The invention relates to a method of and a device for coding an image sequence, in which the image sequence is noise filtered.
Kleihorst et al. [1] describe a single-chip MPEG2 encoder that employs an adaptive noise filter. The structure of the noise filter 2 is shown in
An object of the invention is, inter alia, to provide a more effective filtering. To this end, the invention provides a method of and a device for coding an image sequence and a camera system as defined in the independent claims. Advantageous embodiments are defined in the dependent claims.
A first embodiment of the invention is based on regarding the noise filtering as a rate-distortion optimization problem in order to adapt the noise filtering. The invention takes into account both the reduced quality of the encoded pictures and the increased amount of bits to transmit due to noise corruption. The invention allows adaptive filtering of image sequences resulting in better compression and distortion performance. Preferably, a filter parameter set is determined to adapt the response of the filter in that: the image sequence is encoded using an optimal bit-budget (or rate) R which is used for compressing a noise-free image sequence, and the distortion D for the given bit-budget R is minimized. The distortion of a certain frame due to the encoding process and the number of bits used to encode that frame need to be evaluated. The rate-distortion problem can be solved efficiently by calculating the filter parameter set by a Lagrange multiplier method.
A further embodiment according to the invention uses an effective algorithm to estimate an optimal Lagrange multiplier by determining a maximum of a second derivative of the bit budget R. In this embodiment the optimal Lagrange multiplier is determined without prior knowledge of the rate constraint and noise characteristics.
A practical embodiment according to the invention uses spatial adaptive weighted averaging filtering to estimate the rate. In a further embodiment the spatial adaptive weighted averaging filtering is used to pre-filter the image sequence. This is done to exploit the spatial correlation between the pixels and to reduce the processing burden compared to three-dimensional filtering techniques. The displacement vectors are now estimated from the current and the previous frame after they are spatially filtered, which provides additional robustness to the motion estimates.
The aforementioned and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
In the drawings:
The drawings only show those elements that are necessary to understand the invention.
The invention regards noise filtering of an image sequence as a rate-distortion optimization problem in that the response of a filter can be adapted. In particular, an optimal filter parameter set is determined such that noisy images are encoded using an optimal bit budget and the distortion is minimized. The optimal bit budget is a number of bits that would be used for compressing a noise-free image sequence. As a favorable implementation, a solution based on a Lagrange multiplier method will be proposed. This method enables an efficient solution of the rate-distortion problem. Moreover, an effective algorithm will be discussed, which determines an optimal Lagrange multiplier without prior knowledge of the bit budget, i.e. a rate constraint, and noise characteristics.
Generally speaking, perfect noise filtering cannot be achieved without degrading the original signal. An aspect of the invention is that the problem of filtering the image sequence in the context of a certain video coding is considered as follows:
This can be regarded as a resource allocation problem where the optimal parameter set which allows efficient distribution of a given bit budget must be found in order to ensure satisfactory image quality. The invention, can be regarded as a general rate-distortion optimization framework to determine the optimal filter parameter set for a given video coder.
Assume an exemplary, simple additive noise model, given by:
g(i,j,k)=f(i,j,k)+n(i,j,k) (1)
where g(i,j,k) denotes the observed image sequence that is input to the subtractor 11, f(i,j,k) the original sequence and n(i,j,k) the noise; i,j are the spatial coordinates and k the discrete time variable (frame index). The noise n(i,j,k) is assumed to be zero-mean, white, independent of f(i,j,k) and Gaussian distributed with constant variance σn2.
As an illustration and in order to keep the computation low, the following discussion is focussed on a simplified motion compensated (MC) noise filter [2] producing a filtered frame:
F(i,j,k)=F(i+vi,jx(k),j+vi,jy(k),k−1)+Ci,j(k)(g(i,j,k)−F(i+vi,jx(k),j+vi,jy(k),k−1)) (2)
wherein {right arrow over (v)}i,j(k)=[vi,jx(k)vi,jy(k)]T is the displacement of position (i,j) and Ci,j(k) is a control parameter to adapt a response of the noise filter 12.
