This invention relates, in general, to systems for coherent beam combination (CBC) of laser beams and in particular to the use of a Micro-Electro-Mechanical System (MEMS) Micro-Mirror Array (MMA) that exhibits “tip/tilt/piston” actuation.
Coherent beam combination (CBC) of laser amplifiers is a well-established technique for locking multiple laser emitters in phase with one another to form a high brightness beam. Typically, the output from a low-power master oscillator (MO) is split into a multiplicity of beams, each of which is passed through a laser amplifier to increase its power. The amplified output beams are combined geometrically and phase-locked to a reference beam that is also derived from the MO. The combined beam behaves as if it were emitted from a single aperture laser, but with higher brightness than can be obtained from an individual laser. CBC imposes a requirement that the optical path length through each laser amplifier in the phase-locked array must be matched to within a small fraction of the MO coherence length. If the optical path mismatch between any two channels exceeds a phase difference of PI (a), then the two elements will appear to be out of phase with one another, and they cannot be successfully combined. Even if the optical path mismatch is only a fraction of PI (a), the coherence combination between the two lasers will be less than 100%, leading to a reduction in the array brightness.
Due to the long path lengths involved with either free-space or fiber amplifiers (typically >10 m), it is difficult to match paths to within less than a few cm. Different amounts of thermal expansion or strain in each amplifier can cause the path mismatches to vary dynamically with the laser environment or thermal loads. This typically leads to a requirement that the MO coherence length be much greater than the anticipated path mismatches. The coherence length scales inversely with the laser bandwidth according to Lcoh=Cτcoh≈C/Δf, where c is the speed of light, and Δf is the laser bandwidth. Thus a practical path-matching tolerance of≈10 cm leads to a requirement that the laser bandwidth be several GHz or less.
In practice, the constraint is more restrictive than this to avoid any noticeable reduction in the coherence between individual emitters. For the case of fiber laser amplifiers, the use of narrow-band radiation from the MO imposes limits on the capacity to generate high power. Stimulated Brillouin Scattering (SBS) is a nonlinear effect in which the laser electric field creates a phase grating in the fiber core via electrostriction that reflects some fraction of the forward-propagating beam. If the effective reflectivity of this grating becomes too large, the output power from the fiber will decrease, with the lost power being reflected backwards towards the MO. SBS limits the powers available from narrow-bandwidth fiber lasers. SBS can also pose a damage risk to hardware if the reflected power feeds back into the MO and/or pre-amplifier. One approach to CBC requires a means to reduce SBS, Typically, this involves a controlled broadening of the MO spectrum, either via a rapidly varying chirp applied to the MO frequency or via static phase modulation. In either case, practical considerations of the path-matching stability between amplifier legs limits the amount of frequency broadening to several GHz.
U.S. Pat. No. 7,884,997 entitled “System and method for coherent beam combination” discloses a laser system comprising a master oscillator for generating a primary laser signal, a beam splitter array for splitting the primary laser signal into a sample reference signal and a plurality of secondary laser signals, an optical frequency shifter for shifting the frequency of the sample reference laser signal to provide a frequency-shifted reference beam and a beam expander for expanding the frequency-shifted reference beam to provide an expanded frequency-shifted reference beam. The laser system further comprises a plurality of amplifier arms that each receive a respective secondary laser signal of the plurality of secondary laser signals, where each amplifier arm comprises a path length adjuster for adjusting a path length of the amplifier arm and an amplifier for amplifying the secondary laser signal to provide an amplified output signal. The laser system also comprises a beam sampler that interferes the light of the amplified output signal of the plurality of amplifier arms with the expanded frequency-shifted reference beam to provide a plurality of optical beat signals, a plurality of photodetectors that each receive a respective optical beat signal to provide a plurality of optical heterodyne detected (ORD) beat signals, each ORD beat signal having a maximum amplitude that corresponds to a minimum path length mismatch of a respective amplifier arm and a path length controller responsive to the plurality of OHD beat signals for providing a plurality of feedback signals to adjust the path length adjusters to control the path length of each of the plurality of amplifier arms to within a coherence length of the primary laser signal.
The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description and the defining claims that are presented later.
