The invention relates to spectral analysis of images.
A scene viewed by a hyperspectral imaging system is often displayed as a three-dimensional datacube, where two dimensions represent the spatial domain (x, y) and one dimension represents the spectral domain (λ). Spatial observations (x, y) allow a person to observe an image when high contrast is available. However, during conditions of low contrast, such as fog, smoke, camouflage, and/or darkness, spectral signatures help identify otherwise unobservable objects. Hyperspectral imagers are capable of collecting and processing objects within a scene by dividing the whole spectrum into tens or even hundreds of bands and thus can obtain high resolution datacubes useful in a wide range of applications such as mining, agriculture, chemical detection, and military surveillance. Conventional hyperspectral devices face a tradeoff between spectral resolution and the signal to noise ratio (SNR) of the estimated spectrum. Thus, there is an ongoing need for imaging systems that maximize the signal to noise ratio (SNR) of the estimated spectrum without sacrificing capability of generating datacubes with high spectral resolution.
Systems and methods presented herein provide for imaging an object. In one embodiment, a spectral imaging system includes an optical element configured to receive electromagnetic energy of a two-dimensional scene and a filter configured to provide a plurality of spectral filter profiles. The filter also transmits multiple spectral wavebands of the electromagnetic energy substantially simultaneously (i.e., at or about the same time) through at least one of the spectral profiles. The spectral imaging system also includes a detector configured to measure intensities of the multiple spectral wavebands, and a processor configured to generate a spectral image of the scene based on the measured intensities.
The various embodiments disclosed herein may be implemented in a variety of ways as a matter of design choice. For example, some embodiments herein are implemented in hardware whereas other embodiments may include processes that are operable to implement and/or operate the hardware. Other exemplary embodiments, including software and firmware, are described below.
Some embodiments of the present invention are now described, by way of example only, and with reference to the accompanying drawings. The same reference number represents the same element or the same type of element on all drawings.
The figures and the following description illustrate specific exemplary embodiments of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within the scope of the invention. Furthermore, any examples described herein are intended to aid in understanding the principles of the invention and are to be construed as being without limitation to such specifically recited examples and conditions. As a result, the invention is not limited to the specific embodiments or examples described below.
Imaging system 100 includes an optical element 110, a filter 120, a detector 140, and a processor 150. Optical element 110 is any combination of devices operable to propagate electromagnetic energy (e.g., photons) from an object or scene 102 through imaging system 100. Such devices may include focusing lenses, relay lenses, collimating lenses, dispersers, gratings, reflectors, etc.
Filter 120 is any system, component, or device operable to transmit in two or more wavebands simultaneously, or substantially simultaneously, and to attenuate in at least one other waveband. In one embodiment, filter 120 comprises multiple spectral profiles 122-126, any of which are operable to pass multiple distinct wavebands, or wavelength spectrums. For simplicity,
Detector 140 is any system, component, or device operable to receive the multiple wavebands of electromagnetic energy transmitted through filter 120 and to generate one or more electrical signals that indicate electromagnetic intensity as a function of wavelength. As used herein, detector 140 may refer to a single detector element, or pixel, within a two-dimensional detector array of detector elements. Alternatively, detector 140 may refer to the detection of a larger area or entire two-dimensional image of scene 102. Detector 140 may comprise, for example, a charge-coupled device (CCD) sensor, a silicon based complementary metal-oxide-semiconductor (CMOS) sensor, or other types of sensors and sensor elements.
Processor 150 is any system, component, or device operable to reconstruct a hyperspectral image of scene 102 using the intensity values of detector 140. Thus, processor 150 may be communicatively coupled with detector 140 to receive the intensity values output by detector 140. Processor 150 may use digital processing techniques to demodulate the measured intensities into separate, individual waveband signals. Thus, though multiple lines of radiation are focused onto a single detector or detector element, processor 150 may separately analyze the characteristics of each line of radiation for use in analyzing the composition of scene 102.
