The background description provided herein is for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
Wireless communication devices typically employ multiple radio modules to communicate over multiple wireless networks according to various protocols. These devices often have fewer antennas than radio modules resulting in radio modules timesharing an antenna in order to communicate. A packet or frame communication of a radio module, however, is typically time sensitive and not synchronized with communications of the other radio modules. To communicate a time-sensitive packet or frame, a radio module may access the antenna while another radio module has access for communication. Accordingly, when two or more radio modules attempt to simultaneously communicate via the antenna, communications of one or both radio modules are disrupted resulting in cancelled transmissions, dropped packets, and/or degraded performance as data rates are reduced to compensate for communication errors.
This summary is provided to introduce subject matter that is further described below in the Detailed Description and Drawings. Accordingly, this Summary should not be considered to describe essential features nor used to limit the scope of the claimed subject matter.
A system-on-chip is described that is configured to change a first radio module from a listening mode to a lower power mode to prevent the first radio module from using an exclusive-access period for antenna access effective to increase a nonexclusive-access period, and to grant a second radio module access to the antenna for at least a portion of the increased nonexclusive-access period.
A method is described for receiving an indication of an impending transfer of exclusive access to an antenna currently held by a first radio module to a second radio module, the exclusive access to be held by the second radio module for an amount of time, and responsive to receiving the indication and before the transfer of exclusive access, transmitting a protection frame to a remote entity to cause the remote entity to refrain from transmitting a signal to the first radio module for a portion of the amount of time exclusive access is held by the second radio module.
Another method is described for determining that a communication period of a first radio module will overlap with a periodic transmission time of a second radio module, and responsive to determining that the communication period of the first radio module will overlap with the periodic transmission time of the second radio module, delaying the periodic transmission time of the second radio module until completing the communication period of the first radio module.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures indicate similar or identical items.
Conventional techniques for implementing multiple radio modules in a single device may allow a radio module to access an antenna while another radio module is communicating via the antenna. This can disrupt communications of either one or both radio modules. These disruptions of communication result in cancelled transmissions, dropped packets, and/or degraded performance as data rates are reduced to compensate for communication errors. This disclosure describes techniques for coexisting radio communication that reduce or eliminate these disruptions.
The following discussion describes an operating environment, techniques, and apparatuses that may be employed in the operating environment, and a System-on-Chip (SoC) in which components of the operating environment can be embodied. In the discussion below, reference is made to the operating environment by way of example only.
Operating Environment
Wireless local area network 102 may operate in any suitable mode, such as an ad-hoc or infrastructure mode, providing an independent basic service set or a basic service set, respectively. Wireless personal area network 104 can be configured as a Bluetooth™ pico-net or scatter-net for short-range communication. As shown in
Any of these wireless communication devices may transmit or receive packets and/or frames in accordance with various wireless networking protocols including an Institute of Electronics and Electrical Engineers (IEEE) 802.11 standard, such as 802.11g, 802.11i or 802.11n, or a short-range wireless connectivity standard such as Bluetooth™. In some instances, a wireless communication device may communicate in accordance with more than one protocol, such as smart-phone 106, which is associated with both networks of
WLAN radio module 204 communicates according at any suitable local area network protocol and/or standard, such as IEEE 802.11g, 802.11i, or 802.11n. Additionally, WLAN radio module 204 can be configured as an access point (AP) implementing a WLAN network for other devices or as a WLAN station, client, or peer within a network of one or more devices. Furthermore, when configured as an AP, WLAN radio module 204 can manage a network and communications within the network by transmitting beacons to other devices, assessing channel congestion, and/or transmitting frames, such as request-to-send (RTS), clear-to-send (CTS), or CTS-to-self (CTS2Self) frames.
WPAN radio module 206 communicates according to any suitable personal area network protocol such as Bluetooth™, and may be configured as a master or slave device within a pico-net. As a master device, WPAN radio module 206 can establish a Bluetooth™ pico-net and manage traffic within the pico-net. Traffic within the pico-net includes synchronous traffic such as synchronous connection oriented (SCO) or enhanced SCO (eSCO) link traffic which consists of periodic time periods or slots for exchanging packets. Packets can be exchanged with a slave device by WPAN radio module 206 during these time slots, such as, audio, link management, or data packets.
In addition to SCO traffic, WPAN radio module 206 can communicate packets over an asynchronous connectionless link (ACL) to other devices. As a master device, WPAN radio module 206 can indicate to a slave device that asynchronous data is destined to a subsequent slave time slot. As a slave device, however, WPAN radio module 206 listens to master time slots to determine if a master device will communicate asynchronous data during the a following time slot(s). Packets exchanged during ACL exchanges can include any suitable type such as link manager protocol (LMP) packets or advanced audio distribution profile (A2DP) packets.
Antenna 208 is accessed by WLAN radio module 204 and/or WPAN radio module 206 in order to communicate. Access to antenna 208 may be via an antenna switch (not shown) or any other suitable method. WLAN radio module 204 and WPAN radio module 206 can each include a communication manager 210, which can be embodied separately or distinctly on each respective radio module. In some instances, communication manager 210 is integrated with wireless communication device 202 and communicatively coupled to either one or both radio modules and/or an antenna switch (not shown).
Communication manager 210 (in one aspect) includes a set of computer-executable instructions stored on computer-readable storage media 212. When executed by one or more processors 214, a component on which communication manager 210 is embodied acts according to those instructions. Communication manager 210 acts independently and/or in conjunction with various other entities of wireless communication device 202, such as being firmware integrated into a System-On-Chip having or communicating with WLAN radio module 204 and/or WPAN radio module 206.
Techniques of Coexisting Radio Communication
The following discussion describes techniques of coexisting radio communication. These techniques can be implemented using the previously described environment, such as by communication manager 210 of
At 302, a first radio module is changed from a listening mode to a low-power mode. The listening mode includes alternating periods of exclusive access and nonexclusive access. During exclusive-access periods the first radio module has exclusive access to an antenna. Changing the first radio module to a low-power mode prevents the first radio module from using an exclusive-access period to obtain access to the antenna. Preventing the first radio module from using an exclusive-access period increases a nonexclusive-access period.
