Techniques for marine surveying include marine seismic surveying, in which geophysical data may be collected from below the Earth's surface. Seismic surveying has applications in mineral and energy exploration and production to help identify locations of hydrocarbon-bearing formations. Seismic surveying typically may include towing a seismic source below or near the surface of a body of water. One more “streamers” may also be towed through the water by the same or a different vessel. The streamers are typically cables that include a plurality of sensors disposed thereon at spaced apart locations along the length of each cable. Some seismic surveys locate sensors on ocean bottom cables or nodes in addition to, or instead of, streamers. The sensors may be configured to generate a signal that is related to a parameter being measured by the sensor. At selected times, the seismic source may be actuated to generate, for example, seismic energy that travels downwardly through the water and into the subsurface formations. Seismic energy that interacts with interfaces, generally at the boundaries between layers of the subsurface formations, may be returned toward the surface and detected by the sensors on the streamers. The detected energy may be used to infer certain properties of the subsurface formations, such as structure, mineral composition and fluid content, thereby providing information useful in the recovery of hydrocarbons.
Most of the seismic sources employed today in marine seismic surveying are of the impulsive type, in which efforts are made to generate as much energy as possible during as short a time span as possible. The most commonly used of these impulsive-type sources are air guns that typically utilize compressed air to generate a sound wave. Other examples of impulsive-type sources include explosives and weight-drop impulse sources. Another type of seismic source that may be used in seismic surveying includes marine vibrators, including hydraulically powered sources, electro-mechanical vibrators, electrical marine vibrators, and sources employing piezoelectric or magnetostrictive material.
Marine vibrators typically generate vibrations through a range of frequencies in a pattern known as a “sweep” or “chirp.” For example, a sweep may be generated in a frequency band of from about 10 Hz to about 100 Hz (or other suitable frequency band). The signal may then be correlated at the sensor to generate a pulse which should give the same result as using an impulsive-type source. The marine vibrators may be operated for an output interval (e.g., 5 seconds) followed by a listening interval (e.g., 5 seconds). If two different arrays of marine vibrators are operated in different frequency band, each array may be operated separately. For example, operating a first array for an output interval followed by a listening interval and then operating the second array for an output interval followed by a listening interval. Problems may occur if the marine vibrators are operated in the listening interval as it may be hard to distinguish seismic energy received directly from the marine vibrators with seismic energy from the marine vibrators that has interacted with subsurface formations. In addition, problems may also occur if the two different arrays are operated simultaneously as it may be hard to distinguish seismic energy from the different arrays as well as from different marine vibrators within each array.
These drawings illustrate certain aspects of some of the embodiments of the present disclosure and should not be used to limit or define the disclosure.
It is to be understood the present disclosure is not limited to particular devices or methods, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used herein, the singular forms “a”, “an”, and “the” include singular and plural referents unless the content clearly dictates otherwise. Furthermore, the words “can” and “may” are used throughout this application in a permissive sense (i.e., having the potential to, being able to), not in a mandatory sense (i.e., must). The term “include,” and derivations thereof, mean “including, but not limited to.” The term “coupled” means directly or indirectly connected.
Embodiments may be directed to marine vibrators and associated methods. At least one embodiment may be directed to a marine vibrators that use appropriately selected composite code sequences. Advantageously, use of these composite code sequences may enable generation of seismic signals that approximate background noise in spectral statistics. Examples of some useful code sequences that may be used for the marine vibrators may include, but are not limited to, maximum-length-type code sequences, Gold-type code sequences, or Kasami-type code sequences. By use of appropriately selected composite code sequences marine vibrators may be operated continuously without the need for listening time. For example, the marine vibrators may be operated with substantially no listening time, for example, less than 0.5 seconds, less than 0.1 seconds, or even less. In addition, two or more marine vibrators, or two or more arrays of marine vibrators, may be operated simultaneously using different code sequences that are unique for each marine vibrator or array of marine vibrators.
