−0.1731 + 0.1580i
−0.2253 + 0.1716i



0.0579 − 0.0181i
0.9634 − 0.0444i
0.0684 + 0.0811i
−0.1580 − 0.1731i



0.1580 + 0.1731i
−0.0811 + 0.0684i
0.9634 − 0.0444i
−0.0181 − 0.0579i



0.1716 + 0.2253i
0.1731 − 0.1580i
−0.0181 − 0.0579i
0.9121 + 0.1709i


{tilde over (Θ)}5 =
0.8538 + 0.3377i
−0.1584 + 0.0349i
−0.1532 + 0.2848i
0.1122 + 0.1161i



0.1367 + 0.0873i
0.9471 + 0.2461i
−0.0829 − 0.0467i
−0.0751 + 0.0368i



−0.0325 + 0.3217i
0.0749 − 0.0587i
0.8560 + 0.3376i
−0.1516 − 0.1290i



−0.0643 + 0.1481i
0.0834 − 0.0053i
0.1290 − 0.1516i
0.9401 − 0.2089i


{tilde over (Θ)}6 =
0.7827 + 0.3953i
−0.2172 + 0.1880i
0.0981 + 0.3107i
−0.1753 + 0.1085i



0.1880 + 0.2172i
0.7316 + 0.3629i
−0.3274 − 0.1530i
0.1718 − 0.3006i



−0.1503 + 0.2890i
0.3397 − 0.1233i
0.7784 + 0.2530i
0.3055 − 0.0093i



0.2007 + 0.0472i
−0.0911 − 0.3340i
−0.3055 + 0.0093i
0.8010 + 0.3203i


{tilde over (Θ)}7 =
0.7427 + 0.3047i
−0.2373 + 0.4414i
−0.2724 − 0.0816i
−0.0575 + 0.1423i



0.1443 + 0.4799i
0.7294 − 0.1502i
0.1663 − 0.0600i
0.2742 + 0.2963i



0.1796 − 0.2204i
−0.1307 + 0.1190i
0.8017 − 0.4491i
−0.0856 + 0.1900i



−0.1076 + 0.1094i
−0.1688 + 0.3667i
0.1900 + 0.0856i
0.8024 − 0.3553i


{tilde over (Θ)}8 =
0.7539 − 0.1575i
−0.0536 − 0.2148i
−0.3518 − 0.0133i
−0.4823 − 0.0343i



−0.0536 − 0.2148i
0.8418 − 0.4250i
0.2212 − 0.0077i
−0.0843 + 0.0746i



0.3518 + 0.0133i
−0.2212 + 0.0077i
0.9031 + 0.0111i
−0.0956 + 0.0463i



0.4823 + 0.0343i
0.0843 − 0.0746i
−0.0956 + 0.0463i
0.8152 + 0.2786i


{tilde over (Θ)}9 =
0.7749 − 0.3638i
−0.1686 − 0.2951i
−0.2431 + 0.0595i
0.0045 − 0.2984i



0.0894 − 0.3279i
0.9034 − 0.1063i
0.1533 + 0.0703i
−0.1249 + 0.1137i



0.1480 + 0.2018i
−0.1147 − 0.1237i
0.7967 + 0.4475i
−0.1340 − 0.2365i



−0.1101 − 0.2774i
0.0573 + 0.1589i
0.2365 − 0.1340i
0.8308 − 0.3439i


{tilde over (Θ)}10 =
0.7840 − 0.3922i
−0.1783 − 0.1615i
0.1003 − 0.3192i
−0.2183 − 0.1185i



0.1615 − 0.1783i
0.8762 + 0.1420i
−0.2677 + 0.1389i
−0.1293 − 0.2157i



−0.1548 − 0.2966i
0.2875 + 0.0911i
0.7726 − 0.2428i
0.3756 + 0.0169i



0.2382 − 0.0705i
0.0611 − 0.2439i
−0.3756 − 0.0169i
0.8030 + 0.2983i


{tilde over (Θ)}11 =
0.7587 − 0.3211i
−0.2921 − 0.1972i
−0.0856 − 0.3275i
0.0816 − 0.2752i



0.3460 − 0.0672i
0.7606 + 0.4499i
−0.2714 + 0.0813i
0.0872 − 0.0839i



0.0463 − 0.3353i
0.1789 + 0.2196i
0.7978 − 0.3017i
−0.1393 + 0.2412i



−0.2231 − 0.1807i
−0.0484 + 0.1109i
0.2412 + 0.1393i
0.7966 − 0.4369i


{tilde over (Θ)}12 =
0.8790 − 0.3390i
0.2102 + 0.0057i
−0.0699 − 0.1039i
−0.1152 − 0.1981i



−0.2102 − 0.0057i
0.8450 − 0.1652i
0.2257 − 0.2291i
0.2922 − 0.1605i



0.1039 − 0.0699i
−0.2291 − 0.2257i
0.9312 − 0.0238i
−0.0920 + 0.0687i



0.1981 − 0.1152i
−0.1605 − 0.2922i
−0.0920 + 0.0687i
0.7995 + 0.4289i


{tilde over (Θ)}13 =
0.8349 − 0.3496i
0.2377 − 0.1773i
0.0750 − 0.0873i
0.1987 − 0.2001i



−0.2934 − 0.0427i
0.7567 − 0.3309i
0.2358 − 0.2508i
0.0836 + 0.3232i



−0.0359 + 0.1094i
−0.1414 − 0.3138i
0.7954 + 0.3920i
−0.1444 − 0.2471i



−0.2609 − 0.1070i
−0.0464 + 0.3305i
0.2471 − 0.1444i
0.7973 − 0.3024i


{tilde over (Θ)}14 =
0.8755 − 0.1985i
0.1391 − 0.1435i
0.3282 − 0.1666i
0.0437 − 0.1291i



−0.1435 − 0.1391i
0.8807 − 0.2794i
−0.0274 + 0.2719i
−0.1769 + 0.0193i



−0.3499 − 0.1143i
0.1729 + 0.2116i
0.7221 − 0.2043i
0.4759 + 0.0145i



0.1222 − 0.0604i
0.1114 − 0.1387i
−0.4759 − 0.0145i
0.8040 + 0.2769i


{tilde over (Θ)}15 =
0.8932 − 0.0588i
0.1525 − 0.1826i
0.1603 − 0.1344i
0.3032 − 0.0797i



−0.0213 − 0.2370i
0.8916 + 0.1554i
−0.0808 + 0.3037i
−0.1595 + 0.0042i



−0.0628 − 0.1995i
0.0416 + 0.3115i
0.7983 − 0.3274i
−0.1792 + 0.2846i



−0.3106 − 0.0424i
0.0649 + 0.1458i
0.2846 + 0.1792i
0.7970 − 0.3576i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
−0.0000 − 0.0000i
0.0000 − 0.0000i
−0.0000 − 0.0000i



0.0000 − 0.0000i
0.9000 + 0.3000i
−0.0000 + 0.0000i
0.1000 − 0.3000i



−0.0000 − 0.0000i
0.0000 + 0.0000i
1.0000 + 0.0000i
0.0000 + 0.0000i



0.0000 − 0.0000i
0.1000 − 0.3000i
−0.0000 + 0.0000i
0.9000 + 0.3000i







(5) Time correlation coefficient = 0.85











{tilde over (Θ)}1 =
0.9341 + 0.0385i
0.1010 + 0.2000i
0.1363 + 0.1602i
0.1759 + 0.0248i



−0.0700 + 0.2129i
0.8726 − 0.0511i
−0.0394 − 0.3477i
0.2098 + 0.1391i



−0.0958 + 0.1873i
0.0966 − 0.3363i
0.8715 + 0.2348i
−0.0787 − 0.1118i



−0.1720 + 0.0444i
−0.2088 + 0.1406i
0.1118 − 0.0787i
0.8915 − 0.3028i


{tilde over (Θ)}2 =
0.9066 + 0.1882i
0.1796 + 0.1707i
0.2440 + 0.1328i
0.0542 + 0.0339i