As an example, consider smart-phone 106 having WPAN radio module 206 configured as a Bluetooth™ slave device listening via antenna 208 for an asynchronous communication from wireless headset 116 configured as a Bluetooth™ master device. Communication manager 210 can change WPAN radio module 206 to a sniff mode, a periodic low-power mode that allows a Bluetooth™ slave device, WPAN radio module 206 in this case, to listen while in an active state. While in an inactive or low-power state, however, WPAN radio module 206 conserves power waiting until the next active state period to listen for asynchronous communication.
In some instances, parameters of the sniff mode can be configured to adjust a duty cycle of the periodic active states for a slave device. The configuration of the parameters of the sniff mode can be based on any suitable data, such as user input or an estimated bandwidth requirement for a radio. In the context of the present example, assume smart-phone 106 is receiving an audio stream that requires approximately 20% of a bandwidth available over antenna 208.
Communication manager 210 can configure parameters of the sniff mode for WPAN radio module 206 of smart-phone 106 for an active-period duty cycle for approximately 20-25% of available antenna access. Here assume an asynchronous communication cycle for WPAN radio module 206 includes 24 time slots, communication manager 210 can configure the sniff mode for an active state of six time slots and a low-power state for eighteen time slots.
At 304, a second radio module is granted access to the antenna to allow the second radio module to communicate via the antenna. The second radio module may use some or the entire amount of the increased time of a nonexclusive-access period of the first radio module. A time required for the second radio module to communicate may be more than the typical nonexclusive-access period of the first radio module, in such a case, increasing the nonexclusive-access periods of the first radio module allows the second radio module to communicate and/or complete packet exchanges.
Continuing the present example, communication manager 210 grants WLAN radio module 204 of smart-phone 106 access to antenna 208 to communicate with wireless printer 108 for the remaining 75% (18 time slots) of the bandwidth while the WPAN radio module 206 is in a low-power state of the sniff mode.
Optionally, at 306, the grant of the second radio module's access to the antenna is ceased. In some cases, the low-power mode of the first radio module may be periodic, and ceasing to grant access of the second radio module may be responsive to the first radio module exiting the low-power mode. In other cases, prior to ceasing the grant, the second radio module may transmit a protection frame, such as a CTS-to-self frame, to prevent a remote entity from transmitting a signal to the second radio module for at least a portion of a subsequent exclusive-access period of the first radio module. In such a case, the first radio module's exclusive-access periods for communication via the antenna may be limited to a certain amount of time or number of timeslots based on an effective duration of a suitable protective frame.
Continuing the present example, communication manager 210 ceases to grant WLAN radio module 204 access to antenna 208 responsive to WPAN radio module 206 exiting the low-power state of the sniff mode. WPAN radio module 206 can then listen and/or communicate with wireless headset 116 during the six time slots of the active state of the sniff mode.
Optionally, at 308, the first radio module is changed from the low-power mode back to the listening mode. Concluding the present example, communication manager 210 changes WPAN module 206 of smart-phone 106 back to an ACL communication listening mode to actively listen for asynchronous communication from wireless headset 116. Operations of blocks 302, 304, 306, and/or 308 may be repeated allowing the first and second radio modules to communicate additional data as described above.
At 402, an indication of an impending transfer of exclusive access to an antenna currently held by a first radio module to a second radio module is received. The indication may also indicate an amount of time that exclusive access is to be held by the second radio module. This indication may be received from the second radio module, which is preparing to communicate during a synchronous period. For example, a WPAN radio module 206 of smart-phone 106 may indicate to communication manager 210 a SCO period of 1.25 ms is approaching.
At 404, a protection frame is transmitted to a remote entity that is capable of transmitting a signal to the first radio module. In some cases, the protection frame is effective to cause the remote entity to refrain from transmitting a signal to the first radio module during the second radio module's exclusive access. The protection frame can be any suitable frame or combination of frames, such as a CTS-to-self, RTS and/or CTS frame(s).
Parameters of the protection frame can be based on the amount of time that exclusive access to the antenna is to be held by the second radio module. For instance, a CTS-to-self frame may indicate a length of time that corresponds to a period of Bluetooth SCO traffic, effective to prevent remote WLAN devices from transmitting during Bluetooth communications.
In some instances, the first radio may transmit data after transmission of the protection frame until the start of the second radio module's exclusive access to increase throughput. Data frames transmitted after the protection frame can be transmitted using point coordination function inter-frame spacing (PIFS) or without back-off. In some cases, the transmitted data frames may carry remaining protection time of the transmitted protection frame. Alternately or additionally, the transmitted data frames may carry an expiry value ending the data transmission before the second radio module's exclusive access.
While exclusive access to the antenna is held by the second radio module, the first radio module may be set to a low-power mode. Additionally or alternately, the first radio module can compress data queued for transmission for the amount of time that exclusive access is held by the second radio module. Continuing the present example, communication manager 210 can cause WLAN radio module 204 to transmit a CTS-to-self frame indicating 1.25 ms of medium unavailability to wireless printer 108 to prevent wireless printer 108 from transmitting during the SCO period of WPAN radio module 206. Additionally, communication manager 210 can set WLAN radio module 204 to a low-power state during the SCO period of WPAN module 206 to conserve power.
Optionally, at 406, a frame is transmitted to a remote entity effective to allow the remote entity to communicate with the first radio module. Any suitable frame may be transmitted such as, for example, a contention-free end (CF-End) frame. Transmitting the frame to allow the remote entity to communicate may be responsive to determining that the second radio module has ceased holding exclusive access to the antenna. Concluding the present example, communication manager 210 causes WLAN radio module 204 to transmit a CF-End frame to wireless printer 108, allowing communication to resume. The operations of blocks 402, 404, and 406 may be repeated allowing both radio modules to communicate additional data.
At 502, it is determined that a communication period of a first radio module will overlap a periodic transmission of a second radio module. In some instances, alternating communication and non-communication periods of the first radio module are not synchronized with periodic transmissions of the second radio module. Or the communication period may be a synchronous communication period, such as a period for SCO or eSCO traffic. Additionally, the periodic transmission can be a beacon transmission for a WLAN network scheduled for a target beacon transmission time (TBTT). In this case, communication manager 210 may determine that a SCO period of WPAN radio module 206 will overlap a TBTT of WLAN radio module 204.
At 504, the periodic transmission of the second radio module is delayed until after the communication period of the first radio module. Delaying the periodic transmission can be responsive to determining that the communication period of the first radio module will overlap the periodic transmission of the second radio module. In some instances, a signal can be asserted to the second radio module effective to delay the periodic transmission. The asserted signal may indicate that a communication channel or medium is restricted, such as a clear channel assessment (CCA) signal. In the context of the present example, communication manager 210 asserts a CCA signal of WLAN radio module 204 to delay transmission of the beacon scheduled for the TBTT until after the SCO period of WPAN radio module 206.