It is not only the possible environmental benefits of using marine vibrators that makes it desirable to adapt marine vibrators to use in marine seismic surveying. By having a marine vibrator that may generate arbitrary types of signals there may be substantial benefit to using seismic energy signals that are more “intelligent” than conventional sweeps. Such a marine vibrator would be able to generate signals having more of the characteristics of background noise and thus be more immune to interference from noise and at the same reduce their environmental impact. Generating arbitrary signals in the seismic frequency band may include using a source which has a high efficiency to make the marine vibrator controllable within the whole seismic frequency band of interest. Combining several marine vibrators that are individually controllable, with more sophisticated signal schemes, such as the composite code sequences, may make it possible to generate seismic signals from several discrete marine vibrators at the same time that have a very low cross correlation, thereby making it possible to increase the efficiency acquiring seismic data. Marine vibrators known in the art typically have a resonance frequency that is higher than the upper limit of ordinary seismic frequencies of interest. This means that the vibrator energy efficiency may be very low, principally at low frequencies but generally throughout the seismic frequency band, and such vibrators may be difficult to control with respect to signal type and frequency content. Conventional marine vibrators may be subject to strong harmonic distortion, which may limit the use of more complex signals.
A method of seismic surveying may comprise operating a plurality of marine vibrators. At least one of the marine vibrators may repeatedly cycle through a plurality of composite code sequences that are unique to the at least one of the marine vibrators. In at least one embodiment, the plurality of composite codes may comprise a pair of composite code sequences that are unique to the at least one of the marine vibrators such that the at least one of the marine vibrators alternates between the pair of composite code sequences. In at least one embodiment, two or more of the marine vibrators operate contemporaneously for at least one output interval. The method may further comprise detecting seismic energy with one or more seismic sensors after the seismic energy has interacted with subsurface formations. The seismic energy may be emitted from the marine vibrators, wherein detection occurs while operating the plurality of marine vibrators.
A method of manufacturing a geophysical data product may include towing a plurality of marine vibrators in a body of water and operating the plurality of marine vibrators in a frequency band of from about 1 Hz to about 300 Hz. At least one of the marine vibrators may repeatedly cycle through a plurality of composite code sequences that are unique to the at least one of the marine vibrators. In at least one embodiment, the plurality of composite codes may comprise a pair of composite code sequences that are unique to the at least one of the marine vibrators such that the at least one of the marine vibrators alternates between the pair of composite code sequences. In at least one embodiment, two or more of the marine vibrators operate contemporaneously for at least one output interval, wherein two or more of the marine vibrators operate contemporaneously for at least one output interval. The method of manufacturing a geophysical data product may further comprise detecting seismic energy with one or more seismic sensors after the seismic energy has interacted with subsurface formations. The seismic energy may be emitted from the marine vibrators, wherein the detecting occurs while operating the plurality of marine vibrators. Additionally, the method may comprise recording the detected seismic energy on one or more non-transitory, tangible computer-readable media which may create a geophysical data product.
A system for seismic surveying may include a plurality of marine vibrators, wherein at least one of the marine vibrators is operable to emit composite code sequences that are unique. The system may further include a signal generator operable to generate the composite code sequences that are unique and a control system operable to actuate the marine vibrators contemporaneously for at least one output interval and measure seismic data from the marine vibrators.
As illustrated, survey vessel 4 may tow sensor streamers 12. Sensor streamers 12 may be towed in a selected pattern in the body of water 6 by survey vessel 4 or a different vessel. As illustrated, sensor streamers 12 may be laterally spaced apart behind survey vessel 4. “Lateral” or “laterally,” in the present context, means transverse to the direction of the motion of survey vessel 4. Sensor streamers 12 may each be formed, for example, by coupling a plurality of streamer segments (none shown separately). Sensor streamers 12 may be maintained in the selected pattern by towing equipment 16, such as paravanes or doors that provide lateral force to spread sensor streamers 12 to selected lateral positions with respect to survey vessel 4. Sensor streamers 12 may have a length, for example, in a range of from about 2,000 meters to about 12,000 meters or longer. The configurations of sensors streamers 12 on
Sensors streamers 12 may include seismic sensors 14 thereon at spaced apart locations. Seismic sensors 14 may be any type of seismic sensors known in the art, including hydrophones, geophones, particle velocity sensors, particle displacement sensors, particle acceleration sensors, or pressure gradient sensors, for example. By way of example, seismic sensors 14 may generate response signals, such as electrical or optical signals, in response to detecting seismic energy emitted from marine vibrators 10 after the energy has interacted with the formations (not shown) below the water bottom. Signals generated by seismic sensors 14 may be communicated to control system 8. While not illustrated, seismic sensors 14 may alternatively be disposed on ocean bottom cables or subsurface acquisition nodes in addition to, or in place of, sensors streamers 12.