For the given MC video coding system 10, consider now an image that is partitioned into K1×K2 fixed-sized block regions for motion estimation and motion compensation; the corresponding displacement set is dk=({right arrow over (d)}0,0(k), . . . , {right arrow over (d)}K
Ck=(C0,0(k), . . . , CN
The control parameter set and the motion vectors are assumed to be both in a finite set of admissible values.
denotes the filtered frame to be encoded, and
the reconstructed filtered frame as displayed at a decoder wherein Q[.] is a quantization operator as present in quantizer 16. Note that k1 and k2 are indices to indicate a block region for motion estimation and motion compensation.
Two separate motion estimation/compensation processes have to be performed: one for the noise filtering and an other for the motion compensated coding. In order to save computational effort, it is assumed here that F(i,j,k)=g(i,j,k) and that the sequence g(i,j,k) being encoded is filtered along the motion trajectory vk=dk[1]. This means that the filtering is based on the motion compensated prediction performed in the coding loop. See
The reconstructed filtered frame is then given by:
Notice that, since motion estimation is performed from the noisy observation g(i,j,k), the noise may result in inaccurate motion estimates, which degrade the motion-compensated prediction. Therefore, a noise-robust motion estimator (ME) 21 for the computation of dk is adopted in an advantageous embodiment. A low-complexity spatio-temporal recursive ME [3] can be used.
A rate-distortion optimization problem is formulated to compute the control parameter set Ck. Let Rkf be the number of bits used to encode a displaced frame difference (DFD) associated with the noise-free sequence f(i,j,k), denoted as:
DFD(f,{tilde over (f)})=Q(fk1,k2(i,j,k)−{tilde over (f)}(i+dk1,k2x(k), j+dk1,k2y(k),k−1)) (6)
The goal is to find the set Ck which minimizes the frame distortion: Dg(Ck)=Function(g(i, j, k), {tilde over (F)}(i, j, k)) for the given bit rate constraint Rkf.
Note that, since f(i,j,k) is not available, only the distortion due to the filtering by means of Dg(Ck) can be taken into account but it is not possible to consider the degradation due to noise.
Let Dn1,n2g(Ck) and Rn1,n2g(Ck) represent the distortion and the rate associated with the region (n1,n2) respectively. Then the RD optimization problem can be expressed as:
Equations (5), (7) and (8) define the proposed RD optimized MC temporal noise filter for video coding.
In order to solve this problem efficiently, an unconstrained problem can be formulated by merging the rate term with the distortion term through a Lagrange multiplier λk [4]. Introducing the total Lagrange cost function:
It has been shown [5] that if there is a {overscore (λk)} such that:
then {overscore (C)}k is also an optimal solution to (7), (8).
A bisection method can be used to find an optimal {overscore (λk)}. Supposing that the partition for noise filtering is such that there is no inter-region dependency, both rate and distortion of the region (n1,n2) depend only on the single Cn
Rn
and
Dn
where the distortion is expressed as:
Therefore, the principle of separate minimization can be invoked, converting the joint optimization problem of (10) into a simpler optimization problem in which each control parameter Cn
Since in general there is no prior knowledge of the rate Rkf associated with the frame f(i,j,k), it would not be possible to compute {overscore (λk)} such that (11) is fulfilled. An efficient method is proposed that is base on a scheme as described in [6]. This scheme implicitly estimates the noise power from the input data without the need for additional a priori information. An estimate {overscore (λk)}* of the optimal {overscore (λk)} is computed as:
and assumed is that
Rkg({overscore (λk)}*)=Rkf (17)
An explanation of this equation is as follows: starting from λk=0 a decreasingly smaller bit budget is allocated to encode the image sequence corrupted with additive noise, thus reducing resources to encode noise and increasing the compressibility of a picture. At a certain λk which results to be a knee-point, the exact amount of bits to encode the original sequence is allocated. After this value, the compression ratio increases slowly, which points out that fewer bits than necessary are allocated to encode video information.