The present invention provides for coherent beam combination (CBC) of amplified laser beams using a tip/tilt/piston (“TTP”) MEMS MMA such that the combined beam behaves as if it were emitted from a single aperture laser, but with higher brightness than can be obtained from an individual laser.
In an embodiment, a laser system generates a plurality of amplified laser beams at the same wavelength in respective input channels exhibiting a non-zero phase difference across the input channels. A MEMS MMA comprising a plurality of independently and continuously controllable mirrors to tip and tilt each mirror about first and second orthogonal axes and to translate each mirror in a third axis orthogonal to a plane containing the first and second orthogonal axes is deployed to both correct the phase differences and combine the beams. The MEMS MMA is partitioned into segments, of one or more mirrors, that are illuminated by the respective amplified laser beams. A pick-off(s) is positioned to sample the amplified laser beams in each input channel or in a combined output channel and a wavefront sensor senses a phase difference across the sampled amplified laser beams. One or more processors are configured to generate a first set of command signals to translate the one or more mirrors in each segment along the third axis to adjust the phase and maintain a zero phase difference across all of the amplified laser beams and to generate a second set of command signals tip and tilt the mirrors about the first and second orthogonal axes, respectively, to combine the plurality of phase-adjusted amplified laser beams into a coherent output laser beam in the combined output channel.
In different embodiments, each segment includes a plurality of mirrors to oversample the amplified laser beam. These mirrors are further actuated to superimpose AO correction or focusing/defocusing on the beam.
In different embodiments, the pick-off may be implemented as a beam-splitter that samples the combined output beam or as a mirror from each segment that together sample each amplified input beam. In the latter case, the mirrors may be time multiplexed.
In an embodiment, translation of a mirror to provide phase-correction produces an offset of the reflected beam. The mirror may be tipped/tilted to correct for this offset.
In different embodiments, a multi-spectral laser system may be implemented in which MEMS MMA technology is used to combine input laser beams at different laser beams to first provide coherent beams at each wavelength and then to combine those beams to provide a spectrally beam combined, multi-channel coherent laser beam, in an embodiment, a single common MEMS MMA is partitioned into sections to process each wavelength and the final multi-spectral combination is superimposed on the phase-correction and combination of each channel. In an embodiment, additional phase correction is provided to maintain a zero phase difference across the multiple channels to provide a coherent multi-spectral laser beam.
In another embodiment, the common MEMS MMA is further partitioned into additional sections that are coated with reflective coatings at the different wavelengths. A broadband laser source illuminates these sections to produce a plurality of laser beams at each wavelength. These beams are amplified and reflected off a fold mirror back onto the MEMS MMA for phase-correction and combination into the multi-spectral output beam.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
The present invention uses a tip/tilt/piston (TTP) MEMS MMA to provide coherent beam combination (CBC) such that the combined beam behaves as if it were emitted from a single aperture laser, but with higher brightness than can be obtained from an individual laser. Piston actuation of the mirrors is used to adjust the phase of individual amplified laser beams and maintain a zero phase difference across all of the amplified laser beams. Tip/Tilt actuation of the mirrors is used to steer the phase-adjusted amplified laser beams to form a coherent output laser beam. Additional TTP actuation can be used to oversample and superimpose AO correction or focusing/defocusing on the beam. A multi-spectral system may be implemented with a common MEMS MMA to produce a spectrally beam combined, multi-channel coherent laser beam.
Referring now to
MEMS MMA 114 includes a plurality of independently and continuously controllable mirrors 116 as shown in
Output laser beam 120 is mixed with a reference beam 122 provided by master oscillator 102 via a beam combiner 124. The beam comber 124 also serves as a pick-off to sample the output laser beam. A wavefront sensor 126 measures variation in phase. The wavefront sensor is essentially an interferometer and an image sensor. The interference of the wavefronts of the component amplified laser beams is imaged onto the sensor. The amount of interference is extracted from the image as a measure of phase difference across the channels. An alternate method to accomplish the same sampling is by sampling the output beam and focusing using a micro-lens array onto a detector. The location of focused spots on the array identifies the phase of the wavefront. In this case the reference beam 122 is not required.
One or more processors 130 are configured to generate a first set of command signals, in response to control feedback from the wavefront sensor, to translate the one or more mirrors 116 in each segment 118 along the Z axis to adjust the phase and maintain a zero phase difference 120 across all of the amplified laser beams and to generate a second set of command signals tip and tilt the mirrors about the X and Y axes, respectively, to combine the plurality of phase-adjusted amplified laser beams into the coherent output laser beam 120 in the combined output channel.
