Claims
- 1. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, and wherein said coherence filter circuit comprises a third adaptive filter model having a model input from said error signal, a model output summed at a second summer with said model output of said second model, and an error input from the output of said second summer, said third model providing a coherence optimized filtered error signal.
- 2. The invention according to claim 1 wherein said second and third models are pre-trained off-line prior to active adaptive control by said first model, and wherein said third model is fixed and coherence filters said error signal during on-line operation of said first model.
- 3. The invention according to claim 1 wherein said second and third models are adapted during on-line active adaptive control by said first model.
- 4. The invention according to claim 1 comprising a fourth adaptive filter model modeling the transfer function from said output transducer to said error transducer, and a copy of said fourth model having an input from said correction signal and an output summed at a third summer with said error signal, and wherein said first summer receives the output of said third summer.
- 5. The invention according to claim 4 comprising a fifth adaptive filter model modeling the transfer function from said output transducer to said input transducer, and a copy of said fifth model having an input from said correction signal and an output summed at a fourth summer with said reference signal, and wherein said model input of said second model receives the output of said fourth summer.
- 6. The invention according to claim 1 wherein said first adaptive filter model has a first algorithm filter comprising an A filter having a filter input from said reference signal, and a second algorithm filter comprising a B filter having a filter input from said correction signal, and comprising a third summer having an input from said A filter and an input from said B filter and providing the output resultant sum as said correction signal, a fourth adaptive filter model modeling the transfer function from the outputs of said A and B filters to said error transducer, a first copy of said fourth model, a first copy of said third model, said first copy of said fourth model and said first copy of said third model being connected in series to provide a first series connection having an input from the input to said A filter, a first multiplier multiplying the output of said first series connection and a coherence filtered error signal and supplying the resultant product as a weight update signal to said A filter, a second copy of said fourth model, a second copy of said third model, said second copy of said fourth model and said second copy of said third model being connected in series to provide a second series connection having an input from the input to said B filter, a second multiplier multiplying the output of said second series connection and a coherence filtered error signal and supplying the resultant product as a weight update signal to said B filter.
- 7. The invention according to claim 6 comprising a third copy of said third model, and wherein said coherence filtered error signal is supplied through said third copy to said first and second multipliers.
- 8. The invention according to claim 7 wherein the output of said fourth summer is supplied to the model input of said third model.
- 9. The invention according to claim 6 comprising a fifth adaptive filter model modeling the transfer function from said output transducer to said error transducer, a copy of said fifth model having an input from said correction signal and an output summed at a fourth summer with said error signal, and wherein said first summer receives the output of said fourth summer, a sixth adaptive filter model modeling the transfer function from said output transducer to said input transducer, and a copy of said sixth model having an input from said correction signal and an output summed at a fifth summer with said reference signal, and wherein said model input of said second model receives the output of said fifth summer.
- 10. The invention according to claim 9 comprising first and second auxiliary noise sources, wherein an auxiliary noise source signal is supplied from said first auxiliary noise source to said third summer and to the input of said fourth model, and wherein an auxiliary noise source signal is supplied from said second auxiliary noise source to the input of said fifth model and to the input of said sixth model.
- 11. The invention according to claim 10 comprising a sixth summer summing the output of said third summer and the auxiliary noise source signal from said second auxiliary noise source and supplying the resultant sum to said output transducer.
- 12. The invention according to claim 11 comprising a seventh summer summing the output of said error transducer and the output of said fifth model and supplying the resultant sum to said fourth summer, an eighth summer summing the output of said input transducer and the output of said sixth model and supplying the resultant sum to said fifth summer, a ninth summer summing the output of said seventh summer and the output of said fourth model.
- 13. The invention according to claim 12 comprising a third copy of said third model having an input from said ninth summer and an output to said error input of said first model, and wherein the input to said third model is supplied from said fourth summer.
- 14. The invention according to claim 1 wherein said model output of said third model provides said coherence optimized filtered error signal to said error input of said first model.
- 15. The invention according to claim 1 comprising a copy of said third model having an input from said error signal and an output providing a coherence optimized filtered error signal to said error input of said first model.