As illustrated in
In contrast to impulsive-type sources which transmit energy during a very limited amount of time, marine vibrators 10 may have a reduced environmental impact due the distribution of energy over time. In particular, marine vibrators 10 may have a reduced peak amplitude of the transmitted seismic signal during a seismic survey with little or no reduction in the data quality. For example, by using marine vibrators 10 with, for example, a five-second sweep, instead of an impulsive-type source such as an air gun, the peak amplitudes may be reduced by as much as 30 dB or even more. If pseudo-noise source sequences are used to not only spread out the energy over time but also the frequency over time, the peak amplitudes may be reduced by another 20 dB or even more. In some embodiments, the peak amplitudes may be in the range of about 10 dB to about 40 dB.
Referring now to
The low frequency marine vibrators 22 and/or high frequency marine vibrators 24 may operate and function together as unique pairs and/or individually as separate sources. In embodiments, the low frequency marine vibrators 22 and the high frequency marine vibrators 24 may repeatedly cycle through composite code sequences. In some embodiments, the composite codes for the low frequency marine vibrators 22 may be unique from the high frequency marine vibrators 24. In some embodiments, composite code sequences may comprise a pair of composite code sequences that are unique. In some embodiments, each of the low frequency marine vibrators 22 and the high frequency marine vibrators 24 in the array 20 may alternate between a pair of composite codes that is unique for that particular marine vibrator. Suitable composite code sequences may include, but are not limited to, maximal-length-type code sequences, a Gold-type code sequences, and/or a Kasami-type code sequences. In array 20, the low frequency marine vibrators 22 and the high frequency marine vibrators 24 may be disposed with a small distance from each other to be considered a point source. Additionally, low frequency marine vibrators 22 and the high frequency marine vibrators 24 may operate with different pairs of composite code sequences, which may allow an operator to add greater space between low frequency marine vibrators 22 and the high frequency marine vibrators 24.
In using the system shown in
A type of driver signal to operate marine vibrator 10 in some examples is known as a “direct sequence spread spectrum” signal. Direct sequence spread spectrum (“DSSS”) signal generation uses a modulated, coded signal with a “chip” frequency selected to determine the frequency content (bandwidth) of the transmitted signal. A “chip” means a pulse shaped bit of the direct sequence coded signal. Direct sequence spread spectrum signals also may be configured by appropriate selection of the chip frequency and the waveform of a baseband signal so that the resulting DSSS signal has spectral characteristics similar to background noise. The foregoing may make DSSS signals particularly suitable for use in environmentally sensitive areas.