At 506, delaying the periodic transmission of the second radio module is ceased to allow the second radio module to transmit. Ceasing to delay the periodic transmission is responsive to the communication period of the first radio module ending or to a time-out period lapsing. Ceasing to delay the periodic transmission can include ceasing to assert a signal to the second radio module such as, for example, the CCA signal as described above. Concluding the present example, communication manager ceases to assert the CCA signal to WLAN module 204 to allow transmission of the beacon after the SCO period of WPAN radio module 206. The operations of blocks 502, 504, and 506 may be repeated allowing both radio modules to communicate additional data.
System-on-Chip
SoC 600 can be integrated with electronic circuitry, a microprocessor, memory, input-output (I/O) logic control, communication interfaces and components, other hardware, firmware, and/or software needed to run an entire device. SoC 600 can also include an integrated data bus (not shown) that couples the various components of the SoC for data communication between the components. A wireless communication device that includes SoC 600 can also be implemented with many combinations of differing components.
In this example, SoC 600 includes various components such as an input-output (I/O) logic control 602 (e.g., to include electronic circuitry) and a microprocessor 604 (e.g., any of a microcontroller or digital signal processor). SoC 600 also includes a memory 606, which can be any type of random access memory (RAM), a low-latency nonvolatile memory (e.g., flash memory), read only memory (ROM), and/or other suitable electronic data storage. SoC 600 can also include various firmware and/or software, such as an operating system 608, which can be computer-executable instructions maintained by memory 606 and executed by microprocessor 604. SoC 600 can also include other various communication interfaces and components, wireless communication components, other hardware, firmware, and/or software.
SoC 600 also includes WLAN radio module 204, WPAN radio module 206, and communication manager 210. Examples of these various components, functions, and/or entities, and their corresponding functionality, are described with reference to the respective components of the environment 100 shown in
Communication manager 210 in SoC 600, either independently or in combination with other entities, can be implemented as computer-executable instructions maintained by memory 606 and executed by microprocessor 604 to implement various embodiments and/or features described herein. Communication manager 210 may also be provided integral with other entities of the SoC, such as integrated with one or both of WLAN radio module 204 and/or WPAN radio module 206, antenna switch 610, or an arbiter module (not shown). Alternatively or additionally, communication manager 210 and the other components can be implemented as hardware, firmware, fixed logic circuitry, or any combination thereof that is implemented in connection with the I/O logic control 602 and/or other signal processing and control circuits of SoC 600.
Although the subject matter has been described in language specific to structural features and/or methodological operations, the subject matter defined in the appended claims is not necessarily limited to the specific features or operations described above, including orders in which they are performed.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/243,069 filed Sep. 16, 2009, the disclosure of which is incorporated by reference herein in its entirety. This application also claims priority to U.S. Provisional Patent Application Ser. No. 61/243,080 filed Sep. 16, 2009, the disclosure of which is incorporated by reference herein in its entirety
Number | Name | Date | Kind |
---|---|---|---|
4337463 | Vangen | Jun 1982 | A |
4366350 | Lee et al. | Dec 1982 | A |
4385384 | Rosbury et al. | May 1983 | A |
4805215 | Miller | Feb 1989 | A |
5347234 | Gersbach et al. | Sep 1994 | A |
5634207 | Yamaji et al. | May 1997 | A |
5673291 | Dent | Sep 1997 | A |
5708656 | Noneman et al. | Jan 1998 | A |
5847616 | Ng et al. | Dec 1998 | A |
5995819 | Yamaji et al. | Nov 1999 | A |
6035210 | Endo et al. | Mar 2000 | A |
6167245 | Welland et al. | Dec 2000 | A |
6285262 | Kuriyama | Sep 2001 | B1 |
6320919 | Khayrallah et al. | Nov 2001 | B1 |
6347091 | Wallentin et al. | Feb 2002 | B1 |
6366622 | Brown et al. | Apr 2002 | B1 |
6374117 | Denkert et al. | Apr 2002 | B1 |
6438364 | Waite | Aug 2002 | B1 |
6452458 | Tanimoto | Sep 2002 | B1 |
6509777 | Razavi et al. | Jan 2003 | B2 |
6519461 | Andersson et al. | Feb 2003 | B1 |
6535037 | Maligeorgos | Mar 2003 | B2 |
6553229 | Dent | Apr 2003 | B1 |
6640308 | Keyghobad et al. | Oct 2003 | B1 |
6650195 | Brunn et al. | Nov 2003 | B1 |
6675328 | Krishnamachari et al. | Jan 2004 | B1 |
6738358 | Bist et al. | May 2004 | B2 |
6741846 | Welland et al. | May 2004 | B1 |
6741862 | Chung et al. | May 2004 | B2 |
6754189 | Cloutier et al. | Jun 2004 | B1 |
6816452 | Maehata | Nov 2004 | B1 |
6816718 | Yan et al. | Nov 2004 | B2 |
6922433 | Tamura | Jul 2005 | B2 |
6934566 | Kang et al. | Aug 2005 | B2 |
6946950 | Ueno et al. | Sep 2005 | B1 |
6954708 | Rakshani et al. | Oct 2005 | B2 |
7079811 | Lee et al. | Jul 2006 | B2 |