Referring now to
Referring now to
Referring now to
Referring now to
MEMS MMA 214 is partitioned to generate segments that correspond to the respective input channels. In this embodiment, each segment includes a plurality of mirrors, at least one mirror for steering (tip/tilt) and phase control (piston) and at least one mirror to serve as a pick-off to sample (e.g. 1/Nth of the channel energy where N is the number of mirrors in the segment) each of the amplified laser beams. The sampled beams 216 are mixed with a reference beam 218 provided by master oscillator 202 via a beam combiner 220. A wavefront sensor 222 measures variation in phase of this combined beam 224 and provides control feedback to one or more processors 226. The processors generate the command signals to translate the mirrors in each segment to provide phase correction and to tip/tilt the phase-corrected amplified laser beams to form the main coherent output beam 228. The pick-off mirrors may be time multiplexed.
The MEMS MMA technology can be implemented to provide multi-spectral coherent beam combination. Generally speaking, instead of one set of amplified laser beams at a single wavelength that are phase-corrected and combined via a MEMS MMA to provide a high-power coherent laser beam at that wavelength, the system is scaled to process multiple sets of laser beams at different wavelengths that are phase-corrected within each wavelength and combined to provide a high-power spectrally beam combined, multi-channel coherent laser beam. A different MEMS MMA can be used to phase-correct and combine each of amplified laser beams and another MEMS MMA, used to each of the coherent output laser beams at the different wavelengths. However, the MEMS technology allows for consolidation of all of the phase-correction and beam steering into a single common MEMS MMA.
As shown in
A broadband laser source 302 generates a broadband laser beam 304 that spans the wavelengths of the reflective coatings. A lens 306 collimates beam 304 to illuminate the plurality of sections of MFMS MMA 301. Each section reflects at its wavelength to generate one or more laser beams 308 at that wavelength. For example, the mirrors in each section are provided with a reflective coating that reflects light at the corresponding wavelength. A fold mirror 310 redirects the laser beams 308 at each of the wavelengths to a respective plurality of optical amplifiers 311 to amplify each of the laser beams. A fold mirror 312 redirects the amplified laser beams onto different sections of a second MEMS MMA 314, one section for each wavelength. Each section is partitioned into one or more segments, one for each component laser beam, to “mirror” the partitioning of the first MEMA MMA 301.
Within each section (wavelength), the tip/tilt/piston of the mirrors is controlled to maintain zero phase difference across the component laser beams and to combine them into a single beam. Superimposed on top of this is additional tip/tilt correction to combine all of the spectral components into a spectrally beam combined, multi-channel coherent laser beam 316. In some applications, additional piston correction to maintain zero phase difference between the spectral components.
A pick-off, either a standard pick-off or a mirror in each segment of each section (i.e. for each component laser beam at each wavelength) is used to sample the component laser beams. The sampled beams are mixed with a reference beam 322 provided by broadband source 302 via a beam combiner 324. A wavefront sensor 326 measures variation in phase of this combined beam 328 and provides control feedback to one or more processors 330. The processors generate the command signals to translate the mirrors in each segment to provide phase correction and to tip/tilt the phase-corrected amplified laser beams to form the spectrally beam combined, multi-channel coherent laser beam 316.
Functionally the components beams for each wavelength are phase-corrected and combined to form the coherent laser beams at different wavelengths. The different channels i.e. the different coherent laser beams, are then combined to form the spectrally beam combined, multi-spectral coherent laser beam. As implemented, the multi-spectral beam steering is superimposed upon the beam steering for each wavelength so that all phase-corrections and steering to produce the spectrally beam combined, multi-channel coherent laser beam happens simultaneously. The pick-off samples the spectral combined beam or coherent laser beam components and the wavefront sensor provides feedback control to adjust the phase to maintain coherency of each in the spectrally combined beam.