−0.1707 + 0.1796i
0.9393 − 0.2014i
−0.0669 − 0.0075i
0.0976 − 0.0408i



−0.2665 + 0.0786i
−0.0420 − 0.0526i
0.8983 + 0.0333i
0.3270 + 0.0571i



0.0623 − 0.0143i
−0.0978 − 0.0401i
−0.3270 − 0.0571i
0.8883 + 0.2923i


{tilde over (Θ)}3 =
0.8824 + 0.2999i
0.1875 + 0.1338i
0.0605 + 0.0599i
0.1964 + 0.1805i



−0.2272 + 0.0379i
0.8808 − 0.2134i
0.1787 + 0.1963i
−0.0571 + 0.2280i



−0.0329 − 0.0785i
−0.1129 + 0.2402i
0.8577 − 0.3379i
−0.1528 + 0.2217i



−0.2419 + 0.1123i
0.0345 + 0.2325i
0.2217 + 0.1528i
0.8544 − 0.2666i


{tilde over (Θ)}4 =
0.9402 + 0.1846i
−0.0267 + 0.0077i
−0.1395 + 0.1192i
−0.1782 + 0.1257i



0.0267 − 0.0077i
0.9758 − 0.0208i
0.0784 + 0.0819i
−0.1192 − 0.1395i



0.1192 + 0.1395i
−0.0819 + 0.0784i
0.9758 − 0.0208i
−0.0077 − 0.0267i



0.1257 + 0.1782i
0.1395 − 0.1192i
−0.0077 − 0.0267i
0.9402 + 0.1846i


{tilde over (Θ)}5 =
0.8928 + 0.2846i
−0.1482 + 0.0375i
−0.1213 + 0.2579i
0.0913 + 0.0949i



0.1313 + 0.0782i
0.9596 + 0.2077i
−0.0799 − 0.0488i
−0.0545 + 0.0291i



−0.0134 + 0.2846i
0.0757 − 0.0551i
0.8936 + 0.2888i
−0.1275 − 0.1084i



−0.0528 + 0.1207i
0.0614 − 0.0060i
0.1084 − 0.1275i
0.9544 − 0.1998i


{tilde over (Θ)}6 =
0.8675 + 0.2988i
−0.2010 + 0.1717i
0.1003 + 0.2058i
−0.1676 + 0.0884i



0.1717 + 0.2010i
0.8142 + 0.3010i
−0.2740 − 0.1115i
0.1386 − 0.2641i



−0.0746 + 0.2164i
0.2726 − 0.1149i
0.8762 + 0.1535i
0.2622 − 0.0104i



0.1810 + 0.0561i
−0.0887 − 0.2848i
−0.2622 + 0.0104i
0.8538 + 0.2779i


{tilde over (Θ)}7 =
0.8573 + 0.2257i
−0.1676 + 0.3493i
−0.2151 − 0.0787i
−0.0231 + 0.1052i



0.1284 + 0.3655i
0.8405 − 0.1350i
0.1263 − 0.0258i
0.2213 + 0.2443i



0.1550 − 0.1686i
−0.1068 + 0.0722i
0.8688 − 0.3764i
−0.0841 + 0.1655i



−0.0616 + 0.0883i
−0.1410 + 0.2979i
0.1655 + 0.0841i
0.8654 − 0.3106i


{tilde over (Θ)}8 =
0.8559 − 0.0878i
−0.0092 − 0.1402i
−0.2963 − 0.0139i
−0.3876 − 0.0415i



−0.0092 − 0.1402i
0.9066 − 0.3353i
0.2051 − 0.0136i
−0.0489 + 0.0367i



0.2963 + 0.0139i
−0.2051 + 0.0136i
0.9294 + 0.0100i
−0.0643 + 0.0424i



0.3876 + 0.0415i
0.0489 − 0.0367i
−0.0643 + 0.0424i
0.8787 + 0.2574i


{tilde over (Θ)}9 =
0.8825 − 0.2527i
−0.1175 − 0.2395i
−0.1973 + 0.0629i
0.0295 − 0.2061i



0.0863 − 0.2524i
0.9370 − 0.0866i
0.1241 + 0.0443i
−0.1010 + 0.1260i



0.1336 + 0.1582i
−0.0977 − 0.0884i
0.8627 + 0.3779i
−0.1255 − 0.1919i



−0.0517 − 0.2017i
0.0778 + 0.1415i
0.1919 − 0.1255i
0.8952 − 0.2769i


{tilde over (Θ)}10 =
0.8691 − 0.2954i
−0.1678 − 0.1464i
0.1028 − 0.2120i
−0.2068 − 0.0972i



0.1464 − 0.1678i
0.9064 + 0.1296i
−0.2292 + 0.1074i
−0.1064 − 0.1915i



−0.0772 − 0.2226i
0.2380 + 0.0862i
0.8714 − 0.1478i
0.3144 + 0.0203i



0.2149 − 0.0775i
0.0601 − 0.2107i
−0.3144 − 0.0203i
0.8549 + 0.2640i


{tilde over (Θ)}11 =
0.8340 − 0.2790i
−0.2492 − 0.1516i
−0.0781 − 0.2825i
0.0809 − 0.2215i



0.2834 − 0.0691i
0.8444 + 0.3743i
−0.2174 + 0.0813i
0.0717 − 0.0530i



0.0360 − 0.2908i
0.1583 + 0.1697i
0.8564 − 0.2666i
−0.1265 + 0.1993i



−0.1737 − 0.1595i
−0.0459 + 0.0764i
0.1993 + 0.1265i
0.8624 − 0.3701i


{tilde over (Θ)}12 =
0.9257 − 0.2621i
0.1257 + 0.0242i
−0.0905 − 0.0973i
−0.1150 − 0.1648i



−0.1257 − 0.0242i
0.9189 − 0.0744i
0.1796 − 0.1674i
0.2323 − 0.1396i



0.0973 − 0.0905i
−0.1674 − 0.1796i
0.9565 − 0.0072i
−0.0618 + 0.0585i



0.1648 − 0.1150i
−0.1396 − 0.2323i
−0.0618 + 0.0585i
0.8637 + 0.3646i


{tilde over (Θ)}13 =
0.8828 − 0.3013i
0.2078 − 0.1404i
0.0625 − 0.0595i
0.1766 − 0.1684i



−0.2462 − 0.0477i
0.8277 − 0.2864i
0.1942 − 0.2195i
0.0726 + 0.2806i



−0.0350 + 0.0789i
−0.1285 − 0.2634i
0.8573 + 0.3358i
−0.1329 − 0.2032i



−0.2232 − 0.0987i
−0.0403 + 0.2870i
0.2032 − 0.1329i
0.8525 − 0.2660i


{tilde over (Θ)}14 =
0.9108 − 0.1712i
0.1237 − 0.1404i
0.2787 − 0.1260i
0.0168 − 0.1110i



−0.1404 − 0.1237i
0.9221 − 0.2312i
−0.0433 + 0.2025i
−0.1357 + 0.0004i



−0.2862 − 0.1080i
0.1126 + 0.1738i
0.8308 − 0.1386i
0.3917 + 0.0268i



0.0904 − 0.0666i
0.0957 − 0.0962i
−0.3917 − 0.0268i
0.8670 + 0.2513i


{tilde over (Θ)}15 =
0.9202 − 0.0539i
0.1248 − 0.1626i
0.1330 − 0.1267i
0.2648 − 0.0661i



−0.0267 − 0.2032i
0.9201 + 0.1347i
−0.0686 + 0.2650i
−0.1340 + 0.0164i



−0.0662 − 0.1713i
0.0380 + 0.2711i
0.8549 − 0.2832i
−0.1632 + 0.2315i



−0.2700 − 0.0403i
0.0664 + 0.1175i
0.2315 + 0.1632i
0.8558 − 0.3076i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
−0.0000 − 0.0000i
−0.0000 − 0.0000i
0.0000 − 0.0000i



0.0000 − 0.0000i
0.9250 + 0.2634i
0.0000 + 0.0000i
0.0750 − 0.2634i



0.0000 − 0.0000i
−0.0000 + 0.0000i
1.0000 + 0.0000i
−0.0000 + 0.0000i



0.0000 − 0.0000i
0.0750 − 0.2634i
0.0000 + 0.0000i
0.9250 + 0.2634i







(6) Time correlation coefficient = 0.9











{tilde over (Θ)}1 =
0.9567 + 0.0417i
0.0684 + 0.1542i
0.1036 + 0.1320i
0.1613 + 0.0201i