7092428 | Chen et al. | Aug 2006 | B2 |
7139540 | Wu et al. | Nov 2006 | B2 |
7173431 | Lo et al. | Feb 2007 | B1 |
7174488 | Chu | Feb 2007 | B1 |
7206840 | Choi et al. | Apr 2007 | B2 |
7212798 | Adams et al. | May 2007 | B1 |
7239882 | Cook | Jul 2007 | B1 |
7257095 | Liu | Aug 2007 | B2 |
7286009 | Andersen et al. | Oct 2007 | B2 |
7298183 | Mirzaei et al. | Nov 2007 | B2 |
7310023 | Cha et al. | Dec 2007 | B2 |
7319849 | Womac | Jan 2008 | B2 |
7342895 | Serpa et al. | Mar 2008 | B2 |
7355416 | Darshan | Apr 2008 | B1 |
7377441 | Wiklof et al. | May 2008 | B2 |
7395040 | Behzad | Jul 2008 | B2 |
7403018 | Lo et al. | Jul 2008 | B1 |
7463592 | Poncini et al. | Dec 2008 | B2 |
7529548 | Sebastian | May 2009 | B2 |
7564826 | Sherman et al. | Jul 2009 | B2 |
7595768 | Li et al. | Sep 2009 | B2 |
7599671 | Kopikare et al. | Oct 2009 | B2 |
7616935 | Fernandez-Corbaton et al. | Nov 2009 | B2 |
7626966 | Ruiter et al. | Dec 2009 | B1 |
7627025 | Wang et al. | Dec 2009 | B2 |
7627026 | Wang et al. | Dec 2009 | B2 |
7636388 | Wang et al. | Dec 2009 | B2 |
7656205 | Chen et al. | Feb 2010 | B2 |
7659003 | Aoki et al. | Feb 2010 | B2 |
7664085 | Waxman | Feb 2010 | B2 |
7672645 | Kilpatrick et al. | Mar 2010 | B2 |
7689190 | Kerth et al. | Mar 2010 | B2 |
7711004 | Xu | May 2010 | B2 |
7717342 | Wang | May 2010 | B2 |
7725118 | Yang et al. | May 2010 | B2 |
7734253 | Chen et al. | Jun 2010 | B2 |
7777624 | Wu et al. | Aug 2010 | B2 |
7826411 | Gonikberg et al. | Nov 2010 | B2 |
7844222 | Grushkevich | Nov 2010 | B2 |
7849333 | Schindler | Dec 2010 | B2 |
7876786 | Bahl et al. | Jan 2011 | B2 |
7881746 | Desai | Feb 2011 | B2 |
7898948 | DiGirolamo et al. | Mar 2011 | B2 |
7936714 | Karr et al. | May 2011 | B1 |
7957340 | Choi et al. | Jun 2011 | B2 |
7966036 | Kojima | Jun 2011 | B2 |
7983216 | Iyer et al. | Jul 2011 | B2 |
7995544 | Benveniste | Aug 2011 | B2 |
8000715 | Melpignano et al. | Aug 2011 | B2 |
8014329 | Gong | Sep 2011 | B2 |
8045922 | Sherman et al. | Oct 2011 | B2 |
8046024 | Sudak et al. | Oct 2011 | B2 |
8060017 | Schlicht et al. | Nov 2011 | B2 |
8072913 | Desai | Dec 2011 | B2 |
8073388 | Grushkevich et al. | Dec 2011 | B2 |
8077652 | Thesling | Dec 2011 | B2 |
8078111 | Jovicic et al. | Dec 2011 | B2 |
8081038 | Lee et al. | Dec 2011 | B2 |
8085737 | Zhu | Dec 2011 | B2 |
8107391 | Wu et al. | Jan 2012 | B2 |
8121144 | Bitran | Feb 2012 | B2 |
8126502 | Trainin | Feb 2012 | B2 |
8139670 | Son et al. | Mar 2012 | B1 |
8140075 | Watanabe | Mar 2012 | B2 |
8149715 | Goel | Apr 2012 | B1 |
8150328 | Chaudhri et al. | Apr 2012 | B2 |
8159928 | Gorokhov et al. | Apr 2012 | B2 |
8165102 | Vleugels et al. | Apr 2012 | B1 |
8170002 | Wentink | May 2012 | B2 |
8170546 | Bennett | May 2012 | B2 |
8189506 | Kneckt et al. | May 2012 | B2 |
8189526 | Hsu et al. | May 2012 | B2 |
8204015 | Chaudhri et al. | Jun 2012 | B2 |
8219142 | Khairmode et al. | Jul 2012 | B2 |
8229087 | Sumioka et al. | Jul 2012 | B2 |
8233928 | Stanforth et al. | Jul 2012 | B2 |
8254296 | Lambert | Aug 2012 | B1 |
8256681 | Wang | Sep 2012 | B2 |
8274885 | Wu et al. | Sep 2012 | B2 |
8274894 | Kneckt et al. | Sep 2012 | B2 |
8275314 | Lin | Sep 2012 | B1 |
8310967 | Goel | Nov 2012 | B1 |
8315564 | Banerjea | Nov 2012 | B2 |
8340034 | Lee | Dec 2012 | B1 |
8364188 | Srinivasan et al. | Jan 2013 | B2 |
8369782 | Lin et al. | Feb 2013 | B1 |
8442434 | Grushkevich et al. | May 2013 | B2 |
8451776 | Dayal et al. | May 2013 | B2 |
8472427 | Wheeler et al. | Jun 2013 | B1 |
8472968 | Kim | Jun 2013 | B1 |
8483190 | Donovan | Jul 2013 | B2 |
8493966 | Bendelac | Jul 2013 | B2 |
8493992 | Sella et al. | Jul 2013 | B2 |
8496181 | Wang | Jul 2013 | B2 |
8526348 | Desai | Sep 2013 | B2 |
8532041 | Lambert et al. | Sep 2013 | B1 |
8537798 | Tsfati et al. | Sep 2013 | B2 |
8537799 | Tsfati et al. | Sep 2013 | B2 |
8553561 | Chokshi et al. | Oct 2013 | B1 |
8571479 | Banerjea | Oct 2013 | B2 |
8577305 | Rossi et al. | Nov 2013 | B1 |
8588705 | Tsui et al. | Nov 2013 | B1 |
8599814 | Vleugels et al. | Dec 2013 | B1 |
8600324 | Cousinard et al. | Dec 2013 | B1 |
8619732 | Khairmode et al. | Dec 2013 | B2 |
8626067 | Ko et al. | Jan 2014 | B2 |
8649734 | Lin et al. | Feb 2014 | B1 |
8654773 | Wentink et al. | Feb 2014 | B2 |
8655278 | Laroche et al. | Feb 2014 | B2 |
8655279 | Banerjea | Feb 2014 | B2 |
8665848 | Wentink | Mar 2014 | B2 |
8699430 | Chandramouli et al. | Apr 2014 | B2 |
8730927 | Thoukydides | May 2014 | B2 |
8750926 | Fu et al. | Jun 2014 | B2 |
8767616 | Choi et al. | Jul 2014 | B2 |
8805303 | Koo et al. | Aug 2014 | B2 |
8811318 | Jo et al. | Aug 2014 | B2 |
8842618 | Yu et al. | Sep 2014 | B2 |
8867481 | Banerjea et al. | Oct 2014 | B2 |
8897706 | Lin et al. | Nov 2014 | B1 |
8913599 | Gonikberg et al. | Dec 2014 | B2 |
8923788 | Cousinard et al. | Dec 2014 | B1 |
8982826 | Lambert et al. | Mar 2015 | B1 |
8983557 | Sun et al. | Mar 2015 | B1 |
8989669 | Banerjea | Mar 2015 | B2 |
20020025810 | Takayama et al. | Feb 2002 | A1 |
20020049854 | Cox et al. | Apr 2002 | A1 |
20020102941 | Kuiri et al. | Aug 2002 | A1 |
20030040316 | Stanforth et al. | Feb 2003 | A1 |
20030148750 | Yan et al. | Aug 2003 | A1 |
20030198200 | Diener et al. | Oct 2003 | A1 |
20040044489 | Jones et al. | Mar 2004 | A1 |
20040063403 | Durrant | Apr 2004 | A1 |
20040105401 | Lee | Jun 2004 | A1 |
20040110470 | Tsiden et al. | Jun 2004 | A1 |