In a second embodiment 10* of the invention as shown in
are the weights within the spatial Support S(i,j,k), defined as the 3×3 spatial window centered about the current pixel location. K(i,j,k) is a normalization constant and α and ε are tuning parameters. The quantity α, usually set at 1, controls how rapidly the weights should reduce as a function of the mismatch between pixels values, whereas the parameter ε2 determines the switching between weighted and direct averaging. In order to obtain accurate estimates of the number of bits to encode the DFD regardless of the noise level, a relationship between the parameter ε2 and the noise variance σn2 may be determined experimentally. From a number of experiments has been achieved that ε2=(δσn2)2, where δ is a tuning constant. The estimate Rkf* of the rate Rkf is then the number of bits used to encode:
DFD(h,{tilde over (h)})=Q(hk1,k2(i,j,k)−{tilde over (h)}(i+dk1,k2x(k),j+dk1,k2y(k),k−1)) (20)
The number of bits Rkf* is determined in VLC 17 and furnished to the CPU 12* of the noise filter 12. The parameter set {overscore (C)}k can be computed for each frame, but also kept constant for a certain number of frames.
In general, three-dimensional filtering techniques may be employed to exploit both the spatial correlation between the pixels and the temporal correlation between the frames. Furthermore, in order to reduce the processing burden, the filtering procedure may be separated in a spatial part, which operates on each frame separately, and a temporal part operating in the direction of motion. This technique is more advantageous especially for low SNR's since the displacement vectors are now estimated from the current and the previous frame after they have been spatially filtered, which provides additional robustness to the motion estimates. According to this strategy, SAWA pre-filtering of the current frame g(i,j,k) may be done first, and then the MC temporal filter may be applied to the smoothed images; i.e. g(i,j,k) of equation (5) is replaced by h(i,j,k) of equation (18), see
A video coder according to the invention can be used in many applications, such as broadcast, video-phone, videoconferencing systems, satellite observation, surveillance systems, etc.
The invention is especially applicable on low bit-rate motion compensated hybrid coding schemes, such as H.261 and H.263, but also on MPEG.
In summary, the invention provides a method of and a device for coding an image sequence g(i,j,k). The device has a noise filter for noise filtering the image sequence g(i,j,k), and means for regarding the noise filtering as a rate-distortion optimization problem in order to adapt the response of the noise filter. In particular, a filter parameter set C is determined to adapt the response of the filter in that the image sequence g(i,j,k) is encoded using an optimal bit-budget, which is the bit-budget used for compressing a noise-free image sequence, and the distortion for the given bit-budget is minimized.
A solution of the rate-distortion problem is proposed that calculates the filter parameter set C by a Lagrange multiplier method. Separate minimization is used to determine each parameter of the parameter set C independently. In a practical embodiment, spatial adaptive weighted averaging filtering is used to estimate the bit budget and to pre-filter the image sequence g(i,j,k).
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of other elements or steps than those listed in a claim. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
Number | Date | Country | Kind |
---|---|---|---|
99200193 | Jan 1999 | EP | regional |
99202038 | Jun 1999 | EP | regional |
This is a continuation of application Ser. No. 09/477,219, filed Jan. 4, 2000 now U.S. Pat. No. 6,856,699.
Number | Name | Date | Kind |
---|---|---|---|
5396248 | Miyazaki et al. | Mar 1995 | A |
5402520 | Schnitta | Mar 1995 | A |
5490094 | Heimburger et al. | Feb 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5617513 | Schnitta | Apr 1997 | A |
5696710 | Hague et al. | Dec 1997 | A |
5701106 | Pikkarainen et al. | Dec 1997 | A |
5790704 | Rao et al. | Aug 1998 | A |
5909515 | Makram-Ebeid | Jun 1999 | A |
6026190 | Astle | Feb 2000 | A |
6100940 | Dieterich | Aug 2000 | A |
6178216 | Lee | Jan 2001 | B1 |
6535632 | Park et al. | Mar 2003 | B1 |
6549014 | Kutkut et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
62234495 | Oct 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20030053709 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09477219 | Jan 2000 | US |
Child | 10282451 | US |