−0.0607 + 0.1574i
0.9322 + 0.0029i
−0.0257 − 0.2653i
0.1414 + 0.1076i



−0.0823 + 0.1462i
0.0777 − 0.2549i
0.9183 + 0.2037i
−0.0831 − 0.0956i



−0.1567 + 0.0431i
−0.1535 + 0.0894i
0.0956 − 0.0831i
0.9337 − 0.2327i


{tilde over (Θ)}2 =
0.9396 + 0.1527i
0.1496 + 0.1411i
0.2002 + 0.0990i
0.0269 + 0.0316i



−0.1411 + 0.1496i
0.9601 − 0.1555i
−0.0529 − 0.0251i
0.0827 − 0.0380i



−0.2116 + 0.0715i
−0.0196 − 0.0552i
0.9374 + 0.0301i
0.2570 + 0.0326i



0.0414 + 0.0033i
−0.0853 − 0.0316i
−0.2570 − 0.0326i
0.9309 + 0.2374i


{tilde over (Θ)}3 =
0.9270 + 0.2411i
0.1542 + 0.0992i
0.0476 + 0.0346i
0.1618 + 0.1392i



−0.1791 + 0.0389i
0.9221 − 0.1792i
0.1375 + 0.1618i
−0.0412 + 0.1927i



−0.0308 − 0.0502i
−0.0969 + 0.1890i
0.9140 − 0.2683i
−0.1277 + 0.1667i



−0.1905 + 0.0962i
0.0356 + 0.1938i
0.1667 + 0.1277i
0.9076 − 0.2188i


{tilde over (Θ)}4 =
0.9604 + 0.1704i
−0.0114 + 0.0036i
−0.1093 + 0.0930i
−0.1359 + 0.0969i



0.0114 − 0.0036i
0.9839 − 0.0091i
0.0741 + 0.0750i
−0.0930 − 0.1093i



0.0930 + 0.1093i
−0.0750 + 0.0741i
0.9839 − 0.0091i
−0.0036 − 0.0114i



0.0969 + 0.1359i
0.1093 − 0.0930i
−0.0036 − 0.0114i
0.9604 + 0.1704i


{tilde over (Θ)}5 =
0.9301 + 0.2281i
−0.1266 + 0.0364i
−0.0870 + 0.2160i
0.0718 + 0.0782i



0.1153 + 0.0638i
0.9717 + 0.1710i
−0.0708 − 0.0456i
−0.0410 + 0.0214i



0.0023 + 0.2329i
0.0692 − 0.0479i
0.9301 + 0.2341i
−0.1037 − 0.0895i



−0.0448 + 0.0963i
0.0460 − 0.0041i
0.0895 − 0.1037i
0.9681 − 0.1749i


{tilde over (Θ)}6 =
0.9239 + 0.2135i
−0.1679 + 0.1484i
0.0788 + 0.1302i
−0.1501 + 0.0700i



0.1484 + 0.1679i
0.8870 + 0.2301i
−0.2150 − 0.0813i
0.1032 − 0.2157i



−0.0364 + 0.1478i
0.2095 − 0.0946i
0.9337 + 0.0799i
0.2139 − 0.0078i



0.1556 + 0.0567i
−0.0796 − 0.2255i
−0.2139 + 0.0078i
0.9046 + 0.2265i


{tilde over (Θ)}7 =
0.9319 + 0.1518i
−0.1110 + 0.2491i
−0.1561 − 0.0682i
−0.0041 + 0.0721i



0.0976 + 0.2546i
0.9190 − 0.1100i
0.0859 − 0.0053i
0.1625 + 0.1876i



0.1227 − 0.1181i
−0.0773 + 0.0378i
0.9244 − 0.2914i
−0.0789 + 0.1342i



−0.0313 + 0.0650i
−0.1111 + 0.2219i
0.1342 + 0.0789i
0.9192 − 0.2529i


{tilde over (Θ)}8 =
0.9222 − 0.0386i
0.0068 − 0.0794i
−0.2353 − 0.0095i
−0.2918 − 0.0321i



0.0068 − 0.0794i
0.9475 − 0.2510i
0.1789 − 0.0132i
−0.0229 + 0.0158i



0.2353 + 0.0095i
−0.1789 + 0.0132i
0.9538 + 0.0073i
−0.0384 + 0.0335i



0.2918 + 0.0321i
0.0229 − 0.0158i
−0.0384 + 0.0335i
0.9286 + 0.2197i


{tilde over (Θ)}9 =
0.9446 − 0.1610i
−0.0810 − 0.1798i
−0.1478 + 0.0594i
0.0299 − 0.1293i



0.0699 − 0.1844i
0.9625 − 0.0688i
0.0910 + 0.0229i
−0.0815 + 0.1209i



0.1114 + 0.1138i
−0.0753 − 0.0560i
0.9201 + 0.2943i
−0.1084 − 0.1446i



−0.0218 − 0.1309i
0.0805 + 0.1215i
0.1446 − 0.1084i
0.9396 − 0.2135i


{tilde over (Θ)}10 =
0.9250 − 0.2107i
−0.1449 − 0.1273i
0.0807 − 0.1338i
−0.1800 − 0.0778i



0.1273 − 0.1449i
0.9360 + 0.1128i
−0.1854 + 0.0814i
−0.0832 − 0.1614i



−0.0375 − 0.1517i
0.1886 + 0.0735i
0.9310 − 0.0770i
0.2485 + 0.0158i



0.1823 − 0.0723i
0.0553 − 0.1730i
−0.2485 − 0.0158i
0.9047 + 0.2194i


{tilde over (Θ)}11 =
0.9006 − 0.2267i
−0.1948 − 0.1068i
−0.0646 − 0.2283i
0.0718 − 0.1632i



0.2133 − 0.0622i
0.9135 + 0.2858i
−0.1600 + 0.0722i
0.0549 − 0.0275i



0.0277 − 0.2357i
0.1279 + 0.1202i
0.9104 − 0.2221i
−0.1069 + 0.1526i



−0.1234 − 0.1288i
−0.0402 + 0.0464i
0.1526 + 0.1069i
0.9197 − 0.2895i


{tilde over (Θ)}12 =
0.9550 − 0.2020i
0.0700 + 0.0209i
−0.0886 − 0.0854i
−0.1024 − 0.1278i



−0.0700 − 0.0209i
0.9582 − 0.0280i
0.1337 − 0.1239i
0.1703 − 0.1161i



0.0854 − 0.0886i
−0.1239 − 0.1337i
0.9739 − 0.0005i
−0.0366 + 0.0425i



0.1278 − 0.1024i
−0.1161 − 0.1703i
−0.0366 + 0.0425i
0.9197 + 0.2859i


{tilde over (Θ)}13 =
0.9274 − 0.2418i
0.1685 − 0.1020i
0.0488 − 0.0343i
0.1475 − 0.1320i



−0.1913 − 0.0470i
0.8936 − 0.2315i
0.1478 − 0.1782i
0.0584 + 0.2282i



−0.0320 + 0.0504i
−0.1081 − 0.2047i
0.9136 + 0.2671i
−0.1133 − 0.1548i



−0.1784 − 0.0857i
−0.0333 + 0.2332i
0.1548 − 0.1133i
0.9054 − 0.2207i


{tilde over (Θ)}14 =
0.9423 − 0.1401i
0.1080 − 0.1272i
0.2190 − 0.0917i
−0.0019 − 0.0903i



−0.1272 − 0.1080i
0.9538 − 0.1788i
−0.0429 + 0.1382i
−0.0972 − 0.0097i



−0.2197 − 0.0900i
0.0674 + 0.1280i
0.9094 − 0.0778i
0.2982 + 0.0256i



0.0625 − 0.0652i
0.0756 − 0.0619i
−0.2982 − 0.0256i
0.9202 + 0.2141i


{tilde over (Θ)}15 =
0.9469 − 0.0481i
0.0945 − 0.1362i
0.1041 − 0.1137i
0.2171 − 0.0514i