20040162106 | Monroe et al. | Aug 2004 | A1 |
20040192222 | Vaisanen et al. | Sep 2004 | A1 |
20040198297 | Oh et al. | Oct 2004 | A1 |
20040214575 | Jovanovic | Oct 2004 | A1 |
20040233881 | Kang et al. | Nov 2004 | A1 |
20040259589 | Bahl et al. | Dec 2004 | A1 |
20050018641 | Zhao et al. | Jan 2005 | A1 |
20050025104 | Fischer et al. | Feb 2005 | A1 |
20050025174 | Fischer et al. | Feb 2005 | A1 |
20050038876 | Chaudhuri | Feb 2005 | A1 |
20050058151 | Yeh | Mar 2005 | A1 |
20050064840 | Heydari et al. | Mar 2005 | A1 |
20050090218 | Ishida et al. | Apr 2005 | A1 |
20050120119 | Bhanu et al. | Jun 2005 | A1 |
20050135360 | Shin et al. | Jun 2005 | A1 |
20050174962 | Gurevich | Aug 2005 | A1 |
20050186962 | Yoneyama et al. | Aug 2005 | A1 |
20050206554 | Yamaura | Sep 2005 | A1 |
20050215197 | Chen et al. | Sep 2005 | A1 |
20050250528 | Song et al. | Nov 2005 | A1 |
20050254423 | Berghoff | Nov 2005 | A1 |
20050281278 | Black et al. | Dec 2005 | A1 |
20060007863 | Naghian | Jan 2006 | A1 |
20060049880 | Rein et al. | Mar 2006 | A1 |
20060063509 | Pincu et al. | Mar 2006 | A1 |
20060079232 | Omori et al. | Apr 2006 | A1 |
20060114044 | Mintchev et al. | Jun 2006 | A1 |
20060120338 | Hwang et al. | Jun 2006 | A1 |
20060128308 | Michael et al. | Jun 2006 | A1 |
20060128347 | Piriyapoksombut et al. | Jun 2006 | A1 |
20060189359 | Kammer et al. | Aug 2006 | A1 |
20060199565 | Ammirata | Sep 2006 | A1 |
20060200862 | Olson et al. | Sep 2006 | A1 |
20060215601 | Vleugels et al. | Sep 2006 | A1 |
20060223474 | Yoshizaki et al. | Oct 2006 | A1 |
20060239443 | Oxford et al. | Oct 2006 | A1 |
20060251198 | Ma et al. | Nov 2006 | A1 |
20060252418 | Quinn et al. | Nov 2006 | A1 |
20060264179 | Bonneville et al. | Nov 2006 | A1 |
20060268756 | Wang et al. | Nov 2006 | A1 |
20060268804 | Kim et al. | Nov 2006 | A1 |
20060281404 | Lee et al. | Dec 2006 | A1 |
20060282541 | Hiroki | Dec 2006 | A1 |
20060282667 | Kim et al. | Dec 2006 | A1 |
20060286935 | Utsunomiya et al. | Dec 2006 | A1 |
20070010237 | Jones et al. | Jan 2007 | A1 |
20070010247 | Mouna-Kingue et al. | Jan 2007 | A1 |
20070014314 | O'Neil | Jan 2007 | A1 |
20070026810 | Love et al. | Feb 2007 | A1 |
20070077908 | Vorenkamp et al. | Apr 2007 | A1 |
20070081553 | Cicchetti et al. | Apr 2007 | A1 |
20070103829 | Darshan et al. | May 2007 | A1 |
20070109973 | Trachewsky | May 2007 | A1 |
20070142080 | Tanaka et al. | Jun 2007 | A1 |
20070173286 | Carter et al. | Jul 2007 | A1 |
20070178888 | Alfano et al. | Aug 2007 | A1 |
20070183443 | Won | Aug 2007 | A1 |
20070200622 | Filoramo et al. | Aug 2007 | A1 |
20070202814 | Ono et al. | Aug 2007 | A1 |
20070206519 | Hansen et al. | Sep 2007 | A1 |
20070206762 | Chandra et al. | Sep 2007 | A1 |
20070223430 | Desai et al. | Sep 2007 | A1 |
20070238482 | Rayzman et al. | Oct 2007 | A1 |
20070242645 | Stephenson et al. | Oct 2007 | A1 |
20070264959 | Carrez | Nov 2007 | A1 |
20070268862 | Singh et al. | Nov 2007 | A1 |
20070280471 | Fallahi et al. | Dec 2007 | A1 |
20070286298 | Choi et al. | Dec 2007 | A1 |
20070297388 | Appaji et al. | Dec 2007 | A1 |
20080022162 | Qiu | Jan 2008 | A1 |
20080027033 | Gonda et al. | Jan 2008 | A1 |
20080045162 | Rofougaran et al. | Feb 2008 | A1 |
20080056201 | Bennett | Mar 2008 | A1 |
20080069034 | Buddhikot et al. | Mar 2008 | A1 |
20080076466 | Larsson | Mar 2008 | A1 |
20080080446 | Chung | Apr 2008 | A1 |
20080095058 | Dalmases et al. | Apr 2008 | A1 |
20080095059 | Chu | Apr 2008 | A1 |
20080111639 | Ryckaert et al. | May 2008 | A1 |
20080129118 | Diab | Jun 2008 | A1 |
20080130595 | Abdel-Kader | Jun 2008 | A1 |
20080137580 | Axelsson et al. | Jun 2008 | A1 |
20080139212 | Chen et al. | Jun 2008 | A1 |
20080161031 | Tu | Jul 2008 | A1 |
20080170550 | Liu et al. | Jul 2008 | A1 |
20080181154 | Sherman | Jul 2008 | A1 |
20080187003 | Becker | Aug 2008 | A1 |
20080232287 | Shao et al. | Sep 2008 | A1 |
20080238679 | Rofougaran et al. | Oct 2008 | A1 |
20080259846 | Gonikberg et al. | Oct 2008 | A1 |
20080261552 | Chung | Oct 2008 | A1 |
20080261640 | Yoshida | Oct 2008 | A1 |
20080262991 | Kapoor et al. | Oct 2008 | A1 |
20080272818 | Ko | Nov 2008 | A1 |
20080279138 | Gonikberg et al. | Nov 2008 | A1 |
20080279162 | Desai | Nov 2008 | A1 |
20080279163 | Desai | Nov 2008 | A1 |
20080280638 | Malladi et al. | Nov 2008 | A1 |
20080310067 | Diab et al. | Dec 2008 | A1 |
20080320108 | Murty et al. | Dec 2008 | A1 |
20090005061 | Ward et al. | Jan 2009 | A1 |
20090010210 | Hiertz et al. | Jan 2009 | A1 |
20090030976 | Shukla et al. | Jan 2009 | A1 |
20090067396 | Fischer | Mar 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090143043 | Yoshizaki et al. | Jun 2009 | A1 |
20090147763 | Desai et al. | Jun 2009 | A1 |
20090168686 | Love et al. | Jul 2009 | A1 |
20090168725 | Mishra | Jul 2009 | A1 |
20090170497 | Miao et al. | Jul 2009 | A1 |
20090175250 | Mathur et al. | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090196210 | Desai | Aug 2009 | A1 |
20090202013 | Sebastian | Aug 2009 | A1 |
20090209288 | Rofougaran | Aug 2009 | A1 |
20090235316 | Wu et al. | Sep 2009 | A1 |
20090239471 | Tran et al. | Sep 2009 | A1 |
20090240998 | Sherman et al. | Sep 2009 | A1 |
20090245133 | Gupta et al. | Oct 2009 | A1 |
20090245279 | Wan et al. | Oct 2009 | A1 |
20090247217 | Hsu et al. | Oct 2009 | A1 |
20090268652 | Kneckt et al. | Oct 2009 | A1 |
