Cohort selection with privacy protection

Information

  • Patent Grant
  • 11748383
  • Patent Number
    11,748,383
  • Date Filed
    Tuesday, December 15, 2020
    4 years ago
  • Date Issued
    Tuesday, September 5, 2023
    a year ago
  • CPC
    • G06F16/285
    • G06F16/2455
    • G06F16/86
    • G06F16/9535
  • Field of Search
    • CPC
    • G06F16/285
    • G06F16/2455
    • G06F16/86
    • G06F16/9535
    • G16B40/00
    • G16B20/00
    • G16B50/00
    • G16H10/60
  • International Classifications
    • G06F16/00
    • G06F16/28
    • G06F16/2455
    • G06F16/9535
    • G06F16/84
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      195
Abstract
Assembling a cohort includes: receiving genetic characteristic information pertaining to a desired genetic characteristic; using the genetic characteristic information to search a data storage comprising information of previously genotyped individuals to derive a candidate group having the desired genetic characteristic; and assembling the cohort based at least in part on the candidate group.
Description
INCORPORATION BY REFERENCE

An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.


BACKGROUND OF THE INVENTION

Today, clinical research targeting specific genetic factors in human subjects is typically conducted by recruiting candidates that may have a certain genetic condition through special pools (e.g., patient groups), screening for the particular genotype that is being studied, and selecting subjects based on the screening results. The selection process tends to be difficult for several reasons. First, a large number of candidates often need to be recruited. Reaching out to these people, making them interested in the study, and getting them to sign up can be costly and time consuming. Second, all candidates have to be screened to determine whether they have the specific genetic condition, which is an expensive and laborious process. For studies of rare genetic conditions in particular, multiple iterations may be required to achieve a significant study population.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 is a block diagram illustrating an embodiment of a system configured for assembling a cohort.



FIG. 2 is a flowchart illustrating an embodiment of a process for assembling a cohort.



FIG. 3 is a data diagram illustrating an embodiment of data stores used in a cohort assembling system with privacy protection.



FIG. 4 is a data diagram illustrating the data structures used in an embodiment of a cohort assembling system that supports assembling cohorts based on projects.



FIG. 5 is a data diagram illustrating the data structures used in another embodiment of a project-based cohort assembling system.



FIG. 6 is a flowchart illustrating an embodiment of a process for deriving a candidate group.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Assembling a cohort based at least in part on genetic information of previously genotyped individuals is disclosed. As used herein, a cohort refers to a group of individuals participating in a study such as a clinical trial, a disease investigation, genetic research, etc. Participants in a cohort are selected based on some criteria specified by those conducting the study. In some embodiments, personal information (e.g., individuals' genotype/phenotype information, family history, environmental information, etc.) and corresponding account information (e.g., name, contact information, social security number, etc., that pertain to individuals' real world identity) are stored separately, and role-based access control is enforced to provide privacy protection. In some embodiments, access is further restricted based on projects, such that users (such as researchers and investigators) associated with certain projects can only access information about individuals participating in the projects.



FIG. 1 is a block diagram illustrating an embodiment of a system configured for assembling a cohort. In this example, system 100 is a web-based system, although other systems may also be used. System 100 includes a portal 152 and a data store 102. Client devices 150 access the cohort assembling service provided by system 100 via a client application such as a web browser. Client devices 150 may be a desktop computer, a laptop computer, a handheld/tablet device, a mobile/wireless device, or any other hardware/software combination that supports client applications. The client device may access the service via a network or directly. Various users of the system, such as researchers, investigators, administrators, etc., can access the portal and obtain information using their client devices.