−0.0295 − 0.1632i
0.9480 + 0.1088i
−0.0542 + 0.2172i
−0.1063 + 0.0254i



−0.0652 − 0.1397i
0.0330 + 0.2214i
0.9082 − 0.2293i
−0.1367 + 0.1734i



−0.2203 − 0.0356i
0.0641 + 0.0885i
0.1734 + 0.1367i
0.9103 − 0.2466i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
−0.0000 − 0.0000i
0.0000 − 0.0000i
0.0000 − 0.0000i



0 − 0.0000i
0.9500 + 0.2179i
0.0000 + 0.0000i
0.0500 − 0.2179i



0 − 0.0000i
0.0000 + 0.0000i
1.0000 + 0.0000i
−0.0000 + 0.0000i



−0.0000 − 0.0000i
0.0500 − 0.2179i
0.0000 + 0.0000i
0.9500 + 0.2179i







(7) Time correlation coefficient = 0.95











{tilde over (Θ)}1 =
0.9774 + 0.0378i
0.0428 + 0.1040i
0.0703 + 0.0960i
0.1267 + 0.0174i



−0.0433 + 0.1038i
0.9715 + 0.0287i
− 0.0195 − 0.1746i
0.0851 + 0.0679i



−0.0618 + 0.1017i
0.0488 − 0.1688i
0.9603 + 0.1510i
−0.0692 − 0.0715i



−0.1237 + 0.0325i
− 0.0953 + 0.0526i
0.0715 − 0.0692i
0.9679 − 0.1580i


{tilde over (Θ)}2 =
0.9705 + 0.1072i
0.1078 + 0.1019i
0.1407 + 0.0631i
0.0045 + 0.0292i



−0.1019 + 0.1078i
0.9798 − 0.1081i
−0.0338 − 0.0309i
0.0585 − 0.0282i



−0.1441 + 0.0548i
− 0.0021 − 0.0457i
0.9713 + 0.0172i
0.1737 + 0.0129i



0.0238 + 0.0175i
−0.0613 − 0.0214i
−0.1737 − 0.0129i
0.9683 + 0.1642i


{tilde over (Θ)}3 =
0.9669 + 0.1648i
0.1083 + 0.0611i
0.0323 + 0.0131i
0.1140 + 0.0905i



−0.1198 + 0.0334i
0.9619 − 0.1319i
0.0895 + 0.1140i
−0.0264 + 0.1418i



−0.0248 − 0.0245i
−0.0710 + 0.1263i
0.9624 − 0.1805i
− 0.0895 + 0.1049i



−0.1272 + 0.0707i
0.0299 + 0.1411i
0.1049 + 0.0895i
0.9565 − 0.1554i


{tilde over (Θ)}4 =
0.9794 + 0.1331i
−0.0034 + 0.0013i
−0.0760 + 0.0666i
−0.0903 + 0.0691i



0.0034 − 0.0013i
0.9913 − 0.0028i
0.0595 + 0.0596i
−0.0666 − 0.0760i



0.0666 + 0.0760i
−0.0596 + 0.0595i
0.9913 − 0.0028i
−0.0013 − 0.0034i



0.0691 + 0.0903i
0.0760 − 0.0666i
−0.0013 − 0.0034i
0.9794 + 0.1331i


{tilde over (Θ)}5 =
0.9660 + 0.1576i
−0.0934 + 0.0306i
−0.0508 + 0.1548i
0.0496 + 0.0585i



0.0876 + 0.0444i
0.9845 + 0.1253i
−0.0552 − 0.0370i
−0.0282 + 0.0130i



0.0123 + 0.1624i
0.0553 − 0.0368i
0.9656 + 0.1638i
−0.0742 − 0.0662i



−0.0351 + 0.0682i
0.0310 − 0.0012i
0.0662 − 0.0742i
0.9826 − 0.1330i


{tilde over (Θ)}6 =
0.9658 + 0.1329i
−0.1178 + 0.1097i
0.0472 + 0.0730i
−0.1166 + 0.0496i



0.1097 + 0.1178i
0.9496 + 0.1469i
−0.1458 − 0.0542i
0.0652 − 0.1494i



−0.0183 + 0.0850i
0.1414 − 0.0648i
0.9716 + 0.0302i
0.1527 − 0.0038i



0.1175 + 0.0473i
−0.0596 − 0.1517i
−0.1527 + 0.0038i
0.9533 + 0.1593i


{tilde over (Θ)}7 =
0.9765 + 0.0860i
−0.0629 + 0.1474i
−0.0954 − 0.0494i
0.0034 + 0.0423i



0.0597 + 0.1487i
0.9703 − 0.0737i
0.0476 + 0.0032i
0.0995 + 0.1236i



0.0821 − 0.0693i
−0.0452 + 0.0152i
0.9681 − 0.1906i
−0.0644 + 0.0917i



−0.0130 + 0.0404i
−0.0761 + 0.1392i
0.0917 + 0.0644i
0.9643 − 0.1749i


{tilde over (Θ)}8 =
0.9678 − 0.0104i
0.0076 − 0.0333i
−0.1621 − 0.0037i
−0.1885 − 0.0160i



0.0076 − 0.0333i
0.9761 − 0.1656i
0.1357 − 0.0085i
−0.0069 + 0.0046i



0.1621 + 0.0037i
−0.1357 + 0.0085i
0.9770 + 0.0034i
−0.0169 + 0.0195i



0.1885 + 0.0160i
0.0069 − 0.0046i
−0.0169 + 0.0195i
0.9687 + 0.1586i


{tilde over (Θ)}9 =
0.9802 − 0.0878i
−0.0504 − 0.1161i
−0.0931 + 0.0463i
0.0188 − 0.0664i



0.0464 − 0.1177i
0.9827 − 0.0501i
0.0540 + 0.0071i
−0.0596 + 0.0958i



0.0784 + 0.0683i
−0.0472 − 0.0272i
0.9666 + 0.1925i
−0.0792 − 0.0927i



−0.0080 − 0.0685i
0.0657 + 0.0917i
0.0927 − 0.0792i
0.9726 − 0.1473i


{tilde over (Θ)}10 =
0.9661 − 0.1316i
−0.1066 − 0.0970i
0.0481 − 0.0743i
−0.1330 − 0.0548i



0.0970 − 0.1066i
0.9664 + 0.0872i
−0.1309 + 0.0552i
−0.0566 − 0.1195i



−0.0186 − 0.0865i
0.1316 + 0.0535i
0.9706 − 0.0291i
0.1700 + 0.0081i



0.1328 − 0.0553i
0.0445 − 0.1246i
−0.1700 − 0.0081i
0.9530 + 0.1571i


{tilde over (Θ)}11 =
0.9567 − 0.1574i
−0.1273 − 0.0627i
−0.0433 − 0.1588i
0.0524 − 0.1000i



0.1343 − 0.0456i
0.9657 + 0.1828i
−0.0985 + 0.0525i
0.0357 − 0.0086i



0.0207 − 0.1633i
0.0862 + 0.0709i
0.9588 − 0.1596i
−0.0775 + 0.0984i



−0.0723 − 0.0867i
−0.0297 + 0.0216i
0.0984 + 0.0775i
0.9664 − 0.1907i


{tilde over (Θ)}12 =
0.9781 − 0.1416i
0.0301 + 0.0113i
−0.0701 − 0.0649i
−0.0764 − 0.0849i



−0.0301 − 0.0113i
0.9833 − 0.0066i
0.0864 − 0.0825i
0.1049 − 0.0828i



0.0649 − 0.0701i
−0.0825 − 0.0864i
0.9878 + 0.0009i
−0.0159 + 0.0226i



0.0849 − 0.0764i
−0.0828 − 0.1049i
−0.0159 + 0.0226i
0.9658 + 0.1886i


{tilde over (Θ)}13 =
0.9672 − 0.1650i
0.1156 − 0.0615i
0.0328 − 0.0130i
0.1064 − 0.0876i



−0.1252 − 0.0383i
0.9521 − 0.1597i
0.0944 − 0.1225i
0.0392 + 0.1593i



−0.0253 + 0.0246i
−0.0771 − 0.1341i
0.9622 + 0.1801i
−0.0819 − 0.0994i



−0.1217 − 0.0648i
−0.0247 + 0.1622i
0.0994 − 0.0819i
0.9552 − 0.1582i


{tilde over (Θ)}14 =
0.9714 − 0.1011i
0.0849 − 0.0985i
0.1470 − 0.0596i
−0.0115 − 0.0628i