20090275299 | Buch et al. | Nov 2009 | A1 |
20090280762 | Park et al. | Nov 2009 | A1 |
20090285264 | Aldana et al. | Nov 2009 | A1 |
20090291640 | Bhattad et al. | Nov 2009 | A1 |
20090291690 | Guvenc et al. | Nov 2009 | A1 |
20090311961 | Banerjea | Dec 2009 | A1 |
20090312027 | Foschini et al. | Dec 2009 | A1 |
20090321056 | Ran et al. | Dec 2009 | A1 |
20090325591 | Liu et al. | Dec 2009 | A1 |
20100009675 | Wijting et al. | Jan 2010 | A1 |
20100011231 | Banerjea et al. | Jan 2010 | A1 |
20100029325 | Wang et al. | Feb 2010 | A1 |
20100052796 | Menkhoff | Mar 2010 | A1 |
20100061244 | Meier et al. | Mar 2010 | A1 |
20100062799 | Ishii et al. | Mar 2010 | A1 |
20100069112 | Sun et al. | Mar 2010 | A1 |
20100080319 | Blocher et al. | Apr 2010 | A1 |
20100082957 | Iwata | Apr 2010 | A1 |
20100097952 | McHenry et al. | Apr 2010 | A1 |
20100103867 | Kishiyama et al. | Apr 2010 | A1 |
20100130129 | Chang et al. | May 2010 | A1 |
20100135256 | Lee et al. | Jun 2010 | A1 |
20100138549 | Goel et al. | Jun 2010 | A1 |
20100165896 | Gong et al. | Jul 2010 | A1 |
20100189165 | Xu et al. | Jul 2010 | A1 |
20100216497 | Kawasaki | Aug 2010 | A1 |
20100238793 | Alfano et al. | Sep 2010 | A1 |
20100248734 | Yamazaki et al. | Sep 2010 | A1 |
20100283654 | Waheed et al. | Nov 2010 | A1 |
20100284355 | Jung et al. | Nov 2010 | A1 |
20100293293 | Beser | Nov 2010 | A1 |
20100303026 | Chaudhri et al. | Dec 2010 | A1 |
20100316027 | Rick et al. | Dec 2010 | A1 |
20100322213 | Liu et al. | Dec 2010 | A1 |
20110002226 | Bhatti | Jan 2011 | A1 |
20110007675 | Chiou et al. | Jan 2011 | A1 |
20110009074 | Hsu et al. | Jan 2011 | A1 |
20110021240 | Hiltunen et al. | Jan 2011 | A1 |
20110026488 | Patel et al. | Feb 2011 | A1 |
20110053522 | Rofougaran et al. | Mar 2011 | A1 |
20110097998 | Ko et al. | Apr 2011 | A1 |
20110103363 | Bennett | May 2011 | A1 |
20110116488 | Grandhi | May 2011 | A1 |
20110161697 | Qi et al. | Jun 2011 | A1 |
20110164538 | Karr et al. | Jul 2011 | A1 |
20110188391 | Sella et al. | Aug 2011 | A1 |
20110194519 | Habetha | Aug 2011 | A1 |
20110205924 | Gonikberg et al. | Aug 2011 | A1 |
20110274040 | Pani et al. | Nov 2011 | A1 |
20120020319 | Song et al. | Jan 2012 | A1 |
20120025921 | Yang et al. | Feb 2012 | A1 |
20120039176 | Eshan et al. | Feb 2012 | A1 |
20120087341 | Jang et al. | Apr 2012 | A1 |
20120099476 | Mahaffy | Apr 2012 | A1 |
20120115420 | Trainin | May 2012 | A1 |
20120195397 | Sayana et al. | Aug 2012 | A1 |
20120212628 | Wu et al. | Aug 2012 | A1 |
20120213162 | Koo et al. | Aug 2012 | A1 |
20120213208 | Hsu et al. | Aug 2012 | A1 |
20120244805 | Haikonen et al. | Sep 2012 | A1 |
20120276938 | Wagholikar et al. | Nov 2012 | A1 |
20120294396 | Desai | Nov 2012 | A1 |
20120327779 | Gell et al. | Dec 2012 | A1 |
20130045687 | Banerjea | Feb 2013 | A1 |
20130045688 | Banerjea | Feb 2013 | A1 |
20130057344 | Touzard et al. | Mar 2013 | A1 |
20130114548 | Banerjea | May 2013 | A1 |
20130130684 | Gomes et al. | May 2013 | A1 |
20130176903 | Bijwe | Jul 2013 | A1 |
20130217401 | Edge et al. | Aug 2013 | A1 |
20130225068 | Kiminki et al. | Aug 2013 | A1 |
20130287043 | Nanda et al. | Oct 2013 | A1 |
20130301420 | Zhang et al. | Nov 2013 | A1 |
20140003318 | Desai | Jan 2014 | A1 |
20140004794 | Contaldo et al. | Jan 2014 | A1 |
20140043966 | Lee et al. | Feb 2014 | A1 |
20140044106 | Bhagwat | Feb 2014 | A1 |
20140073251 | Banerjea | Mar 2014 | A1 |
20140087663 | Burchill et al. | Mar 2014 | A1 |
20140126552 | Dayal et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
102067689 | May 2011 | CN |
1860827 | Nov 2007 | EP |
2299642 | Mar 2011 | EP |
2456275 | May 2012 | EP |
2006174162 | Jun 2006 | JP |
200728568 | Feb 2007 | JP |
2007028568 | Feb 2007 | JP |
WO-0178252 | Oct 2001 | WO |
WO-02082751 | Oct 2002 | WO |
WO-02091623 | Nov 2002 | WO |
WO-2006043956 | Apr 2006 | WO |
WO-2006090254 | Aug 2006 | WO |
WO-2007008981 | Jan 2007 | WO |
WO-2007064822 | Jun 2007 | WO |
WO-2008707777 | Jun 2008 | WO |
WO-2008150122 | Dec 2008 | WO |
WO-2009101567 | Aug 2009 | WO |
WO-2011056878 | May 2011 | WO |
WO-2013104989 | Jul 2013 | WO |
WO-2013119810 | Aug 2013 | WO |
Entry |
---|
“Final Office Action”, U.S. Appl. No. 12/323,292, Aug. 24, 2012, 26 pages. |
“Foreign Office Action”, European Patent Application No. 09789754.0, Jul. 12, 2012, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/759,336, Oct. 4, 2012, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/190,251, Oct. 4, 2012, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/190,251, (Mar. 29, 2012), 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/190,240, (May 16, 2012), 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/478,446, (Jun. 14, 2012), 6 pages. |
“Final Office Action”, U.S. Appl. No. 12/190,251, (Sep. 13, 2011), 15 pages. |
“Foreign Office Action”, EP Application No. 09789754.0, (May 17, 2011), 8 pages. |
“Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11h-2003 (Amendment to IEEE Std 802.11-1993),(Oct. 14, 2003), 80 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/190,251, (Mar. 29, 2011), 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/534,361, (Oct. 12, 2011), 11 pages. |
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—, IEEE,(Apr. 2003), pp. 1-69. |
“PCT Search Report”, Application No. PCT/US2009/046289, (Oct. 29, 2009), 13 pages. |