Portal 152 provides client access and implements the cohort assembling functions. Portal 152 may be implemented using one or more servers or other hardware/software combinations. The portal has access to one or more data storages 102 (also referred to as data stores). In various embodiments, the data store may be implemented using a database, a file system, or any other appropriate data storage techniques. As will be described in greater detail below, the data store is configured to store account information and personal information pertaining to previously genotyped individuals. The personal information includes genetic information for the individuals and, optionally, phenotypic information, family history information, environmental information, etc. The genetic information in the data store may be collected through a personal genetic information service such as 23andMe′s Personal Genome Service®, where DNA samples (e.g., saliva) are collected from individuals and genotyped using DNA microarray or other appropriate techniques. In some embodiments, since the genetic information was not initially collected just for the purpose of a particular study pertaining to a specific gene, genomic information (e.g., full genetic information) of the individuals rather than specific genetic information (e.g., information pertaining to a particular gene) is obtained and stored. In various embodiments, full or partial genome sequences, exomes, single-nucleotide polymorphisms (SNPs) and/or other appropriate representations of the individuals' genomic information are stored in the data store.


In some embodiments, other health-related information not based on genotyping (such as phenotypic, family history, and environmental information) is also collected from the individuals and stored in the data store. For example, individuals can be asked to enter phenotypic information such as disease conditions, blood test results, liver panel test results, etc. They may also be asked to enter other related information such as age, ethnicity, personal habits that include exercise, diet, smoking, health conditions of relatives, and many other types of information that may be of interest. In some embodiments, both genotypic and non-genotypic information can be imported from other sources such as a patient record database or a different genetic information database.



FIG. 2 is a flowchart illustrating an embodiment of a process for assembling a cohort. Process 200 may be implemented on a system such as 100.


At 202, a desired genetic characteristic for the cohort is received. The desired genetic characteristic may include one or more genotypes, a particular haplogroup, etc. In some embodiments, the desired genetic characteristic is identified by researchers conducting the cohort study and entered into the system as an input. For example, in a study on Alzheimer's disease, the desired genetic characteristic is the presence of the APOE e4 genotype in a person's genome; in a study of Parkinson's disease, the desired genetic characteristic is the presence of the LRRK2 G2019S mutation in a person's genome. Additional genetic, phenotypic, and/or other types of personal information may also be indicated and received. For example, the researcher may indicate that the cohort should comprise individuals who are male, over the age of 45, and non-smoking.


At 204, the desired genetic characteristic information is searched in a data store comprising information of previously genotyped individuals to derive a candidate group having the genetic characteristic. Information about the desired genetic characteristic (e.g., a particular genotype and its presence/absence/variation in an individual's genome) and other indicated traits are transformed into a data store query to be processed by the system. For example, the data store may be queried for all individuals who have the APOE e4 gene, are male, over the age of 45, and non-smoking. These individuals are identified to form a candidate group. Comparing to existing techniques of specifically testing participants for the desired genetic characteristic and making a selection based on test results, using a data store comprising genomic information of previously genotyped individuals allows for better scalability since candidate groups can be identified much more quickly and easily. Preferably, the data store includes genomic information of more than 100,000 individuals so that a sufficiently large pool is available to derive a candidate group.


At 206, certain additional filtering criteria are optionally applied to the candidate group to make further selections.


In some embodiments, filtering criteria may be based on genomic information. For example, some studies may want candidates that are not related to each other by blood. While candidates will typically report immediate family members, they often do not report more distant relatives such as cousins that may also be among the candidates. Genomic information of the candidates is compared to determine their relatedness based on the amount of DNA shared. Various techniques for DNA-based relative identification may be used, such as the technique based on “Identical by Descent” (IBD) regions in the individuals' genome described in U.S. patent application Ser. No. 12/644,791 entitled FINDING RELATIVES IN A DATABASE, filed Dec. 22, 2009, which is incorporated herein by reference in its entirety for all purposes. Depending on the needs of the study, further filtering can be made to remove related people from the cohort, select only related people into the cohort, etc.


As another example, comparison of individuals' genomes with reference genomes of various races (e.g., European, African, Asian) can give indications of the individuals' race, since one's genome is likely to overlap more with the reference genome of his/her own race. Cohort selection for studies where race is a factor can be conducted based on the results of the comparisons, where individuals are selected into or excluded from the study based on the results.


Genome-based determination of relatedness, race, etc., tends to be more accurate than self-reported information and can be used alone or in conjunction with self-reported information to filter candidates and facilitate cohort selection.