- 16. In an active adaptive control system having a first adaptive filter model a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, and wherein said coherence filter circuit comprises a third adaptive filter model having a model input from the output of said first summer, a model output summed at a second summer with the output of said first summer, and an error input from the output of said second summer.
- 17. The invention according to claim 16 comprising a copy of the combination of said third model and said second summer, said copy having an input from said error signal and an output supplied to said error input of said first model, said output of said copy providing a coherence optimized filtered error signal.
- 18. The invention according to claim 17 wherein the input to said third model has a delay, and wherein said delay is included in said copy.
- 19. The invention according to claim 16 wherein said second and third models are pre-trained off-line prior to active adaptive control by said first model, and wherein said third model is fixed during on-line active adaptive control by said first model.
- 20. The invention according to claim 16 wherein said second and third models are adapted during on-line active adaptive control by said first model.
- 21. The invention according to claim 16 comprising a fourth adaptive filter model modeling the transfer function from said output transducer to said error transducer, and a copy of said fourth model having an input from said correction signal and an output summed at a third summer with said error signal, and wherein said first summer receives the output of said third summer.
- 22. The invention according to claim 21 comprising a fifth adaptive filter model modeling the transfer function from said output transducer to said input transducer, and a copy of said fifth adaptive model having an input from said correction signal and an output summed at a fourth summer with said reference signal, and wherein said model input of said second model receives the output of said fourth summer.
- 23. The invention according to claim 16 wherein said first adaptive filter model has a first algorithm filter comprising an A filter having a filter input from said reference signal, and a second algorithm filter comprising a B filter having a filter input from said correction signal, and comprising a third summer having an input from said A filter and an input from said B filter and providing the output resultant sum as said correction signal, a fourth adaptive filter model modeling the transfer function from the outputs of said A and B filters to said error transducer, a first copy of said fourth model, a first K.sub.ef copy of the combination of said third model and said second summer, said first copy of said fourth model and said first K.sub.ef copy being connected in series to provide a first series connection having an input from the input to said A filter, a first multiplier multiplying the output of said first series connection and a coherence filtered error signal and supplying the resultant product as a weight update signal to said A filter, a second copy of said fourth model, a second K.sub.ef copy of the combination of said third model and said second summer, said second copy of said fourth model and said second K.sub.ef copy being connected in series to provide a second series connection having an input from the input to said B filter, a second multiplier multiplying the output of said second series connection and a coherence filtered error signal and supplying the resultant product as a weight update signal to said B filter.
- 24. The invention according to claim 23 comprising a third K.sub.ef copy of the combination of said third model and said second summer, wherein said error signal is supplied through said third K.sub.ef copy as said coherence filtered error signal to said first and second multipliers.
- 25. The invention according to claim 23 comprising a fifth adaptive filter model modeling the transfer function from said output transducer to said error transducer, a copy of said fifth model having an input from said correction signal and an output summed at a fourth summer with said error signal, wherein said first summer receives the output of said fourth summer, a sixth adaptive filter model modeling the transfer function from said output transducer to said input transducer, and a copy of said fifth model having an input from said correction signal and an output summed at a fifth summer with said reference signal, wherein said model input of said second model receives the output of said fifth summer.
- 26. The invention according to claim 25 comprising first and second auxiliary noise sources, wherein an auxiliary noise source signal is supplied from said first auxiliary noise source to said third summer and to the input of said fourth model, and wherein an auxiliary noise source signal is supplied from said second auxiliary noise source to the input of said fifth model and to the input of said sixth model.
- 27. The invention according to claim 26 comprising a sixth summer summing the output of said third summer and the auxiliary noise source signal from said second auxiliary noise source and supplying the resultant sum to said output transducer.
- 28. The invention according to claim 27 comprising a seventh summer summing the output of said error transducer and the output of said fifth model and supplying the resultant sum to said fourth summer, an eighth summer summing the output of said input transducer and the output of said sixth model and supplying the resultant sum to said fifth summer, and a ninth summer summing the output of said seventh summer and the output of said fourth model and supplying the resultant sum to the input of said copy of said third model.