Jung, Eun-Sun et al., “A Power Control MAC Protocol for Ad Hoc Networks”, Wireless Networks; The Journal of Mobile Communication, Computation, and Information, vol. 11, No. 1-2, Kluwer Academic Publishers,(Jan. 1, 2005), pp. 55-66. |
“Final Office Action”, U.S. Appl. No. 12/759,336, Feb. 25, 2013, 11 pages. |
“Foreign Office Action”, Chinese Application No. 200980122587.0, Feb. 21, 2013, 17 pages. |
“Foreign Office Action”, Japanese Application No. 2011-513586, Apr. 9, 2013, 4 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,482, Mar. 19, 2013, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,502, Feb. 21, 2013, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/604,563, Apr. 5, 2013, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/534,361, Feb. 14, 2013, 12 pages. |
“Foreign Office Action”, European Patent Application No. 09789754.0, Mar. 11, 2013, 4 Pages. |
“Notice of Allowance”, U.S. Appl. No. 12/759,336, May 3, 2013, 9 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/759,336, Jun. 5, 2013, 2 pages. |
Jung, et al.,“A Power Control MAC Protocol for Ad Hoc Networks”, Wireless Networks ; The Journal of Mobile Communication, Computation and Information, Kluwer Academic Publishers vol. 11, No. 1-2, Jan. 1, 2005, 12 Pages. |
“Foreign Notice of Allowance”, Japanese Application No. 2011-513586, Jul. 16, 2013, 2 pages. |
Qiao, et al.,“Interference Analysis and Transmit Power Control in IEEE 802.11a/h Wireless LANs”, IEEE / ACM Transactions on Networking, IEEE / ACM, New York, NY, US, vol. 15. No. 5, Oct. 1, 2007, 14 Pages. |
“Notice of Allowance”, U.S. Appl. No. 12/323,292, Jun. 28, 2013, 8 pages. |
Tinnirello et al.,“Revisit of RTS / CTS Exchange in High-Speed IEEE 802.11 Networks”, World of Wireless Mobile and Multimedia Networks. 2005. Wowmom 2005. Sixth IEEE International Symposium on a Taormina-Giardini Naxos, Italy Jun. 13-16, 2005 Piscataway, NJ, USA,IEEE, Los Alamitos, CA, USA, Jun. 13, 2005, 10 Pages. |
“Search Report”, European Application No. 13169350.9, Aug. 13, 2013, 10 Pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/759,336, Jun. 18, 2013, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/759,336, Aug. 14, 2013, 2 pages. |
“Foreign Office Action”, Japanese Application No. 2011-513586, Oct. 23, 2012, 7 pages. |
“Advisory Action”, U.S. Appl. No. 12/190,251, (Dec. 7, 2011), 3 pages. |
“Final Office Action”, U.S. Appl. No. 12/534,361, (Feb. 29, 2012), 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/190,240, (Jan. 6, 2012), 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/323,292, (Dec. 21, 2011), 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/478,446, (Dec. 28, 2011), 17 pages. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification (Release 10)”, 3GPP TS 36.331; V10.5.0; 3GPP Organizational Partners, 2012, 302 pages. |
“Advisory Action”, U.S. Appl. No. 12/646,721, Aug. 13, 2013, 3 pages. |
“Draft Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements”, IEEE P802.11s/D1.03, Apr. 2007, 251 pages. |
“Final Office Action”, U.S. Appl. No. 12/186,429, Oct. 13, 2011, 23 pages. |
“Final Office Action”, U.S. Appl. No. 12/358,955, Feb. 17, 2012, 26 pages. |
“Final Office Action”, U.S. Appl. No. 12/358,955, Mar. 18, 2013, 12 pages. |
“Final Office Action”, U.S. Appl. No. 12/484,563, Apr. 24, 2012, 18 pages. |
“Final Office Action”, U.S. Appl. No. 12/487,425, May 3, 2012, 9 pages. |
“Final Office Action”, U.S. Appl. No. 12/542,845, Sep. 25, 2012, 23 pages. |
“Final Office Action”, U.S. Appl. No. 12/616,454, Apr. 11, 2012, 19 pages. |
“Final Office Action”, U.S. Appl. No. 12/646,721, Jun. 6, 2013, 16 pages. |
“Final Office Action”, U.S. Appl. No. 12/646,802, Nov. 15, 2012, 15 pages. |
“Foreign Office Action”, CN Application No. 200980122587.0, Sep. 10, 2013, 11 Pages. |
“Foreign Office Action”, Chinese Application No. 200980122587.0, Jan. 24, 2014, 10 Pages. |
“Further Higher Data Rate Extension in the 2.4 GHz Band”, IEEE P802.11g/D8.2, DRAFT Supplement to Standard [for] Information Technology, Apr. 2003, 69 pages. |
“IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment”, IEEE Computer Society, Oct. 14, 2010, pp. 12-18, 23, 65-68. |
“Information Technology—Telecommunications and Information Exchange Between systems—Local and Metropolitan Area Networks—Specific Requirements”, IEEE Standard, Aug. 1, 2005, pp. 1-60. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/035597, Aug. 6, 2012, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/IB2013/001962, Feb. 6, 2014, 11 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/429,090, Oct. 24, 2013, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/167,841, Jul. 15, 2011, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/186,429, Apr. 25, 2011, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/235,333, Jun. 28, 2011, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/358,955, Sep. 6, 2011, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/358,955, Aug. 20, 2012, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/484,563, Oct. 4, 2011, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/487,425, Jan. 12, 2012, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,845, Oct. 23, 2013, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,845, Apr. 4, 2012, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/616,454, Dec. 22, 2011, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/646,721, Nov. 7, 