Previous imaging systems obtain hyperspectral images at high spectral resolution by using a narrow passband, or narrow spectrometer input slit, and scanning one wavelength band sequentially over time. Since spectral information in such imagers is not acquired at the same time, these imagers are not able to benefit from the improvement in signal to noise ratio (SNR) that multiplexing provides. The SNR is further reduced in these systems because the passband reduces the throughput of electromagnetic energy through the imager. For example, if an incident signal with a uniform spectrum is split into 100 equally separated wavebands, the photon flux into each waveband will be 1% of the photon flux from the entire signal. Consequently, the SNR for a detector measuring a single waveband would be 10 times less than the signal to noise ratio for a detector measuring the entire photon flux associated with all the wavebands.
Other spectral imaging systems use a multiplexed focal plane array where an image is passed through an interferometric assembly. This technique, commonly referred to as Fourier transform spectrometry, enables multiplexing of a two-dimensional spatial image without limiting the light throughput with a narrow slit. However, these systems record the spectral dimension with precise mirror positioning which makes such systems susceptible to vibrations and therefore unsuitable for imaging systems in airplanes, unmanned aerial vehicles, and other applications.
Imaging system 100 advantageously enables a combination of high throughput of radiation and simultaneous multiband or multiplex wavelength scanning. The higher throughput arises from the fact that filter 120 of imaging system 100 allows a larger transmissive area than the slits or passband filters, thus enabling higher throughput of radiation, increased signal measurement, and larger SNR ratios. Further, filter 120 and detector 140 allow imaging system 100 to collect electromagnetic radiation from a plurality of spectral bands in simultaneous fashion, therefor providing imaging system 100 with a multiplex advantage without complication of components susceptible to vibrations.
Imaging system 100 also allows for collection of two-dimensional images, wide-field spectral images over time. Additionally, as discussed in greater detail below, design characteristics of imaging system 100 allow processing functions to improve post-processing of the resulting datacube. Imaging system 100 is thus useful for a variety of imaging applications such as persistent surveillance where high spectral resolution is desired (e.g., hyperspectral applications) and/or where there is a limit to the amount of electromagnetic energy available (e.g., low light conditions).
In step 306, processor 150 generates the spectrum of a pixel in the spectral image by demodulating the encoded spectral information on that sensor element according to the properties of imaging system 100. Processor 150 is operable to reconstruct underlying information of scene 102 using algorithms which decode the multiplexed information received at detector 140 using properties of filter 120 and/or other elements in imaging system 100. In that regard, processor 150 may receive, store, or be programmed with information that models imaging system 100 to enable processor 150 to generate spatial and/or spectral information of a pixel based on the intensity and position of the selected sensor element.
In step 308, processor 150 may optionally perform post-processing on the hyperspectral image to reduce errors in the image. Additional detail of such post-processing will be described in greater detail below. Then, in step 310, processor 150 generates a datacube of scene 102 which comprises an array of spectral images (e.g., obtained by iteratively performing process 200 and/or steps 302-308).
It will be appreciated that one or more steps of processes 200/300 may be performed on imaging system 100 having alternative configurations.
Returning to the example imaging system 100 of
In this example, imaging system 100 does not substantially discard light within any of the sensed wavebands, but routs light with different waveband combinations to different image planes and/or in different or orthogonal directions. Cameras 440-444 may be positioned to coincide at substantially identical virtual image planes associated with optical element 110. Pixel coordinates from each camera 440-444 may be registered relative to each other so that a sensed signal magnitude from each camera may be associated with a single location at the imaged scene 102. Thus, cameras 440-444 and filters 120 may be arranged to align such that different combinations of the spectrum from the same location in an imaged scene are incident on different sensor elements (e.g., pixels) or camera 440-444 at the same time or substantially the same time. Processor 150 (not shown in
Alternatively, for distant scenes, imaging system 100 may direct multiple separate cameras at the same scene.
Coded aperture 130 is any system, component, or device operable to provide aperture coding to multiplex images. Coded aperture 130 may comprise a coded matrix in the form of a two-dimensional pattern of sections, where each section may block or reflect some or all of the impinging electromagnetic energy to accomplish a transform of the spectral data within each of the transmitted wavebands. Coded aperture 130, either alone or in combination with other devices such as optical element 112, may generate a dispersed mask image comprising multiple images of the coded aperture corresponding to the different transmitted wavebands. Thus, coded aperture 130 and/or optical element 112 may include a dispersive element (not shown) to induce a wavelength-dependent spatial shift of the multiple wavebands so that the transmitted wavebands may be spatially dispersed onto detector 140.