−0.0985 − 0.0849i
0.9786 − 0.1196i
−0.0308 + 0.0794i
−0.0607 − 0.0128i



−0.1461 − 0.0619i
0.0344 + 0.0779i
0.9640 − 0.0304i
0.1928 + 0.0150i



0.0363 − 0.0525i
0.0520 − 0.0338i
−0.1928 − 0.0150i
0.9645 + 0.1561i


{tilde over (Θ)}15 =
0.9733 − 0.0393i
0.0598 − 0.0987i
0.0711 − 0.0896i
0.1534 − 0.0344i



−0.0275 − 0.1121i
0.9748 + 0.0743i
−0.0361 + 0.1534i
−0.0732 + 0.0282i



−0.0555 − 0.1000i
0.0254 + 0.1556i
0.9569 − 0.1597i
−0.0955 + 0.1083i



−0.1549 − 0.0269i
0.0541 + 0.0569i
0.1083 + 0.0955i
0.9590 − 0.1688i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
−0.0000 − 0.0000i
0.0000 − 0.0000i
0.0000 − 0.0000i



0.0000 − 0.0000i
0.9750 + 0.1561i
−0.0000 + 0.0000i
0.0250 − 0.1561i



−0.0000 − 0.0000i
0.0000 + 0.0000i
1.0000 − 0.0000i
−0.0000 + 0.0000i



−0.0000 − 0.0000i
0.0250 − 0.1561i
0.0000 + 0.0000i
0.9750 + 0.1561i









2) Where the number of feedback bits B=4, {θ}={Θ1, . . . , Θ2B} includes diagonal unitary matrices, and the second scheme, that is, the above Equation 16 is used, examples of the codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} that is updated according to the time correlation coefficient may follow as:














(1) Time correlation coefficient = 0











{tilde over (Θ)}1 =
0.9239 + 0.3827i
0
0
0



0
0.3827 + 0.9239i
0
0



0
0
0.0000 + 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.7071 + 0.7071i
0
0
0



0
−0.7071 + 0.7071i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.3827 + 0.9239i
0
0
0



0
−0.9239 − 0.3827i
0
0



0
0
−0.0000 − 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}4 =
−0.0000 + 1.0000i
0
0
0



0
−0.0000 − 1.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
−0.3827 + 0.9239i
0
0
0



0
0.9239 − 0.3827i
0
0



0
0
0.0000 + 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}6 =
−0.7071 + 0.7071i
0
0
0



0
0.7071 + 0.7071i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
−0.9239 + 0.3827i
0
0
0



0
−0.3827 + 0.9239i
0
0



0
0
−0.0000 − 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}8 =
−1.0000 − 0.0000i
0
0
0



0
−1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
−0.9239 − 0.3827i
0
0
0



0
−0.3827 − 0.9239i
0
0



0
0
0.0000 + 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}10 =
−0.7071 − 0.7071i
0
0
0



0
0.7071 − 0.7071i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
−0.3827 − 0.9239i
0
0
0



0
0.9239 + 0.3827i
0
0



0
0
−0.0000 − 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.0000 − 1.0000i
0
0
0



0
0.0000 + 1.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.3827 − 0.9239i
0
0
0



0
−0.9239 + 0.3827i
0
0



0
0
0.0000 + 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.7071 − 0.7071i
0
0
0



0
−0.7071 − 0.7071i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9239 − 0.3827i
0
0
0



0
0.3827 − 0.9239i
0
0



0
0
−0.0000 − 1.0000i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(2) Time correlation coefficient = 0.7











{tilde over (Θ)}1 =
0.9804 + 0.1970i
0
0
0



0
0.8277 + 0.5611i
0
0



0
0
0.7000 + 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9223 + 0.3865i
0
0
0



0
0.3603 + 0.9328i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.8277 + 0.5611i
0
0
0



0
0.1456 − 0.9893i
0
0



0
0
0.7000 − 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.7000 + 0.7141i
0
0
0



0
0.7000 − 0.7141i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.5431 + 0.8397i
0
0
0



0
0.9804 − 0.1970i
0
0



0
0
0.7000 + 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.3603 + 0.9328i
0
0
0



0
0.9223 + 0.3865i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.1456 + 0.9893i
0
0
0



0
0.5431 + 0.8397i
0
0



0
0
0.7000 − 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}8 =
−1.0000 − 0.0000i
0
0
0



0
−1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.1456 − 0.9893i
0
0
0



0
0.5431 − 0.8397i
0
0



0
0
0.7000 + 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.3603 − 0.9328i
0
0
0



0
0.9223 − 0.3865i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.5431 − 0.8397i
0
0
0



0
0.9804 + 0.1970i
0
0



0
0
0.7000 − 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.7000 − 0.7141i
0
0
0



0
0.7000 + 0.7141i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.8277 − 0.5611i
0
0
0



0
0.1456 + 0.9893i
0
0



0
0
0.7000 + 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9223 − 0.3865i
0
0
0



0
0.3603 − 0.9328i
0
0



0
0
−1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9804 − 0.1970i
0
0
0



0
0.8277 − 0.5611i
0
0



0
0
0.7000 − 0.7141i
0



0
0
0
−1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(3) Time correlation coefficient = 0.75











{tilde over (Θ)}1 =
0.9831 + 0.1828i
0
0
0



0
0.8540 + 0.5203i
0
0



0
0
0.7500 + 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9335 + 0.3586i
0
0
0



0
0.5167 + 0.8561i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.8540 + 0.5203i
0
0
0



0
0.4811 − 0.8767i
0
0



0
0
0.7500 − 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.7500 + 0.6614i
0
0
0



0
0.7500 − 0.6614i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.6309 + 0.7759i
0
0
0



0
0.9831 − 0.1828i
0
0



0
0
0.7500 + 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.5167 + 0.8561i
0
0
0



0
0.9335 + 0.3586i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.4811 + 0.8767i
0
0
0



0
0.6309 + 0.7759i
0
0



0
0
0.7500 − 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}8 =
1.0000 − 0.0000i
0
0
0



0
1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.4811 − 0.8767i
0
0
0



0
0.6309 − 0.7759i
0
0



0
0
0.7500 + 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.5167 − 0.8561i
0
0
0



0
0.9335 − 0.3586i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.6309 − 0.7759i
0
0
0



0
0.9831 + 0.1828i
0
0



0
0
0.7500 − 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.7500 − 0.6614i
0
0
0



0
0.7500 + 0.6614i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.8540 − 0.5203i
0
0
0



0
0.4811 + 0.8767i
0
0



0
0
0.7500 + 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9335 − 0.3586i
0
0
0



0
0.5167 − 0.8561i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9831 − 0.1828i
0
0
0



0
0.8540 − 0.5203i
0
0



0
0
0.7500 − 0.6614i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(4) Time correlation coefficient = 0.8











{tilde over (Θ)}1 =
0.9859 + 0.1672i
0
0
0



0
0.8805 + 0.4740i
0
0



0
0
0.8000 + 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9449 + 0.3274i
0
0
0



0
0.6630 + 0.7486i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.8805 + 0.4740i
0
0
0



0
0.7306 − 0.6828i
0
0



0
0
0.8000 − 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.8000 + 0.6000i
0
0
0



0
0.8000 − 0.6000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.7171 + 0.6969i
0
0
0



0
0.9859 − 0.1672i
0
0



0
0
0.8000 + 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.6630 + 0.7486i
0
0
0



0
0.9449 + 0.3274i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.7306 + 0.6828i
0
0
0



0
0.7171 + 0.6969i
0
0



0
0
0.8000 − 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}8 =
1.0000 − 0.0000i
0
0
0



0
1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.7306 − 0.6828i
0
0
0



0
0.7171 − 0.6969i
0
0



0
0
0.8000 + 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.6630 − 0.7486i
0
0
0



0
0.9449 − 0.3274i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.7171 − 0.6969i
0
0
0



0
0.9859 + 0.1672i
0
0



0
0
0.8000 − 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.8000 − 0.6000i
0
0
0



0
0.8000 + 0.6000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.8805 − 0.4740i
0
0
0



0
0.7306 + 0.6828i
0
0



0
0
0.8000 + 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9449 − 0.3274i
0
0
0