In some embodiments, filtering criteria includes non-genetic information. For example, the candidates may be given a survey to identify additional information that is not already included in the data store, be subject to certain screening tests (e.g., the Montreal Cognitive Assessment (MoCA®) test) or laboratory tests, etc. Candidates that fulfill requirements based on the results can be subject to further selections or be admitted to the cohort.


At 208, the cohort is assembled based on the candidate group. Candidate information for the cohort members may be marked, copied, or otherwise indicated. In some embodiments, the candidate group is used to form an expanded cohort. For example, in some studies it is desirable to have more related people in the candidate pool (e.g., studies of rare genetic traits and/or family inheritance); thus, invitations to participate in the study can be extended to relatives of the candidate group to increase the cohort size.


Once a cohort is formed, based on the account information of the cohort members, investigators facilitating the research can contact the cohort members, administer clinical trials, record results, etc., and researchers conducting the research can review personal data (and later clinical data) of the cohort members. Preferably, measures are taken to protect the individuals' privacy and segregate the types of information researchers/investigators can access. FIG. 3 is a data diagram illustrating an embodiment of data stores used in a cohort assembling system with privacy protection. In this example, data store 102 is implemented using separate data stores to anonymize personal information and account information, thus preventing the individuals' account information from being linked to their personal information. In other words, users of the system (e.g., researchers and investigators) are prevented from looking up the personal information of a particular individual based on the individual's name, address, or other contact information, or looking up the contact information of a particular individual based on the individual's genetic/phenotypic/other personal information.


As shown in the diagram, an account data store 304 is used to store account information associated with the previously genotyped individuals, such as contact information (e.g., names, street addresses, email/Internet accounts, phone numbers) that can be read and understood by a human. In this example, an individual is assigned a unique account identification (AID) that is linked to his/her account information. The AID can be used to look up the individual's account information. In some embodiments, the AID comprises a randomized number or string that does not relate to or reveal the real world identity of the individual.


A separate personal data store 302 is used to store personal information including genetic, phenotypic, and other related information. In this example, an individual is assigned a unique personal identification (PID) linked to his/her personal information in data store 302. The PID can be used to look up the individual's personal information. In some embodiments, the PID is a randomized number or string that does not relate or reveal the individual's real world identity.


The personal data store and the account data store are correlated. In other words, a member's personal data and account data are kept in the respective data stores. A separate mapping data store 306 is used to store the correlation (e.g., a mapping) of the AIDs and PIDs. The mapping data store provides the key for linking account information such as names, addresses, etc., of the individuals to their respective personal information, such as genetic/phenotypic information, medical history, etc. In some embodiments, only persons having administrator status are allowed to access the mapping information. In some embodiments, an automated process is used to receive a query from a researcher or an investigator, verify the account making a query, look up the AID based on the PID or vice versa, and return the result to the verified account.


Data stores 302, 304, and 306 are said to be separate because access to data in each data store is restricted to a specific type of user. A user with a particular assigned role is only allowed to access one of the databases. The data stores may be implemented as separate databases (residing on the same or separate devices), as separate data tables within the same database, or as any other appropriate techniques that provide access control.


In this example, the system is configured to support at least two types of users: researchers and investigators. The researchers, who are in charge of analyzing the data of the studies, have access to personal information data store 302 only. The investigators, who are in charge of coordinating the studies and interfacing with the individuals participating in the studies, have access to account information data store 304 only. In some embodiments, there is also an administrator user type who has access to mapping data store 306 only.


In this example, the researcher can gain access to personal information of individuals in a cohort by logging on to his account. Since he only has access to personal data store 302, he does not have the capability of finding out the real world identities of these individuals since he has no access to their contact information. For example, the researcher has access to a cohort for people with APOE e4 genotype. He is informed that the cohort includes individuals with the PIDs of A2569 (who is male, has no Alzheimer's, but is diabetic and a smoker) and Z3317 (who is female, has Alzheimer's, and is a non-smoker). Since he does not have access to the mapping data store or the account data store, he is unable to find out the real names and contact information of A2569 and Z3317.