Detector 140 may comprise a two-dimensional detector array of detector elements, where each column in the array includes linear combinations of columns of coded aperture 130 that depend on the spectrum of the source. A single detector element, or pixel, may measure multiple spatially overlapped or simultaneously transmitted wavebands. Processor 150 may retrieve the spectrum of each pixel of a hyperspectral image using mathematical properties of filter 120, coded aperture 130, and/or detector 140. Thus, the algorithms or processing of decoding a multiplexed waveband at a single detector element may be dependent on the particular design of imaging system 100. Processor 150 may perform a transformation of the data matrix to produce a reconstructed spectral image that mathematically represents the optical spectrum of source 102.
It will be appreciated that imaging system 100 may incorporate any combination of the exemplary embodiments described and shown herein. For instance, imaging system 100 may incorporate a static filter approach, a dynamic filter approach, or some combination thereof. Additionally, alternative arrangements, combinations, and number of filters 120, profiles 122-126, and/or cameras 440-444 are possible as well as alternative ranges of electromagnetic energy. For example, the concepts described herein may apply to detection of other filterable energy fields such as acoustic energy, and particle detection, as well as other electro-magnetic energy fields such as radio waves, terahertz radiation, x-rays, and millimeter waves. For particle detection, filtered parameters may include mass, spin, electrical or magnetic moments, or energy. Furthermore, though imaging system 100 of the exemplary embodiments may be described and shown herein as having a particular physical order and location of components, it will be appreciated that designs with alternative orders, respective locations of elements, and/or with a fewer or greater number of components are possible.
For the purposes of discussion and analysis that follows, consider that filter 120 of
Filter 120 may transmit multiple, discrete wavebands by driving the AOTF at multiple spaced frequencies. Alternatively or additionally, each spectral profile 122-126 of filter 120 may be segmented into discrete zones which are independently controlled by one or more AOTF transducers (e.g., controller(s) 160). Thus, imaging system 100 may select multiple wavebands (or colors) simultaneously.
The image formation process far the image ith image in a sequence of images can be described quite generally by the linear superposition integral
Ii(u,v)=∫t
where Ii(u, v) is the image formed by the imaging system at focal plane coordinates (u, v) at time interval ti≦t≦ti+1, PSF(u−ξ, v−η,λ) is the system point spread function (PSF), U0(ξ, η, λ, t) is the object being imaged at the object coordinates (ξ, η) at a given wavelength λ and which may depend on time for non-static scenes, S(λ, t) is the spectral response of the detector which may change in time (e.g., filter 120 comprises an AOTF and the spectral response is tunable), and T(t) is the temporal response of the detector. Here, we may take T(t)=1 while the shutter is open and T(t)=0 when the shutter is closed, thus we can remove the T(t) term from the integral and simply use the limits of the time integration to account for an open and closed shutter. Though the wavebands may be discussed herein with respect to models of evenly spaced spectral bands for convenience of discussion, it will be appreciated that imaging system 100 may select wavebands of alternatively spaced spectral bands.
The limits of the integration extend over the field of view of the camera for ε and η, over the spectral bandpass of the detector (e.g., 450-800 nm for a visible band camera), and the time integral extends over the integration time of the camera T=ti+1−ti. The variable ni(u, v) denotes the noise in the ith image such as shot noise, dark current noise, read out noise, etc. Here, assume that the noise is additive and that the PSF in Eq. (1) is written in the space-invariant form for simplicity. To further simplify, the scene Uo may considered independent of time. Additionally, the spectral filter may be assumed constant during the time period that the shutter is open (i.e., when ti≦t≦ti+1). The spectral features of Eq. 1 may be defined as
U′o(u,v,λ)=∫t
This definition along with the simplifications just mentioned allows Eq. (1) to be rewritten as
Ii(u,v)=∫t
where Si(λ)=S(λ, ti) is the spectral filter used for the ith image.
Previous systems implement a narrow band spectral response such that Si(λ)≈δ(λ−λi). In that case, the imager may take N snap shots for differing values of λi to build a discrete approximation of U′o(u, v, λ) with N spectral bands. A standard color camera operates in such a way with N=3 and λi is chosen to be red, green, and blue (RGB). Because the RGB spectral bands are well separated one can have fairly broadband filters which allow a sufficient amount of light to the detector without much overlap between the spectral transmission lines. However if high spectral resolution is desired (e.g. such as for hyperspectral imaging applications), the spectral filters may be narrow so as to not overlap and not cause a lot of spectral blurring. This restricts the amount of light reaching the sensor and lowers the signal to noise (SNR).