An example implementation of a signal generator to create particular types of vibrator signals is illustrated schematically in
Signals generated by the device shown in
The theoretical explanation of DSSS signal generation and detection may be understood as follows. The DSSS signal, represented by ui, may be generated by using a spectrum “code sequence”, represented by ci and generated, for example, by the PRN generator 32, to modulate a baseband carrier. A baseband carrier may be generated, for example, by the local oscillator 30. The baseband carrier has a waveform represented by ψ(t). The code sequence has individual elements cij (called “chips”) each of which has the value +1 or −1 when 0≤j<N and 0 for all other values of j. If a suitably programmed PRN generator 32 is used, the code may repeat itself after a selected number of chips. N is the length (the number of chips) of the code before repetition takes place. The baseband carrier may be preferably centered in time at t=0 and its amplitude may be normalized so that at time zero the baseband carrier amplitude may be equal to unity, or (ψ(0)=1). The time of occurrence of each chip i within the composite code may be represented by Tc. The signal used to drive each marine vibrator 10 may thus be defined by the expression:
u
i(t)Σj=−∞∞cijψ(t−jTc) (Eq. 1)
The waveform ui(t) is deterministic, so that its autocorrelation function is defined by the expression:
R
u(τ)=∫−∞∞u(t)u(t−τ)dt (Eq. 2)
where τ is the time delay between correlated signals. The discrete periodic autocorrelation function for a=aj is defined by
Using Eq. 2 it may be possible to determine the cross correlation between two different signals by the expression:
R
u(τ)=∫−∞∞u(t)u(t−τ)dt (Eq. 4)
The discrete periodic cross-correlation function for a=aj and b=bj, is defined by the expression:
The signal detected by each of marine vibrators 10 (Referring to
x
i(t)=Σj=1Muj(t)+n(t) (Eq. 6)
The energy from each of marine vibrators 10 may penetrate the subsurface geological formations below the water bottom, and reflected signals from the subsurface may be detected at each of marine vibrators 10 after a “two way” travel time depending on the positions of the particular one of marine vibrators 10 and seismic sensors 14 and the seismic velocity distribution in body of water 6 and in the subsurface below the water bottom. If the transmitted vibrator signal for direct sequence spread spectrum code i occurs at time t=t0, then the received signal resulting therefrom occurs at time t=τk+lkTc+t0 after the transmission, wherein lk=any number being an integer and τk=the misalignment between the received signal and the chip time Tc. The received signal may be mixed with the identical code sequence used to produce each vibrator's output signal, ui(t0), as shown in
Mixing (
R
yu
(τi+liTc)=Σj=0N-1ψ(0)ψ(τi)cijcij+l+Σj=0N-1[ψ(0)Σk=1,k≠iMψ(τk)cijckj+l
Simplification of the above expressions provides the following result:
If R(0)=N and ψ(0)=1, the foregoing expression simplifies to:
Equation (10) shows that it may be possible to separate the direct spread spectrum sequence signals corresponding to each code sequence from a signal having components from a plurality of code sequences. N may represent the autocorrelation of the transmitted signal, and by using substantially orthogonal or uncorrelated spread spectrum signals to drive each of marine vibrators 10, the cross correlation between them may be very small compared to N. Another possible advantage may be that any noise which appears during a part of the time interval when the seismic signals are recorded may be averaged out for the whole record length and thereby attenuated, as may be inferred from Equation 10.
In a practical implementation, a seismic response of the subsurface to imparted seismic energy from each of marine vibrators 10 may be determined by cross correlation of the detected seismic signals with the signal used to drive each of marine vibrators 10, wherein the cross correlation includes a range of selected time delays, typically from zero to an expected maximum two way seismic energy travel time for formations of interest in the subsurface (usually about 5 to about 6 seconds). Output of the cross correlation may be stored and/or presented in a seismic trace format, with cross correlation amplitude as a function of time delay.
The baseband carrier has two properties that may be optimized. The baseband carrier may be selected to provide marine vibrator 10 output with suitable frequency content and an autocorrelation that has a well-defined correlation peak. Equation (10) also shows that the length of the direct spread spectrum sequence may affect the signal to noise ratio of the signal from marine vibrator 10. The correlation peaks resulting from the cross correlation performed as explained above will increase linearly with the length of (the number of chips) the code sequence. Larger N (longer sequences) may improve the signal to noise properties of the signal from marine vibrator 10.