In a degenerative case in which each “section” comprises a single “segment”, there is one component laser beam for each wavelength. The MEMS MMA corrects the combines the beam to produce the spectrally combined beam, in a more general case in which each “section” includes multiple “segments”, there are multiple component laser beams for each wavelength. The MEMS MMA provides phase-correction at each wavelength and steering at each wavelength and across the wavelengths to produce the spectrally beam combined, multi-channel coherent laser beam such that the combined beam behaves as if it were emitted from a single aperture laser, but with higher brightness than can be obtained from an individual multi-spectral laser or even CBC narrowband lasers at different wavelengths. In some applications, the MEMS MMA may provide additional phase-correction to maintain a zero phase difference across the different wavelengths.
As shown in
A broadband laser source 406 generates a broadband laser beam 408 that spans the wavelengths of the reflective coatings, A lens 410 collimates beam 408 to illuminate a first plurality 412 of sections of MEMS MMA 402, one for each wavelength. Each section includes a reflective coating that reflects at its wavelength to generate one or more laser beams 414 at that wavelength that are amplified by a respectively plurality of optical amplifiers 416. A fold mirror 418 redirects the amplified laser beams 420 onto a second plurality 422 of sections of MEMS MMA 402, one section for each wavelength. Each section is partitioned into one or more segments, one for each component laser beam, to “mirror” the partitioning of the first plurality 412 of sections.
Within each of these sections (wavelength), the tip/tilt/piston of the mirrors is controlled to maintain zero phase difference across the component laser beams and to combine them into a single beam. Superimposed on top of this is additional tip/tilt correction to combine all of the spectral components into the spectrally beam combined, multi-channel coherent laser beam 404. In some applications, additional piston correction is superimposed to maintain zero phase difference between the spectral components.
A pick-off, either a standard pick-off or a mirror in each segment of each section (i.e. for each component laser beam at each wavelength) is used to sample the component coherent laser beams. The sampled beams are mixed with a reference beam 424 provided by broadband source 406 via a beam combiner 426. A wavefront sensor 428 measures variation in phase of this combined beam 430 and provides control feedback to one or more processors 432. The processors generate the command signals to translate the mirrors in each segment to provide phase correction and to tip/tilt the phase-corrected amplified laser beams to form the spectrally beam combined, multi-channel coherent laser beam 404.
In an alternate embodiment, a MEMS MMA is not used to provide the input laser beams of differing wavelengths. For example, the system could employ multiple narrow band master oscillators at different wavelengths. Each would be split into multiple input channels and then amplified. A single MEMS MMA could then be used to provide all of the phase correction and beam steering as previously described to produce the coherent multi-spectral laser beam.
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5404375 | Kroeger et al. | Apr 1995 | A |
5854702 | Ishikawa et al. | Dec 1998 | A |
6181450 | Dishman et al. | Jan 2001 | B1 |
6271953 | Dishman et al. | Aug 2001 | B1 |
6327063 | Rockwell | Dec 2001 | B1 |
6526352 | Breed et al. | Feb 2003 | B1 |
6567574 | Ma et al. | May 2003 | B1 |