Here, imaging system 100 captures multiples images Ii(u, v) with a tunable filter 120 in order to determine the datacube (two space and one spectral dimension) U′o(u, v, λ) defined in Eq. (2). A tunable filter may be modeled as
Si(λ)=Σj=0N−1qijδ(λ−λj)*g(λ), Equation (4):
where qij is an M×N (e.g., M=N) matrix consisting only of 1s and 0s implying whether passband is present or not present respectively, δ(λ−λj)*g(λ) is a delta function convolved with a Gaussian or similar shaped function, g(λ), that models the passband of the spectral filter, and λj is the center frequencies of each passband in the filter. Substituting the expression into Eq. (3) gives us
Ii(u,v)=Σj=0N−1qijU″o(u,v,λj)+ni(u,v), Equation (5):
where U″o(u, v, λ)=U′o(u, v, λ)*g(λ), is the original datacube spectral convolved with the filter passband function g(λ). Thus, Eq. (5) is a matrix equation for the spectrum at a given spatial coordinate (u, v) on a two-dimensional array of detector 140. Here, detector 140 may comprise a charge-coupled device (CCD) sensor, a silicon based complementary metal-oxide-semiconductor (CMOS) sensor, or other types of sensors. Filter 120 may implement a pattern that defines each column of an invertible coding matrix. To solve for the spectral datacube, imaging system 100 takes a sequence of images with different filters such that qij is invertible. Because there are multiple passbands transmitted through filter 120 (and coded aperture 130 if implemented), the same spectral line is measured multiple times at an element of detector 140. Processor 150 may invert the matrix is inverted to solve for the spectral datacube. In the process of inverting the matrix, each of the multiple measurements add together for a √{square root over (N)} improvement in SNR.
Suppose, in one embodiment, that a filter is chosen for the image Ii+j(u, v) to be a circularly shifted version of the filter Ii. Then the matrix qij is a circulant matrix such that qij=qj−i (mod N). The main advantage of using circulant matrices, is that their inverse is known, and may be quickly calculated using Fourier transforms. Thus, processor 150 may use discrete Fourier transform processing to demodulate the signal to determine, in real time, the intensity of each line of radiation reflected onto an element of detector 140.
The solution estimate for U″o(u, v, λj) in Eq. (5) is
where Equation (7): ψjΣm=0N−1qme2πimj
is the inverse discrete Fourier transform of one row of the matrix, which are also the eigenvalues of the circulant matrix. The estimator is obtained by inverting the matrix q in Eq. (5). The estimator would be exact in the absence of noise.
Suppose, in another embodiment, that the filter may be further defined such that not only is the matrix qij of coded aperture 130 circulant but it is also a quadratic residue sequence (QRS). For quadratic residues there exists a basic function
such that
Σi=0N−1qiri−j=δij. Equation (8):
Processor 150 may use this identity to estimate the datacube U″o(u, v, λj) in Eq. (5) by the operation
Uest(u,v,λj)=Σi=0N−1Ii(u,v)ri−j=U″o(u,v,λj)+Σi=0N−1ni(u,v)ri−j, Equation (9):
Quadratic residue sequences are discrete sequences that are binary, positive functions containing only ones and zeros of roughly equal number. Thus, a QRS may describe the transmission profile of approximately 50% transmissivity. However, because QRS have the property shown in Eq. (9), they may be easily inverted so that they act as a single filter with the spectral resolution of the smallest open element. Additionally, the matrix is well conditioned and the noise is not severely amplified.
To solve for the spectral datacube when using tunable filter 120 and circulant QRS coded aperture 130, processor inverts the matrix qij. If the matrix is ill-conditioned then the act of inverting Eq. (5) may amplify the noise and eliminate the SNR gain we expect from taking multiple images of the same spectral band. To see the effects that noise has on the signal estimation process we may substitute Eq. (5) into Eq. (6). The estimate for the spectral datacube in the presence of noise is
Assuming that all the noise terms are independent Gaussian processes with mean zero allows us to calculate the total variance of the signal estimate in Eq. (10) as:
where σ2k=E[nk(u,v)2] and E[ . . . ] implies the expectation value obtained after a series of many measurements. The functional dependence on (u,v) is dropped for ease of notation.