In some embodiments, through a manual process conducted by the administrator or an automated secure process performed by the system, the individual's AID is determined based on their PID based on mapping data store 306. In this example, PID A2569 maps to AID N0253, and PID Z3317 maps to AID K9610. The AIDs are passed on to the investigator, who uses the AIDs to look up the individuals' contact information, makes contact with the individuals, signs them up for the study, and administers the study. In the example shown, AID N0253 corresponds to Bob Smith and AID K9610 corresponds to Alice Johnson. Since the investigator has no access to the personal data store or the mapping data store, he would not be able to find out specific genetic, phenotypic, or other health-related information for Alice or Bob through the system automatically without approval by an administrator. In some exceptional cases, the investigator may need to know certain pieces of genetic or phenotypic information in order to do their job. The transfer of such information to the investigator would require special approval by an administrator. In general, neither the researcher, nor the investigator, nor the administrator, can act alone to determine, for example, whether Bob Smith has the APOE e4 gene or is diabetic.


In some embodiments, to further reduce the chance of individuals' real world identity and their personal information being linked and revealed, the personal information data store is programmed such that a response set must comprise at least N individuals, where N is an integer greater than 1 and preferably greater than 2. This way, any attempt at obtaining personal information for a specific individual (such as a query of “does Bob Smith have the APOE e4 gene”) will automatically fail because the response data set size is too small.


In some embodiments, the separate data stores are implemented on the same or distinct physical devices. In some embodiments, the data stores are implemented as separate databases with different access privileges for different users, separate tables within the same database with different access privileges for different users, or other access controlled data storage. In various embodiments, access control for different types of users can be implemented using access control settings provided by the database system or the file system, or any other appropriate techniques.


In some embodiments, the portal allows multiple projects (also referred to as research studies) to be carried out on the platform, and provides project-based data access control. FIG. 4 is a data diagram illustrating the data structures used in an embodiment of a cohort assembling system that supports assembling cohorts based on projects. In some embodiments, when a cohort for a project is formed, information pertaining to the project is stored. In this example, a researcher or an investigator is assigned to one or more specific projects. The assignment information may be stored in the database or in another location for access control. When an individual becomes a part of a cohort for a project, his/her information becomes associated with the project and is only accessible by the researcher/investigator assigned to the project. As shown, separate tables 408-412 are used for storing PID information specific to a research project. Each table includes an additional research identifier (RID) field (also referred to as a tag) identifying the particular research project, PIDs associated with the personal information of individuals participating in the particular research project, and any related data of the individual pertaining to the research project (e.g., a note regarding the individual with the PID within the context of the research project). Information with the same RID belongs to the same project. The same individual may participate in multiple research projects and therefore be associated with multiple RIDs. For example, the individual with PID 15 participates in research projects 1 and 2.


Project-based access control is implemented to allow different researchers/investigators access to their respective research projects only. A researcher/investigator may be associated with multiple research projects. For example, researcher B is associated with research projects 2 and 3 and therefore is only allowed to access tables 410 and 412, but not 408.


In the example shown, like researchers, investigators are also assigned on a per project basis. Project-based mapping tables 420-424 are used to store AIDs and related data associated with corresponding RIDs. Investigators are given limited access to only the AIDs and related information associated with the research project to which they are assigned. FIG. 4 also shows personal data store 402, account data store 404, and mapping data store 406.


Although research specific information stored in separate tables is shown, any other appropriate data organization schemes may be used. FIG. 5 is a data diagram illustrating the data structures used in another embodiment of a project-based cohort assembling system. In this example, each researcher or investigator is assigned to one or more specific projects. The assignment information may be stored in the database or in another location for access control. Instead of having separate tables for research project-based information, RID(s) associated with each individual is stored in the personal data store 502 and the account data store 504 along with other information to provide data access control. Thus, if researcher A (or investigator A) is assigned to a research project with RID of 1, he is only able to access personal data (or account data) for individuals with RID of 1. In this example, the data stores provide project-based access control by identifying the researcher/investigator and their associated projects, and forming queries restricted to the project identifiers to provide data of individuals participating in the project.


