While the speed of oscilloscopes has increased substantially in recent times, the speed of signals that are to be viewed by the scopes has also increased substantially. Indeed, the speed of many signals now outstrips the ability for physical hardware to keep up and properly sample and digitize the signal. In order to acquire signals that are faster than any hardware is capable of sampling, a sampling oscilloscope has been developed. In such a sampling oscilloscope, a number of samples of a repetitive waveform are taken on each of a plurality of consecutively presented waveforms. If these samples are taken at different times on each of the plurality of waveforms relative to a defined starting point thereof, they can be used together to presented a reconstructed representation of the entire waveform.
While a number of attempts have been made to provide such a sampling system, each of these attempts includes drawbacks when looking at a signal having a long repeat period, such as a Pseudo-Random Bit Stream (PRBS) used in conjunction with communications equipment, or the like. U.S. Pat. No. 6,271,773 titled “Coherent sampling method and apparatus”, issued in 2001 to Kobayashi (one of the inventors of the present invention), discloses a coherent sampling method for fast data acquisition for simple periodic signals. While the '773 patent describes the acquisition of a random bit stream over a short time range (i.e. having a short repeat period), it does not allow for the acquisition of a long bit sequence having a long repeat period, such as a PRBS use in the communication industry. Other conventional equivalent sampling oscilloscopes employing conventional methods cannot measure such a long signal having a long repeat period, such as a PRBS signal without the use of a frame (pattern) trigger signal. Such prior art systems and methods include the following.
U.S. Pat. Nos. 5,162,723, titled “Sampling Signal Analyzer”issued in 1992 to Marzalek, et al., 4,928,251, titled “Method and Apparatus for Waveform Reconstruction for Sampled Data System” issued in 1990 to Marzalek, et al., and the '773 patent (noted above) all propose different coherent sampling methods. The methods used in the '723 and '251 patents have a very specific constraint between input frequency and sampling rate, such that the sampled output (i.e. IF) is a time-stretched replica of the input signal. In order to acquire a long waveform having a long repeat period such as a PRBS waveform, by such a method, a pattern (frame) repetition rate of the PRBS must be used as an input signal frequency. However the following issue arises. Because of this constraint, the method requires that a signal frequency should be higher than a sampling rate, as is discussed in the HP journal, Oct. 1992, pp71. Otherwise acquired data has to be decimated. For example, if a typical PRBS has a 10 Gbps pattern length of (223−1), then the signal frequency (i.e. pattern repetition rate in this case) is almost 1.2 KHz. At such a pattern repetition rate, this method discards approximately 99.99% of the acquired data and uses only approximately 0.012% (1.2 KHz/10 MHz) of the data to construct a replica of the PRBS signal. As a result, it would take approximately 7 K seconds (2 hours) to acquire only one data per each bit, which is not practical.
On the other hand, by using about a 10 MHz sample rate, the method described in the '773 patent seems to be able to acquire data within 0.84 sec (=(223−1)/10 MHz). However the '773's targeted signal is a simple periodic one, there is no description about how to get the optimum sampling clock rate for a more complicated signal, such as a PRBS signal.
In addition to these sampling rate issues, sampling accuracy issues may present difficulties when employing these methods. Each of the above patents measures input signal frequency using a sampling clock, so that the employed sampling clock frequency must be known a priori and precisely by the various measurement instruments. For example, to keep 1 picosecond time accuracy during such a measurement, the stability of a sampling clock having a frequency of about 10 MHz should be 1.2*10−11 for the '773 patent, and 1.5*10−15 for the '723 and '251 patents. These stabilities correspond to 0.1 MHz and 0.015 uHz respectively, stabilities that have been traditionally hard to realize with conventional electronic parts.
U.S. Pat. No. 6,374,388, titled “Equivalent Capture Scheme for Bit Patterns within High Data Rate Signals” issued in 2002 to Hinch uses a specific pattern recognizer to generate a pattern trigger for its sequential sampling method. However for acquiring a waveform around a trigger time position, a PRBS signal has to be delayed by at least a “minimum delay time” (around 20 ns or more) of the sequential sampling oscilloscope. This delay required by the oscilloscope reduces bandwidth of the measurement system to below a few GHz, which is too low for a long high rate measurement, such as when measuring a PRBS or other long repeat length signal.