Up until now the noise has been kept entirely general. However in an imaging system different types of noise are present. In its simplest form, the noise can be broken up into camera specific noise such as read out noise, dark current, etc. and photon noise or shot noise. The variance in Eq. (11) can thus be written as
where σ2cam is the variance of the camera noise (and does not depend on the index k since it is constant) and σ2k, SN is the variance of the shot noise. This does depend on the index k since the shot noise can vary from image to image as it depends explicitly on the number of photon collected. In other words, imaging system 100 may change filter 120 for different images, thereby inducing the number of photons collected changes and affecting the shot noise. However for broadband sources, this variation is small.
Eq. (12) may be simplified by assuming a broadband scene such that the number of photons collected from image to image is roughly constant. This allows us to take σk,SN2≈
where
is the spectral condition number using the fact that ψmax=Σi=0N−1 ci=n for a binary circulant matrix, where n is the number of 1s in a row of the circulant matrix.
The variance term on the left had side of Eq. (13) is the variance of the signal estimate for a particular spectral band, while the terms on the right hand side are variances of the image noise which contain noise from all wavelength bands, and thus depend on the kind of filter used. To compare the performance of this approach to the performance of a single passband filter we will to convert the variance terms on the right hand side of Eq. (13) into terms that contain no explicit dependence on the type of filter used. The camera noise is always constant, and thus the noise is independent of the filter. However, the shot noise varies depending on how many photons reach the focal plane array, and that depends on how many spectral lines are open in filter 120. Assuming simple relationship where the image shot noise is related to the total shot noise in the form
where σ2TSN is the total shot noise if no filter was present and the filter function S(λ)=1. This is the limiting case of a broadband panchromatic camera. Thus, Eq. (13) becomes
Compare this result to the noise one obtained using a simple passband filter. In that case the noise is
The gain G is defined as a ratio of the two SNR terms G=SNRest/SNRPB=σPB/σest, where the second equality comes from the fact that the signal at a given band is equal in both the passband and coded filter cases. The ratio G is then
where χ2=σ2cam/σ2TSN is the ratio of the camera to total shot noise variance. The goal is to create filters such that G>1 which implies that imaging system 100 with tunable filter 120 and circulant QRS coded aperture 130 gives a higher SNR than a single passband filter. Here, G is inversely proportional to the condition number K as expected, matrices with a low condition number are desirable. However, it is also desirable for the ratio n/N to be as close to 1 as possible, to obtain a highest possible SNR for each measurement. Unfortunately these two limits cannot coincide since the condition number of a matrix typically scales as sparsity decreases (i.e., as the number of 0's in the matrix goes down, the condition number goes up). To obtain an analytic result, that has the optimal SNR when χ>1, imaging system 100 implements a quadratic residue filter. The condition number K is known and given by K=√{square root over (2n)}, and n is related to N as n=(N+1)/2. Thus the gain G is given by
The final limit for large N shows that, for imaging system 100 which implements a quadratic residue filter with a large number of spectral bands, the standard deviation of the noise is reduced relative to the single passband case by a factor of √{square root over (N)}. In addition, this advantage increases as the signal becomes weaker, because G becomes larger for large values of χ.
Since more filter bands are open in imaging system 100, each image has more shot noise than if a single passband was used, but the signal does not increase, since the added signal and shot noise is at wavelength s different from the signal of interest. This adds noise by a factor of √{square root over (N)} eliminating the advantage one gains by adding N images of the same spectral line together. However, as the number of bands increases the shot noise per spectral band must decrease. Since a fixed amount of light is divided up amongst more spectral bands for a single passband filter, imaging system 100 still gains an SNR improvement by a factor of √{square root over (N)} since the spectrum is divided among fewer spectral bands.