6792028 | Cook et al. | Sep 2004 | B2 |
6816315 | Ai et al. | Nov 2004 | B1 |
7304296 | Mills et al. | Dec 2007 | B2 |
7593641 | Tegge, Jr. | Sep 2009 | B2 |
7626152 | King et al. | Dec 2009 | B2 |
7660235 | Alicherry et al. | Feb 2010 | B2 |
7667190 | Mills et al. | Feb 2010 | B2 |
7884997 | Goodno | Feb 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
8164037 | Jenkins et al. | Apr 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
8305578 | Mudge et al. | Nov 2012 | B1 |
8311372 | Anderson et al. | Nov 2012 | B2 |
8364334 | Au et al. | Jan 2013 | B2 |
8368889 | Schwiegerling et al. | Feb 2013 | B2 |
8380025 | Anderson et al. | Feb 2013 | B2 |
8463080 | Anderson et al. | Jun 2013 | B1 |
8767190 | Hall | Jul 2014 | B2 |
8823848 | Chipman et al. | Sep 2014 | B2 |
8983293 | Frankel et al. | Mar 2015 | B2 |
9473768 | Uyeno et al. | Oct 2016 | B2 |
9477135 | Uyeno et al. | Oct 2016 | B1 |
9632166 | Trail et al. | Apr 2017 | B2 |
9857226 | LeMaster et al. | Jan 2018 | B2 |
9904081 | Uyeno et al. | Feb 2018 | B2 |
9927515 | Keller et al. | Mar 2018 | B2 |
9946259 | Keller et al. | Apr 2018 | B2 |
10148056 | Uyeno et al. | Dec 2018 | B2 |
10209439 | Keller et al. | Feb 2019 | B2 |
10243654 | Uyeno et al. | Mar 2019 | B1 |
10267915 | Uyeno et al. | Apr 2019 | B2 |
10381701 | Motoi | Aug 2019 | B2 |
10444492 | Hopkins | Oct 2019 | B2 |
10718491 | Raring et al. | Jul 2020 | B1 |
10969598 | Fest et al. | Apr 2021 | B2 |
10998965 | Tong et al. | May 2021 | B2 |
11042025 | Uyeno et al. | Jun 2021 | B2 |
20020141689 | Qian et al. | Oct 2002 | A1 |
20020196506 | Graves et al. | Dec 2002 | A1 |
20030062468 | Byren et al. | Apr 2003 | A1 |
20030081321 | Moon et al. | May 2003 | A1 |
20030185488 | Blumenthal | Oct 2003 | A1 |
20040072540 | Wilson et al. | Apr 2004 | A1 |
20040081466 | Walther et al. | Apr 2004 | A1 |
20040141752 | Shelton et al. | Jul 2004 | A1 |
20040258415 | Boone et al. | Dec 2004 | A1 |
20050031255 | Schroeder et al. | Feb 2005 | A1 |
20050100339 | Tegge | May 2005 | A1 |
20050122566 | Cicchiello | Jun 2005 | A1 |
20050288031 | Davis et al. | Dec 2005 | A1 |
20060038103 | Helmbrecht | Feb 2006 | A1 |
20070031157 | Yamada et al. | Feb 2007 | A1 |
20070036480 | Wu | Feb 2007 | A1 |
20080050064 | Sakai et al. | Feb 2008 | A1 |
20080084605 | Rothenberg | Apr 2008 | A1 |
20100030473 | Au et al. | Feb 2010 | A1 |
20100149533 | Fest | Jun 2010 | A1 |
20100166430 | Alten | Jul 2010 | A1 |
20120002973 | Bruzzi et al. | Jan 2012 | A1 |
20120008133 | Silny et al. | Jan 2012 | A1 |
20120114337 | Aoki | May 2012 | A1 |
20120155885 | Hannah et al. | Jun 2012 | A1 |
20130271818 | Bastien et al. | Oct 2013 | A1 |
20140063299 | Fest et al. | Mar 2014 | A1 |
20150099476 | Beals | Apr 2015 | A1 |
20150138618 | Hamamoto | May 2015 | A1 |
20150172218 | Beshai | Jun 2015 | A1 |
20150311981 | Inagaki et al. | Oct 2015 | A1 |
20150378242 | Auxier et al. | Dec 2015 | A1 |
20160003677 | Pezzaniti et al. | Jan 2016 | A1 |
20160043800 | Kingsbury et al. | Feb 2016 | A1 |
20160234703 | Aldana et al. | Aug 2016 | A1 |
20160294472 | Palmer et al. | Oct 2016 | A1 |
20170293137 | Zhao et al. | Oct 2017 | A1 |
20180231715 | Bishop et al. | Aug 2018 | A1 |
20190154921 | Xing et al. | May 2019 | A1 |
20200244359 | Csonka et al. | Jul 2020 | A1 |
20210088776 | Uyeno et al. | Mar 2021 | A1 |
20210091854 | Uyeno et al. | Mar 2021 | A1 |
20210092260 | Uyeno et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
102011104023.8 | Jul 2019 | DE |
2667142 | Nov 2013 | EP |
2533003 | Aug 2018 | EP |
WO-2014200581 | Dec 2014 | WO |
Entry |
---|
“Application Serial No. 16/871,602, Non Final Office Action dated Nov. 9, 2020”, 18 pgs. |
“U.S. Appl. No. 16/871,602, Notice of Allowance dated Feb. 24, 2021”, 5 pgs. |