0
0.6630 − 0.7486i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9859 − 0.1672i
0
0
0



0
0.8805 − 0.4740i
0
0



0
0
0.8000 − 0.6000i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(5) Time correlation coefficient = 0.85











{tilde over (Θ)}1 =
0.9888 + 0.1491i
0
0
0



0
0.9075 + 0.4200i
0
0



0
0
0.8500 + 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9566 + 0.2915i
0
0
0



0
0.7885 + 0.6151i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.9075 + 0.4200i
0
0
0



0
0.8744 − 0.4852i
0
0



0
0
0.8500 − 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.8500 + 0.5268i
0
0
0



0
0.8500 − 0.5268i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.7998 + 0.6003i
0
0
0



0
0.9888 − 0.1491i
0
0



0
0
0.8500 + 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.7885 + 0.6151i
0
0
0



0
0.9566 + 0.2915i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.8744 + 0.4852i
0
0
0



0
0.7998 + 0.6003i
0
0



0
0
0.8500 − 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}8 =
1.0000 − 0.0000i
0
0
0



0
1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.8744 − 0.4852i
0
0
0



0
0.7998 − 0.6003i
0
0



0
0
0.8500 + 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.7885 − 0.6151i
0
0
0



0
0.9566 − 0.2915i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.7998 − 0.6003i
0
0
0



0
0.9888 + 0.1491i
0
0



0
0
0.8500 − 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.8500 − 0.5268i
0
0
0



0
0.8500 + 0.5268i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.9075 − 0.4200i
0
0
0



0
0.8744 + 0.4852i
0
0



0
0
0.8500 + 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9566 − 0.2915i
0
0
0



0
0.7885 − 0.6151i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9888 − 0.1491i
0
0
0



0
0.9075 − 0.4200i
0
0



0
0
0.8500 − 0.5268i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(6) Time correlation coefficient = 0.9











{tilde over (Θ)}1 =
0.9919 + 0.1270i
0
0
0



0
0.9356 + 0.3532i
0
0



0
0
0.9000 + 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9690 + 0.2472i
0
0
0



0
0.8869 + 0.4619i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.9356 + 0.3532i
0
0
0



0
0.9481 − 0.3180i
0
0



0
0
0.9000 − 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.9000 + 0.4359i
0
0
0



0
0.9000 − 0.4359i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.8765 + 0.4814i
0
0
0



0
0.9919 − 0.1270i
0
0



0
0
0.9000 + 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.8869 + 0.4619i
0
0
0



0
0.9690 + 0.2472i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.9481 + 0.3180i
0
0
0



0
0.8765 + 0.4814i
0
0



0
0
0.9000 − 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}8 =
1.0000 − 0.0000i
0
0
0



0
1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.9481 − 0.3180i
0
0
0



0
0.8765 − 0.4814i
0
0



0
0
0.9000 + 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.8869 − 0.4619i
0
0
0



0
0.9690 − 0.2472i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.8765 − 0.4814i
0
0
0



0
0.9919 + 0.1270i
0
0



0
0
0.9000 − 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.9000 − 0.4359i
0
0
0



0
0.9000 + 0.4359i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.9356 − 0.3532i
0
0
0



0
0.9481 + 0.3180i
0
0



0
0
0.9000 + 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9690 − 0.2472i
0
0
0



0
0.8869 − 0.4619i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9919 − 0.1270i
0
0
0



0
0.9356 − 0.3532i
0
0



0
0
0.9000 − 0.4359i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i







(7) Time correlation coefficient = 0.95











{tilde over (Θ)}1 =
0.9954 + 0.0960i
0
0
0



0
0.9655 + 0.2604i
0
0



0
0
0.9500 + 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}2 =
0.9827 + 0.1853i
0
0
0



0
0.9571 + 0.2898i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}3 =
0.9655 + 0.2604i
0
0
0



0
0.9841 − 0.1778i
0
0



0
0
0.9500 − 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}4 =
0.9500 + 0.3122i
0
0
0



0
0.9500 − 0.3122i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}5 =
0.9446 + 0.3281i
0
0
0



0
0.9954 − 0.0960i
0
0



0
0
0.9500 + 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}6 =
0.9571 + 0.2898i
0
0
0



0
0.9827 + 0.1853i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}7 =
0.9841 + 0.1778i
0
0
0



0
0.9446 + 0.3281i
0
0



0
0
0.9500 − 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}8 =
1.0000 − 0.0000i
0
0
0



0
1.0000 + 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}9 =
0.9841 − 0.1778i
0
0
0



0
0.9446 − 0.3281i
0
0



0
0
0.9500 + 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}10 =
0.9571 − 0.2898i
0
0
0



0
0.9827 − 0.1853i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}11 =
0.9446 − 0.3281i
0
0
0



0
0.9954 + 0.0960i
0
0



0
0
0.9500 − 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}12 =
0.9500 − 0.3122i
0
0
0



0
0.9500 + 0.3122i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}13 =
0.9655 − 0.2604i
0
0
0



0
0.9841 + 0.1778i
0
0



0
0
0.9500 + 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}14 =
0.9827 − 0.1853i
0
0
0



0
0.9571 − 0.2898i
0
0



0
0
1.0000 + 0.0000i
0



0
0
0
1.0000 − 0.0000i


{tilde over (Θ)}15 =
0.9954 − 0.0960i
0
0
0



0
0.9655 − 0.2604i
0
0



0
0
0.9500 − 0.3122i
0



0
0
0
1.0000 + 0.0000i


{tilde over (Θ)}16 =
1.0000 + 0.0000i
0
0
0



0
1.0000 − 0.0000i
0
0



0
0
1.0000 − 0.0000i
0



0
0
0
1.0000 − 0.0000i









3) Where Nt=2, the number of feedback bits B=3, {θ}={Θ1, . . . , Θ2B} includes full unitary matrices, and the first scheme, that is, the above Equation 14 or the above Equation 15 is used, examples of the codebook {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} that is updated according to the time correlation coefficient may follow as:














(1) Time correlation coefficient = 0









{tilde over (Θ)}1 =
−0.0136 + 0.6753i
0.7368 − 0.0288i



−0.7276 + 0.1198i
−0.1489 − 0.6588i


{tilde over (Θ)}2 =
−0.6021 + 0.6871i
0.0081 + 0.4065i



−0.0729 + 0.4000i
−0.4847 − 0.7744i


{tilde over (Θ)}3 =
−0.0877 − 0.9095i
0.3790 + 0.1464i



−0.3929 − 0.1035i
−0.6041 + 0.6856i


{tilde over (Θ)}4 =
−0.7424 + 0.3706i
0.2022 − 0.5202i



0.3856 − 0.4035i
0.0213 − 0.8295i


{tilde over (Θ)}5 =
−0.2839 + 0.0675i
−0.7744 + 0.5614i



0.6104 + 0.7363i
−0.2582 − 0.1359i


{tilde over (Θ)}6 =
−0.4786 + 0.1916i
0.8547 + 0.0614i



−0.0827 + 0.8529i
−0.2692 + 0.4397i


{tilde over (Θ)}7 =
−0.1309 − 0.8846i
−0.4081 − 0.1838i



0.1516 + 0.4211i
−0.8718 − 0.1992i


{tilde over (Θ)}8 =
−0.0707 + 0.9650i
−0.0601 − 0.2455i



−0.1422 + 0.2090i
−0.2711 + 0.9288i







(2) Time correlation coefficient = 0.7









{tilde over (Θ)}1 =
0.6945 + 0.4645i
0.5495 + 0.0057i



−0.5460 + 0.0624i
0.6429 − 0.5336i


{tilde over (Θ)}2 =
0.4276 + 0.7949i
0.0251 + 0.4298i



−0.0609 + 0.4262i
0.4926 − 0.7563i


{tilde over (Θ)}3 =
0.6647 − 0.6524i
0.3554 + 0.0784i



−0.3619 − 0.0386i
0.4228 + 0.8299i


{tilde over (Θ)}4 =
0.2975 + 0.7951i
0.0529 − 0.5259i



0.2498 − 0.4658i
0.6908 − 0.4934i


{tilde over (Θ)}5 =
0.5853 + 0.1239i
−0.6188 + 0.5091i



0.5481 + 0.5845i
0.5964 − 0.0475i


{tilde over (Θ)}6 =
0.3849 − 0.3268i
0.7954 + 0.3352i



−0.3550 + 0.7868i
0.5044 − 0.0223i


{tilde over (Θ)}7 =
0.5859 − 0.7498i
−0.0341 − 0.3057i



−0.1961 + 0.2370i
−0.0789 − 0.9482i


{tilde over (Θ)}8 =
0.6661 + 0.7343i
−0.1167 − 0.0590i



0.0342 + 0.1262i
0.5844 + 0.8009i







(3) Time correlation coefficient = 0.75









{tilde over (Θ)}1 =
0.7458 + 0.4303i
0.5085 + 0.0094i



−0.5057 + 0.0537i
0.7054 − 0.4937i


{tilde over (Θ)}2 =
0.5543 + 0.7317i
0.0282 + 0.3957i



−0.0511 + 0.3934i
0.5959 − 0.6982i


{tilde over (Θ)}3 =
0.7233 − 0.6044i
0.3287 + 0.0596i



−0.3332 − 0.0229i
0.5528 + 0.7635i


{tilde over (Θ)}4 =
0.5082 + 0.7201i
0.0038 − 0.4725i



0.1840 − 0.4352i
0.7523 − 0.4592i


{tilde over (Θ)}5 =
0.6624 + 0.1139i
−0.5658 + 0.4776i



0.5132 + 0.5337i
0.6707 − 0.0446i


{tilde over (Θ)}6 =
0.6176 − 0.2742i
0.6233 + 0.3935i



−0.4090 + 0.6132i
0.6758 − 0.0011i


{tilde over (Θ)}7 =
0.7615 − 0.6455i
−0.0299 + 0.0507i



0.0573 − 0.0137i
0.8405 − 0.5387i


{tilde over (Θ)}8 =
0.7257 + 0.6795i
−0.1001 − 0.0397i



0.0375 + 0.1009i
0.6637 + 0.7402i







(4) Time correlation coefficient = 0.8









{tilde over (Θ)}1 =
0.7970 + 0.3909i
0.4602 + 0.0124i



−0.4582 + 0.0447i
0.7676 − 0.4459i


{tilde over (Θ)}2 =
0.6756 + 0.6474i
0.0295 + 0.3516i



−0.0410 + 0.3504i
0.6965 − 0.6248i


{tilde over (Θ)}3 =
0.7814 − 0.5487i
0.2943 + 0.0417i



−0.2971 − 0.0089i
0.6767 + 0.6736i


{tilde over (Θ)}4 =
0.6909 + 0.5994i
−0.0321 − 0.4029i



0.1242 − 0.3846i
0.8105 − 0.4238i


{tilde over (Θ)}5 =
0.7385 + 0.1002i
−0.5038 + 0.4367i



0.4685 + 0.4745i
0.7440 − 0.0426i


{tilde over (Θ)}6 =
0.7863 − 0.1721i
0.4547 + 0.3811i



−0.3923 + 0.4451i
0.8033 + 0.0521i


{tilde over (Θ)}7 =
0.8203 − 0.5564i
−0.0878 + 0.0991i



0.1323 − 0.0058i
0.9488 − 0.2868i


{tilde over (Θ)}8 =
0.7847 + 0.6142i
−0.0801 − 0.0229i



0.0366 + 0.0749i
0.7416 + 0.6657i







(5) Time correlation coefficient = 0.85









{tilde over (Θ)}1 =
0.8482 + 0.3441i
0.4025 + 0.0144i



−0.4012 + 0.0355i
0.8290 − 0.3881i


{tilde over (Θ)}2 =
0.7852 + 0.5424i
0.0283 + 0.2973i



−0.0314 + 0.2970i
0.7907 − 0.5344i


{tilde over (Θ)}3 =
0.8386 − 0.4823i
0.2519 + 0.0263i



−0.2532 + 0.0017i
0.7877 + 0.5616i


{tilde over (Θ)}4 =
0.8263 + 0.4568i
−0.0498 − 0.3256i



0.0784 − 0.3200i
0.8635 − 0.3820i


{tilde over (Θ)}5 =
0.8121 + 0.0827i
−0.4314 + 0.3840i



0.4112 + 0.4056i
0.8153 − 0.0411i


{tilde over (Θ)}6 =
0.8840 − 0.0781i
0.3266 + 0.3253i



−0.3334 + 0.3184i
0.8821 + 0.0966i


{tilde over (Θ)}7 =
0.8670 − 0.4787i
−0.1019 + 0.0943i



0.1386 + 0.0077i
0.9730 − 0.1841i


{tilde over (Θ)}8 =
0.8424 + 0.5356i
−0.0576 − 0.0100i



0.0311 + 0.0495i
0.8162 + 0.5748i







(6) Time correlation coefficient = 0.9









{tilde over (Θ)}1 =
0.8991 + 0.2860i
0.3310 + 0.0149i



−0.3303 + 0.0262i
0.8889 − 0.3164i


{tilde over (Θ)}2 =
0.8780 + 0.4179i
0.0241 + 0.2322i



−0.0225 + 0.2323i
0.8751 − 0.4239i


{tilde over (Θ)}3 =
0.8945 − 0.3994i
0.2004 + 0.0145i



−0.2008 + 0.0077i
0.8804 + 0.4295i


{tilde over (Θ)}4 =
0.9156 + 0.3141i
−0.0505 − 0.2460i



0.0473 − 0.2466i
0.9114 − 0.3260i


{tilde over (Θ)}5 =
0.8817 + 0.0616i
−0.3454 + 0.3154i



0.3371 + 0.3243i
0.8830 − 0.0386i


{tilde over (Θ)}6 =
0.9394 − 0.0135i
0.2318 + 0.2523i



−0.2580 + 0.2254i
0.9323 + 0.1162i


{tilde over (Θ)}7 =
0.9118 − 0.3918i
−0.0969 + 0.0762i



0.1222 + 0.0167i
0.9847 − 0.1234i


{tilde over (Θ)}8 =
0.8980 + 0.4387i
−0.0340 − 0.0017i



0.0215 + 0.0264i
0.8856 + 0.4632i







(7) Time correlation coefficient = 0.95









{tilde over (Θ)}1 =
0.9498 + 0.2064i
0.2347 + 0.0128i



−0.2345 + 0.0164i
0.9465 − 0.2211i


{tilde over (Θ)}2 =
0.9505 + 0.2699i
0.0165 + 0.1528i



−0.0142 + 0.1530i
0.9463 − 0.2844i


{tilde over (Θ)}3 =
0.9485 − 0.2861i
0.1357 + 0.0067i



−0.1357 + 0.0083i
0.9519 + 0.2747i


{tilde over (Θ)}4 =
0.9699 + 0.1789i
−0.0374 − 0.1609i



0.0269 − 0.1630i
0.9561 − 0.2419i


{tilde over (Θ)}5 =
0.9454 + 0.0369i
−0.2368 + 0.2209i



0.2358 + 0.2220i
0.9456 − 0.0325i


{tilde over (Θ)}6 =
0.9744 + 0.0209i
0.1499 + 0.1665i



−0.1702 + 0.1457i
0.9688 + 0.1056i


{tilde over (Θ)}7 =
0.9560 − 0.2786i
−0.0767 + 0.0503i



0.0894 + 0.0201i
0.9929 − 0.0752i


{tilde over (Θ)}8 =
0.9508 + 0.3097i
−0.0117 + 0.0012i



0.0087 + 0.0079i
0.9478 + 0.3187i









In addition to the aforementioned examples, {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B} may be variously calculated according to various time coefficients, the number of feedback bits, the number of transmit antennas of the base station, or {θ}={Θ1, . . . , Θ2B}. Further descriptions related thereto will be omitted herein for conciseness.



FIG. 3 is a flowchart illustrating a MIMO communication method according to an exemplary embodiment. It is understood that one or more apparatuses described above, for example, a base station, may carry out one or more of the operations of FIG. 3.


Referring to FIG. 3, a pre-designed codebook may be stored, for example, in a memory, in operation S310. The exemplary design scheme of the codebook has been described above. A base station or a user terminal may store and use the same codebook. A state of a channel that is formed between the base station and the user terminal may be recognized in operation S320.