Consider also a comparison of imaging system 100 which implements a quadratic residue spectral filter to that of a simple panchromatic camera with no spectral information. Panchromatic imagers have the best SNR characteristics of any camera, and are useful for remote sensing when low photon flux limits the ability to obtain spectral information. The shot noise variance in the panchromatic camera has already been defined as σ2TSN, and the camera noise variance, σ2cam will stay the same (assuming an identical camera is used). The approximation in Eq. (14) relates the shot noise in a given spectral band to the total shot noise available. Because the signal and shot noise are related by Poisson statistics, the same estimate t may be used to relate the total signal in a panchromatic imager to the signal at a given spectral line such that spc=(N/n)
Thus we see that the panchromatic imager does indeed have better SNR than imaging system 100 in this case. While imaging system 100 has a lower SNR than a panchromatic imager, it provides a √{square root over (N)} improvement in the signal to noise over a single passband filter. Imaging system 100 thus provides the ability to do hyperspectral imaging in a relatively low light environment. Imaging system 100 also enables use of a high speed shutter to image transient events or to have very high spectral resolution (many spectral bands).
Three Band Multiplexed Spectral Imager Embodiment
Consider, for the purposes of the discussion to follow, that imaging system 100 implements a three band multiplexed spectral imager. As described in greater detail below, processor 150 may further improve the gain by exploiting correlation properties of the noise and a priori information about the scene being imaged. Further assume for this example that imaging system 100 or filter 120 implements or comprises a quadratic residue filter. To simplify the notation consider just one pixel of detector 140, and denote the measurement at this pixel by mi. To relate this to the imaging equation given in Eq. (5), mi=Ii(u, v) and si=U″o(u, v, λi) for a specific value of (u, v).
The measurement comprises the signals at the various spectral bands denoted by si and noise denoted by ni. Imaging system 100 takes three measurements
m1=s1+s2+n1
m2=s2+s3+n2
m3=s1+s3=n3 Equation (20):
The estimators for the signals are given in Eq. (10), and in the three band case they simplify to
The variance of each estimate in Eq. (21) is the same, and is given by
In the case where the variance of each measurement is the same (e.g., when camera noise dominates shot noise) this simplifies to
This is the previous best case.
The noise terms of Eq. (21) are anti-correlated. The process of adding m1+m2+m3 results in various noise terms cancelling each other because of this anti-correlation. Thus, if imaging system 100 performs measurements in anti-correlated noise then multiple measurements of the signal will give an SNR increase that is greater than the standard √{square root over (N)} increase because of this noise-canceling effect. Previous imaging systems are unable to exploit this anti-correlation since the signal is not known.
Imaging system 100 is also enhanced to use a priori information to exploit this anti-correlation. Even though the signal is unknown, imaging system 100 may use a priori information of the ratios between various signals. Assuming the ratios between signals are obtained, the signals may be represented as s2=α2s1 and s3=α3s1. To find the optimal estimate such that the variance is minimized, define
where wi is a weighting factor with the constraint that w1+w2α2+w3α3=1, so that is in fact an estimator for s1. A similar definition and operation could be performed for or but no generality is lost since we assume that we know the ratios between the various signals that we seek to estimate.
The variance of is given by
The variance of this estimator may be minimized subject to the constraint that w1+w2α2+w3α3=1. This results in a function
ƒ(w1,w2,w3)=σ2ê+λ(w1+w2α2+w3α3−1), Equation (25):
where λ is the Lagrange multiplier. The minimization of this function results in a system of four equations and four unknowns (3 for the w's and 1 for the constraint). The solutions are
where D is given by
D=(1+α2)2σ22σ23+(α2+α3)2σ21σ23+(1+α3)2σ21σ22, Equation (27):
These solutions yield a variance for the estimator in Eq. (23) of
If all variances are equal and if α2=α3=1, then Eq. (28) simplifies to
This is a dramatic improvement over the previous best case of
and a significant improvement over what one would achieve by measuring the signal 3 times.
Unfortunately in practice it is difficult to know the ratios α2 and α3 exactly. In fact, if the estimates for the signals given in Eq. (21) are used to calculate the ratios, such that α2=e2/e1 and α3=e3/e1 then these estimates combined with Eqs. (23) and (26) simply give =e1. In other words, the new estimator for the signal is no better than our initial estimator. This makes sense since no additional information has been obtained in this instance, and the initial assumption that the ratios have been obtained has been ignored.