“U.S. Appl. No. 16/871,602, Response filed Feb. 8, 2021 to Non Final Office Action dated Nov. 9, 2020”, 12 pgs. |
“U.S. Appl. No. 17/007,917, Non Final Office Action dated Aug. 3, 2021”, 35 pgs. |
“High Contrast IR Wire Grid Polarizers”, Edmund Optics, [Online]. Retrieved from the Internet: <URL: https://www.edmundoptics.com/f/high-contrast-ir-wire-grid-polarizers/14797/>, (Accessed Sep. 4, 2021), 1 pg. |
“Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIF) Waveplates”, Edmund Optics, [Online]. Retrieved from the Internet: <URL: https://www.edmundoptics.com/f/mid-wave-infrared-mwir-and-long-wave-infrared-lwir-waveplates/14317/>, (Accessed Sep. 4, 2021), 2 pgs. |
Ayral, J.-L., et al., “Phase-conjugate Nd:YAG laser with internal acousto-optic beam steering”, Optics Letters, vol. 16, No. 16, (Aug. 15, 1991), 1225-1227. |
Chiu, Yi, et al., “Shape-Optimized Electrooptic Beam Scanners: Analysis, Design, and Simulation”, Journal of Lightwave Technology, vol. 17, No. 1, (Jan. 1999), 108-114. |
Kim, et al., “Demonstration of large-angle nonmechanical laser beam steering based on LC polymer polarization grating”, Proc.. of SPIE vol. 8052 80520T, (May 13, 2011). |
Kim, Jihwan, et al., “Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings”, Proc. of SPIE, vol. 7093, (2008), 12 pgs. |
King, D F, et al., “3rd-Generation 1280 x 720 FPA development status at Raytheon Vision Systems”, Proc. of SPIE vol. 6206 62060W-1, (2006), 16 pgs. |
Norton, Andrew, et al., “High-Power Visible-Laser Effect on a 37-Segment Iris AO Deformable Mirror”, Proc. SPIE 7595, MEMS Adaptive Optics IV, 759506, (Feb. 17, 2010), 12 pgs. |
Salmon, J.T., et al., “An Adaptive Optics System for Solid-State Laser Systems used in Inertial Confinement Fusion”, First Annual International Conference on Solid-State Lasers for Application of Intertial Confinement Fusion, Monterey, California, May 30-Jun. 2, 1995, (Sep. 17, 1995), 13 pgs. |
Siegman, A. E., “Unstable optical resonators for laser applications”, Proceedings of the IEEE, vol. 53, Issue 3, (Mar. 1965), 277-287. |
Wang, Jinxue, et al., “Doppler Winds Lidar Technology Development and Demonstration”, AIAA-2005-6772, Space 2005, Long Beach, California, Aug. 30-1, 2005, 11 pgs. |
Yamamoto, R., et al., “Evolution of a Solid State Laser”, Proc. SPIE 6552, Laser Source Technology for Defense and Security III, 655205, (May 10, 2007), 11 pgs. |
U.S. Appl. No. 17/007,917, filed Aug. 31, 2020, Electroniclly Steered Inter-Satellite Optical Communication System With Micro-Electromechanical (MEM) Micromirror Array (MMA). |
“Mirrorcle Technologies MEMS Mirrors—Technical Overview”, Mirrorcle Technologies, Inc., (2018), 7 pgs. |
Anderegg, Jesse, et al., “Coherently Coupled High Power Fiber Arrays”, Proc. of SPIE 6102, Fiber Lasers III: Technology, Systems, and Applications 61020U, (2006), 6 pgs. |
Augst, S J, et al., “Coherent and spectral beam combining fiber lasers”, Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 823704, (Feb. 13, 2012), 11 pgs. |
Fan, T Y, “Laser Beam Combining or High-Power, High-Radiance Sources”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, No. 3, (May/Jun. 2005), 567-577. |
Redmond, Shawn, et al., “Active coherent beam combining of diode lasers”, Optics Letters vol. 36, No. 6, (Mar. 15, 2011), 999-1001. |
“U.S. Appl. No. 17/007,917, Notice of Allowance dated Jan. 10, 2022”, 14 pgs. |
“U.S. Appl. No. 17/007,917, Response filed Dec. 1, 2021 to Non Final Office Action dated Aug. 3, 2021”, 16 pgs. |
“U.S. Appl. No. 17/007,917, Supplemental Notice of Allowability dated Apr. 19, 2022”, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20220094128 A1 | Mar 2022 | US |