U.S. Pat. No. 6,181,267 describes a sub-harmonic sampling system including a “quality optimizer” system specifically for measuring and compensating for clock rate errors in an applied signal. While a trigger system is described, only data rate synchronization is described. There is no reference to a pattern rate synchronization.
Thus, the prior art sampling techniques, and subsequent collection of data and display of a waveform, have a number of difficulties.
The present invention is particularly concerned with a digital storage oscilloscope (DSO) employing a coherent sampling method. While a coherent sampling method has been disclosed in at least U.S. Pat. No. 6,271,773 (as noted above), it has been determined by the invention or the present invention that the coherent sampling method employed in the '773 patent is only able to acquire a simple repetitive waveform very quickly with fine time resolution by determining an optimum sampling rate based on signal frequency, but is not able to acquires a long, complicated signal, such as a PRBS signal. Therefore, one object of the invention is to provide a system that overcomes the drawbacks of the prior art. A further object of the invention is to provide an improved method and apparatus to acquire a waveform including a PRBS sequence. Still another object of the invention is to provide an improved method and apparatus for determining an appropriate sample rate, and to allow for PRBS measurement by equivalent time sampling without the need for a pattern (frame) trigger. Another object of the invention is to acquire a complete signal including a PRBS uniformly in time (i.e. with a constant time resolution), and allowing for post processing.
Therefore, through the unique combination of the application number theory and innovative circuit design, the CIS system in accordance with the invention overcomes many limitations of a sampling oscilloscope when the oscilloscope is used to analyze signals, such as PRBS patterns, that are random in the short term but repetitive in the long term.
As noted above, a sampling oscilloscope is only useful for analyzing repetitive waveforms. A sine wave or square wave at a specific, fixed frequency is an example of a repetitive waveform. There are other types of waveforms that repeat over a longer period but are non-repetitive over a short period. A Pseudo Random Bit Sequence (PRBS) waveform repeats at a frame rate but is non-repeating in each bit period. A video signal with a static test pattern displayed is another example of a signal that repeats over a long period but is non-repetitive in the short term. The CIS system of the invention is most useful for analyzing this class of waveforms, but can be used for any number of waveforms.
PRBS waveforms are signals used extensively in data communications testing. Such a waveform is typically an NRZ data stream of random “1”s and “0”s that repeats after a specified number of bits. For example, a PRBS of 27−1 would generate a string of 127 “1”s and “0”s and then repeat the same sequence. Therefore, such a signal has two “periods” associated with it . . . a bit period and a frame period. The bit period is the time to transmit one bit and the frame period is the time to transmit 127 bits in the previous example. The CIS system of the invention allows simultaneous synchronization to the bit period and the frame period so there are always a precise, known number of samples in each bit period AND in each frame period. This enables types of analysis that are not possible with other techniques. For example, bit error identification, ISI plots, etc.
The CIS system of the invention relies upon a “clock” or periodic input in addition to the signal of interest. The system synchronizes the sample clock of the digitizing system to this clock input in such a way as to ensure a precise integer number of samples of the input signal will be collected in each clock period and at the same time will be synchronized with the frame period. Therefore, in accordance with the invention, the CIS system is able to synchronize a sampling signal to an input periodic signal (input clock) such that there are a precise number of samples of the input signal taken per clock period while at the same time maintaining synchronization with a much longer time period over which the signal repeats (frame period) without having to generate any “trigger” signal at the frame period.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification and the drawings. 5 The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combination(s) of elements and arrangement of parts that are adapted to effect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will also be indicated in the claims.
For a more complete understanding of the invention, reference is made to the following description and accompanying drawings, in which:
a-9d present depictions of comparisons of various parameters of a sampling strobe generator constructed in accordance with the invention;
In accordance with the invention, because of a high clock rate and long pattern length of a signal, such as a PRBS (Pseudo Random Bit Stream) used for test/evaluation of communication systems, waveform observation of such a signal becomes very difficult. The Coherent Interleaved Sampling (CIS) architecture proposed in accordance with the invention allows for the acquisition of a complete PRBS waveform, or other long sequenced stream, quickly, uniformly, and repeatedly. Different from sequential or random sampling methods, only the CIS architecture of the invention uses clock input and information indicative of stream length to generate appropriate sampling strobes. The CIS architecture of the invention makes possible the sampling of a PRBS waveform uniformly in time during both a clock period and a frame period.