To gain the dramatic improvement implied by Eq. (28), processor 150 may obtain a better measure for the ratios. In practice, a scene has spatial correlations. Thus, the spectrum of a given pixel in a scene is correlated to the spectrum of its neighboring pixels. Imaging system 100 may use this correlation information to generate a better estimate of the spectral ratios.
Assume that the spectral lines are related in the following way: s2=α2 s1+∈2 and s3=α3 s1+∈3 where ∈i is an error parameter that is included if the estimate of αi is not exactly correct. Further assume that ∈i is a Gaussian random variable with zero mean and variance σ2ε. Also, take the variance of ∈i equal for all i for notational simplicity. Just as before, a general estimate of signal 1 may defined as
whose variance is
To minimize Eq. (30) with respect to w1, w2, and w3 yet simplify the analysis, take σ21=σ22=σ23=σ2, and define the ratio χ=σε/σ. The variance may now be minimized when
where D is given by
D=2[(1+α2)2+(α2+α3)2+(1+α3)2]+[6+2(α2+α3)+3(α22+α23)]χ2+2χ4. Equation (32):
The minimized variance in this case is now
These solutions may be examined in two limits. First when χ>>1, this implies that σ∈>>σ. In other words, the error on the estimate of the ratios α2 and α3 is very high. In this limit we see that w1=1, w2=0, wS=0, w3=0, and σê=¾σ2.
The three band example discussed above may be generalized for useful applications of imaging system 100. The same notation is retained for simplicity. The coded N band measurement is given in Eq. (5). It may be rewritten in single pixel notation as
mi=Σj=0N−1qijsj+ni. Equation (34):
The estimator for the signal is given in Eq. (10), and is rewritten in simplified notation as
e1=s1+Σk=0N−1rk−1nk, Equation (35):
where
For the case of a quadratic residue filter, Eq. (36) reduces to
as shown in Eq. (8).
Just as with the three band example, we now assume that the ratios between the spectral bands are known. Thus we write all bands in terms of band 0 as
si=αis0+∈i Equation (37):
where αi=si/s0 is the ratio between signal si and s0 and ∈i accounts for any error in the estimate in the ratio. New estimator s0 is created by combining all of the estimators of the various bands with a weighting factor such that
=Σl=0N−1w1e1=Σl=0N−1(w1αis0+∈i+Σk=0N−1rk−1nk), Equation (38):
subject to the constraint that Σl=0N−1 w1α1=1. The variance of this new estimator is given by
π2ê=Σl=0N−1=w21σ∈,l2+Σk=0N−1(Σl=0N−1wlrk−l)2σ2k, Equation (39):
where σ∈,l
To minimize Eq. (39) with the constraint given above, the function may be defined as
ƒ(wl,λ)≡σê2+λ(Σl=0N−1wlαl−1), Equation (40):
which may be minimized with respect to wl and λ. Taking the gradient with respect to the wl's and λ yields the following N+1 with N+1 unknowns
2wlσ∈,l2+2Σk=0N−1Σj=0N−1wjrk−jrk−lσk2+λαl=0
Σl=0N−1 wlαl=1. Equation (41):
Eq. (41) may be solved for the weights w1 so that an estimator is created given Eq. (38) that has the noise minimized. To solve Eq. (41) in general requires an N+1×N+1 matrix inverse operation for each pixel on the focal plane array. This problem quickly becomes too time consuming for more than a few spectral bands and pixels. However a few simplifying assumptions may be taken which allow the matrix inverse operation to be done very quickly. The sacrifice is that the true noise minimum will not be found, but numerical tests have shown that the error increase is minimal while the speed increase is dramatic.
The first simplifying assumption regards the noise terms σk2=σcam2+σk, SN2. Assume that the camera noise is much greater than the shot noise such that σk2=σcam2≡σ2 is independent of the parameter k. Assume further that error term σ∈,l2 may be ignored. This term accounts for the uncertainty in the exact knowledge of the spectral ratios. Ignoring this term shows the worst case scenario (i.e., simply the original estimator), which occurs when no a priori knowledge of the ratios is used. Thus the error will generally not get worse than the original estimator. Numerical simulations have shown that ignoring this term does cause a slight decrease in the optimization routine, but again this loss is minimal compared to the speed gained when ignoring this term. With these assumptions Eq. (41) may be rewritten as
Σk=0N−1Σj=0N−1 wjrk−jrk−l+λ′α1=0
Σl=0N−1=wlαl=1. Equation(42):
A new Lagrange multiplier is defined as λ′=λ/2σ2 for simplicity. The reason for these simplifications becomes apparent when the equation is written in matrix form
Eq. (43) uses summation notation such that any two variables side-by-side that contain the same index are summed over that index. Thus rk−jrk=Σk=0N−1 rk−jrk. Negative indices wrap around as do indices great that N−1.