2012, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/646,721, May 10, 2012, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/646,802, Mar. 29, 2012, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/732,036, Aug. 9, 2012, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/099,169, Mar. 28, 2013, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/099,169, Oct. 4, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/249,740, Mar. 26, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/249,740, Oct. 16, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/479,124, Sep. 27, 2013, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/757,276, Jan. 30, 2014, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/911,979, Jan. 31, 2014, 19 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/167,841, Nov. 25, 2011, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/186,429, Jun. 6, 2013, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/235,333, Nov. 15, 2011, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/358,955, Jul. 1, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/484,563, Jul. 9, 2012, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/487,425, Jul. 26, 2013, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/616,454, Aug. 22, 2012, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/716,569, Apr. 19, 2012, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/732,036, Feb. 21, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/604,563, Sep. 26, 2013, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/656,482, Sep. 3, 2013, 8 pages. |
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE Std 802.11b-1999/Cor Jan. 2001, Amendment 2: Higher-speed Physical Layer (PHY) extension in the 2.4 GHz band,Nov. 7, 2001, 23 pages. |
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE Std 802.11a-1999, High-speed Physical Layer in the 5 GHz Band,1999, 91 pages. |
“PCT Search Report and Written Opinion”, Application No. PCT/IB2013/000390, Aug. 21, 2013, 19 Pages. |
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/025144, Jun. 5, 2013, 10 pages. |
“PCT Search Report and Written Opinion”, Application No. PCT/US2011/054358, Dec. 16, 2011, 13 pages. |
“Restriction Requirement”, U.S. Appl. No. 12/167,841, May 12, 2011, 6 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/186,429, Jul. 10, 2013, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/323,292, Oct. 17, 2013, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/323,292, Oct. 7, 2013, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/358,955, Oct. 11, 2013, 3 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/716,569, Jul. 23, 2012, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,482, Nov. 29, 2013, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,482, Dec. 19, 2013, 2 pages. |
Haas, et al.,3 “Gossip-Based Ad Hoc Routing”, IEEE/ACM Transactions on Networking, vol. 14, No. 3, Jun. 2006, pp. 479-491. |
Mazzanti, et al.,' “Analysis and Design of Injection-Locked LC Dividers for Quadrature Generation”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1425-1433. |
Mujtaba, “TGn Sync Proposal Technical Specification”, IEEE 802.11-04/0889r6, This document presents the technical specification for the MAC and the PHY layer of the TGn Sync proposal to IEEE 802.11 TGn,May 18, 2005, pp. 1-131. |
“Foreign Office Action”, EP Application No. 13169350.9, May 9, 2014, 3 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/536,506, Apr. 25, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/911,979, Jun. 9, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/089,515, May 13, 2014, 9 pages. |
“Foreign Office Action”, CN Application No. 200980122587.0, Jul. 3, 2014, 12 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/458,227, Jul. 3, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/018,232, Aug. 13, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/082,981, Aug. 4, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/757,276, Jul. 8, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/089,515, Aug. 21, 2014, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/622,916, Sep. 10, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/063,972, Sep. 24, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/536,506, Sep. 19, 2014, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/911,979, Nov. 20, 2014, 12 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/018,232, Nov. 5, 2014, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/063,972, Nov. 7, 2014, 8 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/757,276, Oct. 24, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/063,972, Jan. 26, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/063,972, Feb. 25, 2015, 2 pages. |
“Foreign Office Action”, CN application No. 200980122587.0, Dec. 3, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/761,949, Jan. 12, 2015, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/082,981, Feb. 13, 2015, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/458,227, Jan. 2, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/622,916, Mar. 30, 2015, 4 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/071,171, Apr. 27, 2015, 6 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/622,916, May 7, 2015, 2 pages. |
Number | Date | Country | |
---|---|---|---|
61243069 | Sep 2009 | US | |
61243080 | Sep 2009 | US |