- 29. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a summer with a signal from said second transducer, and an error input from the output of said summer, and wherein said output of said second model is supplied to said error input of said first model.
- 30. The invention according to claim 29 wherein said first adaptive filter model has a first algorithm filter comprising an A filter having a filter input from said reference signal, and a second algorithm filter comprising a B filter having a filter input from said correction signal, and comprising a second summer having an input from said A filter and an input from said B filter and providing the output resultant sum as said correction signal, a third adaptive filter model modeling the transfer function from the outputs of said A and B filters to said error transducer, a first copy of said third model having an input from the input to said A filter, a first multiplier multiplying the output of said first copy of said third model and a coherence optimized filtered error signal and supplying the resultant product as a weight update signal to said A filter, a second copy of said third model having an input from the input to said B filter, a second multiplier multiplying the output of said second copy of said third model and a coherence optimized filtered error signal and supplying the resultant product as a weight update signal to said B filter.
- 31. The invention according to claim 30 wherein the output of said second model is said coherence optimized filtered error signal supplied to said first and second multipliers.
- 32. The invention according to claim 30 comprising a fourth adaptive filter model modeling the transfer function from said output transducer to said error transducer, a copy of said fourth model having an input from said correction signal and an output summed at a third summer with said error signal, wherein said first summer receives the output of said third summer, a fifth adaptive filter model modeling the transfer function from said output transducer to said input transducer, a copy of said fifth model having an input from said correction signal and an output summed at a fourth summer with said reference signal, wherein said model input of said second model receives the output of said fourth summer, first and second auxiliary noise sources, wherein an auxiliary noise source signal is supplied from said first auxiliary noise source to said second summer and to the input of said third model, and wherein an auxiliary noise source signal is supplied from said second auxiliary noise source to the input of said fourth model and to the input of said fifth model, a fifth summer summing the output of said second summer and the auxiliary noise source signal from said second auxiliary noise source and supplying the resultant sum to said output transducer, a sixth summer summing the output of said error transducer and the output of said fourth model and supplying the resultant sum to said third summer, a seventh summer summing the output of said input transducer and the output of said fifth model and supplying the resultant sum to said fourth summer, an eighth summer summing the output of said copy of said fourth model and the output of said second model and supplying the resultant sum to said error input of said first model.
- 33. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a summer with a signal from said second transducer, and an error input from the output of said summer, and wherein said coherence filter circuit comprises a copy of said second model, wherein said reference signal is supplied through said copy to said model input of said first model.
- 34. The invention according to claim 33 wherein the model input of said second model has a delay.
- 35. The invention according to claim 33 wherein said second model is pre-trained off-line prior to active adaptive control by said first model, and comprising a fixed said copy of said second model coherence filtering said reference signal during on-line operation of said first model.
- 36. The invention according to claim 33 wherein said first adaptive filter model has a first algorithm filter comprising an A filter having a filter input, and a second algorithm filter comprising a B filter having a filter input from said correction signal, and comprising a second summer having an input from said A filter and an input from said B filter and providing the output resultant sum as said correction signal, a third adaptive filter model modeling the transfer function from the output of said A and B filters to said error transducer, a first copy of said third model having an input from the input to said A filter, a first multiplier multiplying the output of said first copy of said third model and said error signal and supplying the resultant product as a weight update signal to said A filter, a second copy of said third model having an input from the input to said B filter, a second multiplier multiplying the output of said second copy of said third model and said error signal and supplying the resultant product as a weight update signal to said B filter, wherein said copy of said second model is at said filter input of said A filter, and said reference signal is supplied through said copy of said second model to said filter input of said A filter and to said first copy of said third model.