The four blocks of Eq. (43) are now defined. The N×N upper left block is
The vector a is
along with aT its transpose, and the vector w is
These definitions allow Eq. (43) to be rewritten as
Processor 150 may remove the 0 in the bottom right term to invert Eq. (47). Processor 150 may do this by adding the row directly above the last row since it is equal to 0. This yields an equation in the form
where bT is the vector aT with the row directly above it added to it. Processor 150 may invert the matrix in Block form, which gives the solution for the w vector as
where c=αN−1−bT R−1 a.
The solution for the weighting terms wi now requires an N×N inverse of the matrix R along with a matrix multiplication step. The reason for the speed increase is that the matrix R is constant over the entire focal plane, thus the inverse only needs to be calculated once. Only the vectors a and bT change for each pixel. In addition the matrix R is circulant, and thus its inverse can be calculated using a Fourier transform. Thus, processor 150 may invert the N×N block using a Fast Fourier Transform (FFT). We have now reduced our problem from calculating an N+1×N+1 matrix inverse for every single pixel on our focal plane to calculate a length N Fourier transform once, and doing a simple matrix multiplication for each pixel on the focal plane. Imaging system 100 is therefore enhanced to provide a dramatic speed increase to the noise minimization algorithm.
As described above, imaging system 100 may use neighboring pixels to better estimate these ratios, and obtain large SNR enhancement. This relies on the assumption that the spectrum varies slowly over a few pixels on the focal plane. For natural scenes this should typically be the case. If this assumption is not valid other methods may also exist to estimate the ratios such as predefined spectral catalogs or physical models.
Consider reconstruction of the spectral datacube of a simulated scene, in the presence of the noise as in
Plot 1803 shows a dramatic improvement when using the quadratic residue filter. Using Eq. (18), and the noise parameters used in this simulation, the estimated SNR obtained when using a quadratic residue coded filter should be at least 3.7 times that of the single passband case or roughly a 5.5 dB improvement in SNR. Compare this estimate to the standard deviation of the actual signal minus the passband signal, and the actual signal minus the signal using imaging system 100. The 5.5 dB gain estimate agrees quantitatively with the ratio of these error measures, and is qualitatively consistent with the improvement seen in
For some scenes, such as natural scenes, it may be assumed that the spectrum varies slowly from pixel to pixel. Processor 150 may thus be configured to estimate the ratios using a nearest neighbor average. In this example, processor 150 uses five nearest neighbors of a pixel.
Experimental Results
Here, the five nearest neighbors of a pixel were used to estimate the spectral ratios. The relative error for each datacube compared to the truth was calculated in each case. The SNR gain from changing from the passband to QR filter was roughly a factor of 2 or about 3 dB. The SNR gain one obtains when performing the noise minimization is a factor or 7 better than the QR measurement or about 8.5 dB improvement.
The invention can also take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In one embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.
Furthermore, the invention can take the form of a computer program product accessible from the computer readable medium 2206 providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, the computer readable medium 2206 can be any apparatus that can tangibly store the program for use by or in connection with the instruction execution system, apparatus, or device, including the computer system 2200.
The medium 2206 can be any tangible electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device). Examples of a computer readable medium 2206 include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Some examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
The computing system 2200, suitable for storing and/or executing program code, can include one or more processors 2202 coupled directly or indirectly to memory 2208 through a system bus 2210. The memory 2208 can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code is retrieved from bulk storage during execution. Input/output or I/O devices 2204 (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the computing system 2200 to become coupled to other data processing systems, such as through host systems interfaces 2212, or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
This patent application is a non-provisional patent application claiming priority to, and thus the benefit of an earlier filing date from, U.S. Provisional Patent Application No. 62/042,570 (filed Aug. 27, 2014), the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20160171653 | Mendlovic | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160065915 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62042570 | Aug 2014 | US |