Referring first to
Tsamplebin=Tsignalbin*(A+N/Tsignalbin), (1)
where Tsamplebin>Tsignalbin, and where Tsamplebin is a number of time bins in a sampling period, Tsignalbin is a umber of time bins in signal period, A is an integer or null, and N/Tsignalbin is an irreducible fraction.
An irreducible fraction plus/minus an integer is also an irreducible fraction. Equation (1) may be rewritten by dividing through by Tsignalbin, as:
Tsamplebin/Tsignalbin=A+N/Tsignalbin
The right side of the rewritten equation is an irreducible fraction plus/minus an integer. Therefore, the above coherent sampling condition can be satisfied, and coherent sampling can be performed, if Tsamplebin and Tsignalbin are relatively prime integers.
In the case shown in
Referring next to
Referring next to
Using the values shown in
10=3*(3+⅓)
Because ⅓is an irreducible fraction, coherent sampling is performed and all time bins are sampled. However the sampled time position of each clock period is not the same. This means that the clock is not sampled uniformly in time. This non-uniform sampling precludes display of the sampled information in a stable, uniform manner. Because the clock is the time reference of the signal, such as a PRBS, it is preferable to acquire data uniformly for each clock period so that the resultant display of the sampled signal is stable.
Referring next to
The differences between the results depicted in
Let a signal, such as a PRBS signal, have a pattern length of Lpattern. Then Tframebin is equal to Lpattern*Tclockbin. Therefore, in accordance with the invention, the condition for insuring a CIS performance is defined when Tsamplebin and Lpattem*Tclkbin are relatively prime integers. This relationship may be expressed by Equation (2).
Lpattern*Tclockbin=Tsamplebin*(A+N/Tsamplebin) (2)
where Lpattern*Tclockbin>Tsamplebin, and where N/T samplebin is an irreducible fraction. In the case shown in
ADC 525 receives both sampled signal 521 from sampler 520 and strobe 516 from strobe generator 515, converts the analog sampled signal 521 to a digital signal 526, and sends the digital signal to a memory 535. Memory 535 receives and stores the digital data 526 of the instantaneous value of input PRBS 505. More than 64 MB of memory capacity is preferable to receive PRBS data for a pattern length of 223−1 or greater. Once all frame data of the PRBS signal is stored, processor 530 rearranges the waveform based on the information of CIS control parameters 531 to reconstruct the waveform, as noted above.
Referring next to
As is noted in the Background of the Invention, maintaining the stability of a sampling frequency within about 10−11 MHz of a 10 MHz signal can be quite difficult. If the frame length of the input signal becomes large (such as 231−1) or bit rate (clock rate) becomes low, such as 2 Gbps, this goal becomes even more difficult to achieve. In accordance with the invention, Equation (2) sets the CIS conditions under which such sampling is possible. In accordance with the invention, the size of the CIS sampling time bin should be determined based upon the time of a frame bin, a clock bin and a pattern length of a PRBS signal. The relative relationship among these values is expressed only by integers, and therefore there are no irrational expressions. This means that a sampling strobe signal can be derived from a PRBS's clock signal using frequency dividers. In such a situation, the sampling strobe will be precisely synchronized to a recovered PRBS clock signal. When looking at a signal including a PRBS or other long signal, the time of the frame bin is defined by PRBS, or the time of the other long signal, and is therefore known. The clock is regenerated using an appropriate clock recovery scheme. Therefore it is possible to construct a CIS sampling strobe generator in accordance with the invention that is appropriately synchronized to the input signal.
In
Fref=Fclock/(Dpre*Da)=Fsample*Dc/Db=Fvco/Db (3)
As is evident from this equation, the sample clock is locked to, and is a function of, the input Fclock. As is also evident, selection of the various divisor values allows for definition of the output values of the system. Thus, an Fsample clock very accurately tied to the input Fclock is provided, the relationship between them being defined by the selection of appropriate parameters.