By using appropriately selected code sequences, it may be possible to generate seismic signals that approximate background noise in spectral statistics. Some useful sequences that may be used for a plurality of marine vibrators 10 may be composite code sequences which may comprise maximal-length-type code sequences, Gold-type code sequences, or Kasami-type code sequences. In examples, a designated one of marine vibrator 10 may repeated cycle through a plurality of composite code sequences while one or more other of marine vibrators 10 may repeatedly cycle through additional composite code sequences, wherein the composite code sequences and the additional composite codes sequences are unique from one another. In examples, a designated one of marine vibrator 10 may alternate between a first pair of composite code sequences while one or more other of marine vibrators 10 may alternate between a second pair of composite code sequences, wherein the first pair and second pair are unique from one another. Additionally, each of marine vibrators 10 may emit composite code sequences, including maximal-length-type code sequences, Gold-type code sequences, or Kasami-type code sequences, in any order and at any time frame chosen by an operator.
Maximal-length-type code sequences may be a type of cyclic code that are generated using a linear shift register which has n stages connected in series, with the output of certain stages added modulo-2 and fed back to the input of the shift register. The name maximal-length-type code sequence derives from the fact that such sequence is the longest sequence that may be generated using a shift register. Mathematically the sequence may be expressed by the polynomial h(x)
h(x)=h0xm+h1xm-1+ . . . +hn-1x+hn (Eq. 11)
For 1≤j<m, then hj=1 if there is feedback at the j-th stage, and hj=0 if there is no feedback at j-th stage. h0=hm=1. Which stage hj that should be set to one or zero is not random but should be selected so that h(x) becomes a primitive polynomial. “Primitive” means that the polynomial h(x) cannot be factored. The number of chips for a maximum length sequence is given by the expression N=2n−1, where n represents the number of stages in the shift register. The maximum length sequence has one more “1” than “0.” The number of ones in a sequence equals the number of zeros within one chip. For a 1023-chip code there are 512 ones and 511 zeros. Consider a code implementation in which a one is represented by a positive voltage +V, and a zero by a negative voltage −V. The amount of offset over the code length is proportional to the inverse of the code length, or V/(2n−1). Similarly, when a code sequence biphase modulates a carrier, the residual carrier component is down by a factor (2n−1)−1. Thus, the modulator may be important in carrier suppression but the codes may be capable of supporting the amount of suppression required. For example, when carrier suppression is about 30 dB, the shortest code usable is 1000 chips.
Statistical distribution of ones and zeros is well defined and constant. Relative positions of the runs vary from code sequence to code sequence, but the number of each run length may not. Autocorrelation of a maximal-length-type code sequence may be such that for all values of phase shift the correlation value is −1, except for the 0±1 chip phase shift area, in which correlation varies linearly from the −1 value to 2n−1 (the sequence length). A 1023-chip maximal code (210−1), therefore, has a peak to minimum autocorrelation value of 1024 and a range of 30.1 dB. A modulo-2 addition of a maximal linear code with a phase-shifted replica of itself results in another replica with a phase shift different from either of the originals.
Every possible state, or n-tuple, of a given n-stage generator exists at some time during the generation of a complete code cycle. Each state exists for one and only one clock interval. A shift register sequence generator consists of a shift register working in conjunction with appropriate logic, which feeds back a logical combination of the state of two or more of its stages to its input. The output of a sequence generator, and the contents of its n stages at any sample (clock) time, is a function of the outputs of the stages fed back at the preceding sample time.
Gold-type code sequences may be sets of non-maximal linear codes whose correlation properties may be uniform and well defined over the entire set. Two other code types have been advanced to serve in similar functions to Gold-type code sequences. These are the Kasami-type code sequences and the Bent-type code sequences. Both have lower cross-correlation bounds than Gold-type code sequences. While Gold-type code sequences have cross-correlation bounded at 2(N+1/2)+1 or 2(N+2/2)−1, the Bent code sequences and Kasami-type code sequences cross-correlation bound is 2(N+1/2)+1. For example, a 1023-chip Gold-type code sequence set may have a cross-correlation bound of 63, while either Bent code sequences or Kasami-type code sequences sets may have their bound at 33, a difference of approximately 3 dB. However, the size of the Bent code sequences and Kasami-type code sequences sets may be much smaller than that of Gold-type code sequence sets, each set has 2N+1 codes, while the Bent code sequences and Kasami-type code sequences comprise 2N/2 codes a piece. Thus the Bent code sequences and Kasami-type code sequences may not be useful as the Gold-type code sequences in multiple-access applications where large numbers of users may be accommodated. It should be noted that the Bent code sequences are nonlinear codes. If the numbers of multi-access applications are less than 10-20, Kasami-type code sequences may be used.