- 37. The invention according to claim 36 comprising a fourth adaptive filter model modeling the transfer function from said output transducer to said error transducer, a copy of said fourth model having an input from said correction signal and an output summed at a third summer with said error signal, wherein said first summer receives the output of said third summer, a fifth adaptive filter model modeling the transfer function from said output transducer to said input transducer, a copy of said fifth model having an input from said correction signal and an output summed at a fourth summer with said reference signal, wherein said model input of said second model receives the output of said fourth summer, first and second auxiliary noise sources, wherein an auxiliary noise source signal is supplied from said first auxiliary noise source to said second summer and to the input of said third model, and an auxiliary noise source signal is supplied from said second auxiliary noise source to the input of said fourth model and to the input of said fifth model, a fifth summer summing the output of said second summer and the auxiliary noise source signal from said second auxiliary noise source and supplying the resultant sum to said output transducer, a sixth summer summing the output of said error transducer and the output of said fourth model and supplying the resultant sum to said third summer, a seventh summer summing the output of said input transducer and the output of said fifth model and supplying the resultant sum to said fourth summer and to said copy of said second model.
- 38. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, and comprising a third adaptive filter model having a model input from said error signal, a model output summed at a second summer with said model output of said second model, and an error input from the output of said second summer, a copy of said third model having an input from said input transducer and an output to said model input of said first model and coherence filtering said reference signal supplied to said model input of said first model.
- 39. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, a third adaptive filter model having a model input from the output of said first summer, a model output summed at a second summer with the output of said first summer, and an error input from the output of said second summer, a copy of the combination of said third model and said second summer, said reference signal being supplied through said copy to said model input of said first model to provide a coherence optimized filtered reference signal thereto.
- 40. The invention according to claim 39 wherein said model input of said third model has a delay, and wherein said copy includes said delay.
- 41. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a summer with a signal from said second transducer, and an error input from the output of said summer, and wherein said coherence filter circuit comprises a copy of said second model, wherein said error signal is supplied through said copy.
- 42. The invention according to claim 41 wherein said model input of sid second model has a delay.
- 43. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a summer with a signal from said second transducer, and an error input from the output of said summer, and comprising a copy of said second model, wherein said correction signal is supplied through said copy.
- 44. The invention according to claim 43 wherein said model input of said second model has a delay.
- 45. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, and comprising a third adaptive filter model having a model input from said error signal, a model output summed at a second summer with said model output of said second model, and an error input from the output of said second summer, a copy of said third model, wherein said correction signal is supplied through said copy.
- 46. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence filtering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a first summer with a signal from said second transducer, and an error input from the output of said first summer, and comprising a third adaptive filter model having a model input from the output of said first summer, a model output summed at a second summer with the output of said first summer, and an error input from the output of said second summer, a copy of the combination of said third model and said second summer, wherein said correction signal is supplied through said copy.
- 47. The invention according to claim 46 wherein the input to said third model has a delay, and wherein said delay is included in said copy.
- 48. In an active adaptive control system having a first adaptive filter model, a coherence optimization system comprising first and second transducers outputting first and second signals, a second adaptive filter model determining coherence between said first and second signals, a coherence filter circuit providing coherence tittering in said adaptive control system according to said determined coherence, a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, said first adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to an output transducer to introduce a control signal matching said system input signal, to minimize the error at said error input, wherein said second adaptive filter model has a model input from said first transducer, a model output summed at a summer with a signal from said second transducer, and an error input from the output of said summer.
- 49. The invention according to claim 48 wherein said first transducer is said reference input transducer, and said second transducer is said error transducer.
- 50. The invention according to claim 48 comprising a third adaptive filter model modeling the transfer function from said output transducer to said error transducer, a fourth adaptive filter model modeling the transfer function from said output transducer to said input transducer, a copy of said third adaptive filter model having an input from said correction signal and an output summed at a second summer with said error signal, wherein said first summer receives the output of said second summer, a copy of said fourth model having an input from said correction signal and an output summed at a third summer with said reference signal, wherein said model input of said second model receives the output of said third summer.
- 51. The invention according to claim 50 comprising an auxiliary noise source supplying an auxiliary noise source signal to the inputs of said third and fourth models.
- 52. The invention according to claim 51 comprising a fourth summer summing the output of said first model and said auxiliary noise source signal from said auxiliary noise source and supplying the resultant sum to said output transducer.
- 53. The invention according to claim 52 comprising a fifth adaptive filter model modeling the transfer function from the outputs of said A and B filters to said error transducer, a copy of said fifth model in said first model, a second auxiliary noise source supplying a random noise signal to said first and fifth models.