By substituting time bin notation as defined above to frequency notation in Equation (3), Equation (4) is defined as follows:
Tsamplebin=Tclockbin*(Dpre*Da*Dc/Db) (4)
And Tframebin of one PRBS frame is expressed by Equation (5):
Tframebin=Db*Lpattern/(Dpre*Da *Dc)*Tsamplebin (5)
If Da and Db are defined to be fractional, the following relationship for Tsamplebin/ Tclockbin, which is an irreducible fraction, is defined as (after splitting fractions Da and Db into numerator and denominator):
Tsamplebin/Tclockbin=Dpre*Dc *Numerator[Da]*Denominator[Db]/(Denominator[Da]* Numerator[Db]) (6)
Therefore, by arithmetic operation on Equation (6), the following relations are obtained for a CIS relationship as defined in accordance with the invention, between clock signal and sampling strobe signal:
Tclockbin=Numerator[Db]*Denominator[Da] (7)
Tsamplebin=Dpre*Dc*Numerator[Da]*Denominator[Db] (8)
Finally, the CIS constraint as defined above may be expressed as follows in Expression (9):
There is no common factor between Factors of Dpre*Dc*Numerator[Da]*Denominator[Db]] and [The common Factors of Lpattern and of Numerator[Db]*Denominator[Da]] (9)
The implementation of fractional dividers Da and Db, in accordance with an exemplary embodiment of the invention, will now be described. A fractional divider preferably has a divisor of D=(P*D1+Q*D2)/(P+Q), which is between D1 & D2. Values are preferably defined so that D2=D1+1 and P & Q are programmable, so that an increment step of the numerator of D is 1. Then the divisor D of the fractional divider is expressed by Equation (10) as follows:
D1<D=(P*D1+Q*D2)/(P+Q)<D2=D1+1 (10)
Before investigating particular divisors to be used during an implementation of the CIS system in accordance with the invention, particular physical constraints that may be imposed based upon device specifications to be used in a particular embodiment of the system implementing the processes of the invention should be considered. These specifications include at least operating ranges of sampler rate and device speed, a desire to adopt a high Fvco for reducing jitter between Fclock and Fsample, and for having a wide feedback loop bandwidth so that the system is able to properly track any fluctuation in Fclock. Typical constraints in accordance with physical devices that might be implemented in a preferred embodiment of the invention are indicated in
As a result, in accordance with the preferred embodiment described above, the various values may be selected as follows: Fvco≈1.28 GHz, Dc=128, and Dpre=8, 16 or 32 when Fclock is correspondingly around 10, 20 or 40 GHz. The further constraints on divisors Da and Db include: 3.25<Da<4.4, 2.56<Db<5, and 0.9<Da/Db<1.3. When investigating actual values for the various divisors for implementation, another constraint should be considered, namely that Tclockbin should be defined as constant. (Alternatively, it would be possible to impost the condition that Tsamplebin is constant, or that time resolution (i.e. bin length) be kept as constant as possible.)
If Tclockbin is maintained constant, then the expression (Numerator[Db]*Denominator[Da]) is also defined as being constant (see Equation (7)). Divider 3 becomes an integer divider, and Divider 2 becomes a fractional divider with a constant P+Q in Equation (10). Hereafter P and Q are written as Pa and Qa, which indicates that Da is a fractional divider. As a result, Equations (7) and (8) are re-written as Equations (7′) and (8′).
Tbitbin=Db*Denominator[Da] (7′)
Tclkbin=Dpre*Dc*Numerator[Da] (8′)
For restricting of Fsample variation, one of the fractions is chosen with a denominator of Pa+Qa, which has a lot of numerators irreducible to Pa+Qa. Stern-Brocot space shown in
As a sum of an integer and an irreducible proper fraction is an irreducible mixed fraction with the same denominator as the original irreducible proper fraction, finding a lot of Das is equivalent to finding a lot of Mod[Da,1]s, which is equal to Mod[(Da1Pa+Da2Qa)/(Pa+Qa),1]s. By regarding the X axis in
From Equation (8) Tsamplebin is defined as Dpre*Dc*(Da1Pa+Da2Qa)=Dpre*Dc*(Da* Kprime)=Dpre*Dc*(Da1* Kprime+Qa), where Qa increments by 1 from 0 to Kprime. Therefore a variation rate of Tclkbin is almost 1/(Da* Kprime). However, factors of (Da1Pa+Da2Qa) can include neither Db nor factors thereof, which are listed in Lpattem for performing the coherent sampling or CIS. These numbers must be skipped from the set of available (Da1Pa+Da2Qa).