For example, the base station may transmit a well-known pilot signal to the user terminal and the user terminal may estimate a channel formed between the base station and the user terminal using the pilot signal. A channel state of the estimated channel may be expressed as channel information. The channel information may include channel state information, channel quality information, or channel direction information. The channel information may be fed back from the user terminal to the base station. The base station may recognize the channel state based on the fed back channel information.


A transmission rank may be adaptively determined in operation S330. For example, the transmission rank may be adaptively determined according to an achievable total data transmission rate, a state of channels of users/user terminals, or data desired by the users/user terminals.


In operation S340, a precoding matrix may be determined by considering the channel information and the transmission rank based on a plurality of matrices that is included in the codebook. For example, a matrix may be selected from the plurality of matrices based on the channel information. The size of the selected matrix may be adjusted according to the transmission rank and thereby be used as the precoding matrix.


Data streams may be precoded using the determined precoding matrix in operation S350.



FIG. 4 is a flowchart illustrating a MIMO communication method according to another embodiment. It is understood that one or more apparatuses described above, for example, a base station, may carry out one or more of the operations of FIG. 4.


Referring to FIG. 4, a pre-designed codebook may be stored, for example, in a memory, in operation S410.


A channel state of a channel that is formed between a user and a base station may be recognized in operation S420. For example, a base station may recognize the channel state based on channel information that is fed back from a user terminal.


A time correlation coefficient of the channel may be recognized in operation S430. The user terminal may calculate the time correlation coefficient of the channel and quantize the calculated time correlation coefficient. The user terminal may feed back the quantized value to the base station.


The codebook may be updated according to a time correlation coefficient (ρ) of a channel that is formed between at least one user and the base station, in operation S440. Schemes of updating the codebook have been described above and thus further descriptions related thereto will be omitted.


A precoding matrix may be generated using the updated codebook in operation S450. For example, where the updated codebook is {{tilde over (θ)}}={{tilde over (Θ)}1, . . . , {tilde over (Θ)}2B}, and a previously used precoding matrix is Fτ-1, a currently used precoding matrix may be generated using Fτ={tilde over (Θ)}iFτ-1.


Data streams may be precoded using the generated precoding matrix in operation S460.


According to certain embodiments described above, it is possible to improve a data transmission rate using a codebook that is optimized according to a channel environment, a transmission rank, and/or a number of feedback bits.


The methods described above including a MIMO communication method may be recorded, stored, or fixed in one or more computer-readable media that includes program instructions to be implemented by a computer to cause a processor to execute or perform the program instructions. The media may also include, alone or in combination with the program instructions, data files, data structures, and the like. The media and program instructions may be those specially designed and constructed, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable media include magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD ROM disks and DVD; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory (ROM), random access memory (RAM), flash memory, and the like. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter. The described hardware devices may be configured to act as one or more software modules in order to perform the operations and methods described above, or vice versa. In addition, a computer-readable storage or recording medium may be distributed among computer systems connected through a network and computer-readable instructions or codes may be stored and executed in a decentralized manner.


A computer or a computing system may include a microprocessor that is electrically connected with a bus, a user interface, a modem such as a baseband chipset, a memory controller, and a flash memory device. The flash memory device may store N-bit data via the memory controller. The N-bit data is processed or will be processed by the microprocessor and N may be 1 or an integer greater than 1. Where the computer or the computing system is a mobile apparatus, a battery may be additionally provided to supply operation voltage of the computer of the computing system. It will be apparent to those of ordinary skill in the art that the computer or the computing system may further include an application chipset, a camera image processor (CIS), a mobile Dynamic Random Access Memory (DRAM), and the like. The memory controller and the flash memory device may constitute a solid state drive/disk (SSD) that uses a non-volatile memory to store data.


A number of exemplary embodiments have been described above. Nevertheless, it will be understood that various modifications may be made. For example, suitable results may be achieved if the described techniques are performed in a different order and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A base station for a multiple input multiple output (MIMO) communication system, the base station comprising: a memory where a codebook including codeword matrices C1,2, C2,2, C3,2, C4,2, C5,2, C6,2, C7,2, C8,2, C9,2, C10,2, C11,2, C12,2, C13,2, C14,2, C15,2, and C16,2 is stored; anda precoder to precode a data stream to be transmitted using the codebook,wherein the codeword matrices are defined by the following table:
  • 2. The base station of claim 1, wherein the precoder calculates a precoding matrix based on at least one codeword matrix among the codeword matrices, and precodes the data stream using the precoding matrix.
  • 3. The base station of claim 1, further comprising: an information receiver to receive feedback information from a terminal,wherein the precoder precodes the data stream using the feedback information and the codebook.
  • 4. The base station of claim 3, wherein the precoder calculates a precoding matrix based on a codeword matrix corresponding to the feedback information among the codeword matrices, and precodes the data stream using the precoding matrix.
  • 5. The base station of claim 3, wherein the feedback information includes index information of a codeword matrix preferred by the terminal among the codeword matrices.
  • 6. The base station of claim 1, further comprising four transmit antennas, wherein the codebook is used for transmission rank 2.
  • 7. A terminal for a MIMO communication system, the terminal comprising: a memory where a codebook including codeword matrices C1,2, C2,2, C3,2, C4,2, C5,2, C6,2, C7,2, C8,2, C9,2, C10,2, C11,2, C12,2, C13,2, C14,2, C15,2, and C16,2 is stored; anda feedback unit to feed back, to a base station, feedback information associated with a preferred codeword matrix among the codeword matrices,wherein the codeword matrices are defined by the following table:
  • 8. The terminal of claim 7, further comprising: a channel estimation unit to estimate a channel between the base station and the terminal,wherein the feedback unit feeds back, to the base station, the feedback information determined based on the estimated channel.
  • 9. A precoding method of a base station for a MIMO communication system, the method comprising: accessing a memory where a codebook including codeword matrices C1,2, C2,2, C3,2, C4,2, C5,2, C6,2, C7,2, C8,2, C9,2, C10,2, C11,2, C12,2, C13,2, C14,2, C15,2, and C16,2 is stored; andprecoding a data stream to be transmitted using the codebook,wherein the codeword matrices are defined by the following table:
  • 10. The method of claim 9, wherein the precoding comprises: calculating a precoding matrix based on at least one codeword matrix among the codeword matrices; andprecoding the data stream using the precoding matrix.
  • 11. The method of claim 9, further comprising: receiving feedback information from a terminal,wherein the precoding precodes the data stream using the feedback information and the codebook.
  • 12. The method of claim 11, wherein the precoding comprises: calculating a precoding matrix based on a codeword matrix corresponding to the feedback information among the codeword matrices, andprecoding the data stream using the precoding matrix.
  • 13. The method of claim 11, wherein the feedback information includes index information of a codeword matrix preferred by the terminal among the codeword matrices.
  • 14. The method of claim 11, wherein the codebook is used for transmission rank 2.
  • 15. A method of a terminal for a MIMO communication system, the method comprising: accessing a memory where a codebook including codeword matrices C1,2, C2,2, C3,2, C4,2, C5,2, C6,2, C7,2, C8,2, C9,2, C10,2, C11,2, C12,2, C13,2, C14,2, C15,2, and C16,2 is stored; andfeeding back, to a base station, feedback information associated with a preferred codeword matrix among the codeword matrices,wherein the codeword matrices are defined by the following table:
  • 16. The method of claim 15, further comprising: estimating a channel between the base station and the terminal; andgenerating the feedback information based on the estimated channel.
Priority Claims (2)
Number Date Country Kind
10-2008-0080076 Aug 2008 KR national
10-2009-0017040 Feb 2009 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of a U.S. Provisional Application No. 61/076,179, filed on Jun. 27, 2008 in the United States Patent and Trade mark Office, and the benefit under 35 U.S.C. §119(a) of a Korean Patent Application No. 10-2008-0080076, filed on Aug. 14, 2008, and a Korean Patent Application No. 10-2009-0017040, filed on Feb. 27, 2009, in the Korean Intellectual Property Office, the entire disclosures of which are incorporated herein by reference for all purposes.

Provisional Applications (1)
Number Date Country
61076179 Jun 2008 US
Continuations (1)
Number Date Country
Parent 12476275 Jun 2009 US
Child 13889856 US