- 54. A coherence optimized active adaptive control system comprising a reference input transducer sensing a system input signal and outputting a reference signal, an error transducer sensing a system output signal and outputting an error signal, said system input signal and said system output signal having coherent and noncoherent portions, the coherent portion being cancelable, and the noncoherent portion being noncancelable, an adaptive filter model having a model input from said reference signal, an error input from said error signal, and a model output outputting a correction signal to said output transducer to introduce a control signal matching said system input signal to minimize the error at said error input, a circuit separating the error signal into cancelable and noncancelable parts and enhancing adaptation and convergence of said adaptive filter model to said coherent portion.
- 55. The invention according to claim 54 comprising an error filter model having a model input from said error signal, a model output summed with said cancelable part at a summer, and an error input from the output of said summer.
- 56. The invention according to claim 55 wherein said error filter model has reduced gain in regions of said error signal where said cancelable part is reduced.
- 57. The invention according to claim 55 wherein the output of said error filter model is supplied to said error input of said adaptive filter model.
- 58. The invention according to claim 55 comprising a copy of said error filter model, and wherein said error signal is supplied through said copy to said error input of said adaptive filter model.
- 59. The invention according to claim 55 comprising a copy of said error filter model, and wherein said reference signal is supplied through said copy to said model input of said adaptive filter model.
- 60. The invention according to claim 55 comprising a copy of said error filter model, and wherein said correction signal is supplied through said copy to said output transducer.
- 61. The invention according to claim 54 comprising an error filter model whitening said noncancelable part, but not said cancelable part, and focusing adaptation and convergence of said adaptive filter model to said coherent portion.
- 62. The invention according to claim 61 wherein said error filter model has a model input receiving said noncancelable part through a whitening element, a model output summed with said noncancelable part at a summer, and an error input from the output of said summer.
- 63. The invention according to claim 62 comprising a copy of said error filter model, and wherein said error signal is supplied through said copy to said error input of said adaptive filter model.
- 64. The invention according to claim 62 comprising a copy of said error filter model, and wherein said reference signal is supplied through said copy to said model input of said adaptive filter model.
- 65. The invention according to claim 62 comprising a copy of said error filter model, and wherein said correction signal is supplied through said copy to said output transducer.
- 66. The invention according to claim 62 comprising a copy of said error filter model and said whitening element and said summer, and wherein said error signal is supplied through said copy to said error input of said adaptive filter model.
- 67. The invention according to claim 62 comprising a copy of said error filter model and said whitening element and said summer, and wherein said reference signal is supplied through said copy to said model input of said adaptive filter model.
- 68. The invention according to claim 62 comprising a copy of said error filter model and said whitening element and said summer, and wherein said correction signal is supplied through said copy to said output transducer.
- 69. The invention according to claim 54 comprising an error filter model having a model input from said reference signal, a model output summed with said error signal at a summer, and an error input from the output of said summer, said model output of said error filter model providing said cancelable part, said output of said summer providing said noncancelable part.
- 70. The invention according to claim 69 comprising a copy of said error filter model, and wherein said reference signal is supplied through said copy to said model input of said adaptive filter model.
- 71. The invention according to claim 69 comprising a copy of said error filter model, and wherein said error signal is supplied through said copy to said error input of said adaptive filter model.
- 72. The invention according to claim 69 comprising a copy of said error filter model, and wherein said correction signal is supplied through said copy to said output transducer.
- 73. The invention according to claim 69 comprising a delay element at said model input of said error filter model matching the propagation delay of the system input signal from said reference input transducer to said error transducer.
Parent Case Info
This is a continuation of application Ser. No. 08/247,561, filed May 23, 1994 now abandoned.
US Referenced Citations (24)
Non-Patent Literature Citations (1)
Entry |
"Adaptive Noise Cancelling: Principles and Applications", B. Widrow et al, Proceeding of The IEEE, vol. 63, No. 12, Dec., 1975, pp. 1692-1716. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
247561 |
May 1994 |
|