When Fsample variation is small, Da is estimated from Da=Fclock/Fsample*(Db/Dc/Dpre). Therefore 413≦Da*Kprime≦597 is obtained for this particular exemplary embodiment (Db=3, Dc=128, Dpre=8, Fclockmin=9 GHz, Fclockmax=13 GHz and Kprime=157). The following list shows calculated available (Da1Pa+Da2Qa)s.
{416,419,421,422,424,428,431,433,436,439,442,443,446,449,452,454,457,458,461,463 ,464,466,467,472,478,479,481,482,487,488,491,493,494,499,502,503,509,512,514,521, 523,524,526,536,538,541,542,544,547,548,551,554,556,557,559,562,563,566,568,569, 571,577,578,586,587,592,593,596}
The maximum differences between adjacent available (Da1Pa+Da2Qa)s is 10 (=536−526). This means that available Da that follows 526/Kprime is 536/Kprime. And even if Fclock changes, 526/Kprime is maintained until 536/Kprime becomes a desirable fraction. As a result, Fsample changes according to Fclock change by the rate of 10/526≈2% around Fbit of 11.44 GHz (=10 MHz*526/157*Dc*Dpre/Db).
After calculation of these variables, at step 1120, a first estimate of samples per sample clock Tclkbin is calculated. Then at step 1125, a first pattern length of a set of possible pattern lengths is retrieved from memory. At step 1130, it is determined whether the calculated Tclkbin is relatively prime as compared with the retrieved pattern length. If this inquiry is answered in the negative, control passes to step 1135 where it is determined whether this is the last available pattern length from the set of possible pattern lengths. If this inquiry is answered in the negative, then at step 1140a next possible pattern length is retrieved and processing passes again to step 1130. If the inquiry at step 1135 is answered in the positive, and it is in fact the last possible pattern length, then processing passes to step 1145, where a new estimate for Tclkbin is calculated, and the first possible pattern length is once again retrieved. Processing then passes back to step 1130.
It is anticipated by the invention that at some point, the inquiry at step 1130 will be answered in the positive, and the tested Tclkbin will be determined to be relatively prime when compared to the currently investigated pattern length. When this inquiry is answered in the affirmative, control passes to step 1150, where a DDS fraction M (Db in
Embodiments of a CIS sampling strobe generator constructed in accordance with the invention are not limited to use a fractional divider. For those skilled in the art, the sampling strobe generator may also be built using a DDS configuration as discussed with respect to
Implementation of the CIS architecture in accordance with the invention allows for acquisition of a full PRBS waveform. It has, for example, 10000 times faster data acquisition speed than the prior art sampling methods of the '723 and '251 patents. The ability to acquire a PRBS full waveform (or other long waveform) means that a DSO can easily perform post acquisition processing an any acquired data, such as generating averaged eye lines instead of an eye diagram, etc.. The wider the instruments bandwidth, the more noise exists in a data acquisition. Enabling post acquisition processing allows for an increase in measurement accuracy.
Therefore, in accordance with the invention, an acquisition technique in such an under sampled harmonic system can be used to sequentially sample an entire PRBS bit sequence. This sampling can be performed several orders of magnitude faster than equipment available today. If an anomaly or mask error is detected in the eye diagram the CIS technique will permit the specific bit in the sequence to be identified. This capability is extremely valuable to identify, diagnose and correct the pattern dependent errors of a device under test.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, because certain changes may be made in carrying out the above method and in the construction(s) set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description, following claims, and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
This application claims the benefit of US Provisional Patent Application Ser. Non. 60/650,985, entitled “Sampling Scope”, filed Feb. 7, 2005, and US Provisional Patent Application Ser. No. 60/656,203, entitled “Coherent Interleaved Sampling”, filed Feb. 25, 2005.
Number | Date | Country | |
---|---|---|---|
60650985 | Feb 2005 | US | |
60656203 | Feb 2005 | US |