In operation, marine vibrators 10 may typically operate to generate sweeps. For example, with reference to
Composite code sequences within marine vibrators 10, such as low frequency marine vibrators 22 and high frequency marine vibrators 24, may originate from marine vibrators 10 where the phase may be controlled and may follow the sequences precisely as generated. The marine vibrators 10 may require a feedback system that may compensate for the open loop frequency response of the marine vibrators 10. This may be done with a feedback system based on iterative learning control (ILC) characterization, where the marine vibrators 10 may follow the shape of a reference signal. By way of example, an ILC characterization may be run for at least one of the marine vibrators 10.
By having these types of marine vibrators 10, multiple composite code sequences may be implemented for acquiring data. For example, each of the marine vibrators 10 may have two or more different composite code sequences, such as maximal-length-type code sequences, Kasami-type code sequences, or some other defined signal. For example, assuming two Gold-type code sequences per each of the marine vibrators 10, which may comprise twenty four Gold-type code sequences such as in array 20 with twelve marine vibrators 10 (e.g., four low frequency marine vibrators 22 and eight high frequency marine vibrators 24 as shown on
Referring to
The ILC characterization may perform a method of tracking control for systems that work in a repetitive manner. In each of these tasks the system is required to perform the same action over and over again with high precision. By using information from previous repetitions, a suitable control action may found iteratively. The internal model principle yields conditions under which essentially perfect tracking can be achieved.
An inverted model of the system's transfer function may be made of marine seismic survey system 2. The degree of model accuracy selected may depend on the desired accuracy of the control. The same initial driver signal, referred to as X, may be repeated a selected number of times. After each iteration of the ILC characterization, the input driver signal u to the ILC characterization is updated. The ILC characterization uses a reference signal, designated R, to compare with the output Y from the vibrator system. The difference between the vibrator system output Y and the reference signal R, denoted by Yd, can then be filtered by the inverted model (using, for example, a causal and a non-causal filter) and added to the input of the ILC system (e.g., at summing amplifier 52). The ILC system is iterated and if the ILC system's transfer function does not change faster than the update to the input driver signal the error e will decrease with respect to time.
The foregoing procedure may be implemented in the frequency domain. It has been observed that certain frequencies may be absent in the output in seismic sensors 14. Zero value at certain frequencies may make the ILC system unstable because the error function in the frequency domain includes division (which would be zero at the zero amplitude frequencies. By adding the output of the seismic sensor 14, the presence of zero amplitude frequencies in the combined sensor output is substantially eliminated, making implementation of the foregoing system stable in the frequency domain.
The methods and systems described above may be used to manufacture a geophysical data product indicative of certain properties of a subterranean formation. The geophysical data product may include geophysical data such as pressure data, particle motion data, particle velocity data, particle acceleration data, and any seismic image that results from using the methods and systems described above. The geophysical data product may be stored on a non-transitory computer-readable medium as described above. The geophysical data product may be produced offshore (i.e., by equipment on the survey vessel 4) or onshore (i.e., at a computing facility on land) either within the United States or in another country. When the geophysical data product is produced offshore or in another country, it may be imported onshore to a data-storage facility in the United States. Once onshore in the United States, geophysical analysis may be performed on the geophysical data product.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Various advantages of the present disclosure have been described herein, but embodiments may provide some, all, or none of such advantages, or may provide other advantages.
The present application claims the benefit of U.S. Provisional Application No. 62/409,957, filed Oct. 19, 2016, entitled “Coded Signals for Marine Vibrators,” the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62409957 | Oct 2016 | US |