As another example, instead of the account/personal data stores, the RID information can be stored in the mapping data store 506 to control access of data by researchers/investigators. When querying the personal data store/account data store, there is an additional lookup that takes place on the mapping data store 506 based on the RID associated with the researcher/investigator making the query, and only data associated with the particular RID is returned.


In some embodiments, to ensure that users only access information permissible according to their respective assigned roles, the system implements an audit trail to log various activities and may alert the administrator and/or prohibit certain actions if suspicious activities that may lead to data leak occur. For example, designating the same user account as both an investigator and a researcher would allow the same user access to both account information and personal information. Such a designation, therefore, should be prohibited and/or brought to the attention of the administrator.



FIG. 6 is a flowchart illustrating an embodiment of a process for deriving a candidate group. Process 600 may be used to implement 204 of process 200.


Assume that the desired genetic characteristic for a cohort has been entered into the system by a researcher. At 602, in a personal information data store (e.g., 302), individuals with the desired genetic characteristic are identified as candidates. At 604, the PIDs of the identified individuals are used to look up corresponding AIDs in a mapping data store (e.g., 306). In some embodiments, an automatic look up process is performed based on the PIDs. In some embodiments, the PIDs are sent to an administrator with access to the mapping table to perform a manual lookup. At 606, the AID is used to look up corresponding account information in an account information data store. The look up may be performed automatically based on the AIDs, or manually by an investigator who receives the AIDs from the mapping data store. At 608, the account information (which corresponds to candidate information) is sent to the investigator.


In embodiments that support project-based data access control, in addition, the RID of the project is stored in association with personal/account information of individuals that are selected into the project cohort so that RID-based access control may take place when the researcher/investigator access the stored data at a later point.


In the above examples, cohorts are described to be associated with health-related research. In some embodiments, the cohorts are selected as target groups for education and/or advertising. For example, cohorts that have a particular disease-causing genetic condition may be given information about treatments for the disease.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A system for assembling a cohort, comprising: one or more processors configured to: receive genetic characteristic information pertaining to a desired genetic characteristic of the cohort;use the genetic characteristic information to search a data storage comprising information of previously genotyped individuals to derive a candidate group having the desired genetic characteristic, wherein the data storage of previously genotyped individuals comprises genetic information of the previously genotyped individuals and contact information of the previously genotyped individuals;assemble the cohort based at least in part on the candidate group; andin response to a request to gain access to personal information of the cohort by a first user having a first assigned role permitting access to the genetic information of the previously genotyped individuals: send genetic data pertaining to individuals in the cohort; andprevent, pursuant to the first assigned role, the first user from accessing contact information associated with the individuals in the cohort.
  • 2. The system of claim 1, wherein the genetic information of the previously genotyped individuals comprises genetic information that was collected from saliva samples of the previously genotyped individuals and genotyped using a DNA microarray.
  • 3. The system of claim 1, wherein the one or more processors are further configured to, in response to the first user requesting to be designated a second role that permits access to the contact information of the of the previously genotyped individuals: prohibit the designation of the second role; andissue an alert to a second user having an administrator role that such a designation was requested.
  • 4. The system of claim 1, wherein the data storage of previously genotyped individuals comprises personal information, and wherein the personal information comprises phenotypic, family history, or environmental information.
  • 5. The system of claim 4, wherein at least a portion of the personal information stored in the data storage was entered by one or more of the previously genotyped individuals, and wherein the personal information comprises disease conditions, blood test results, liver panel test results, age, ethnicity, personal habits, exercise habits, diet habits, smoking habits, or health conditions of relatives.
  • 6. The system of claim 1, wherein the desired genetic characteristic of the cohort is a disease-causing genetic condition, and wherein the one or more processors are further configured to provide information to the individuals in the cohort regarding treatment of the disease-causing genetic condition.
  • 7. The system of claim 1, wherein assembling the cohort comprises adding relatives of individuals in the candidate group to the cohort.
  • 8. The system of claim 1, wherein the one or more processors are further configured to return results to a query only when at least a threshold number of individuals are included in the results, and to indicate a failure when the results include fewer than the threshold number of individuals.
  • 9. The system of claim 1, wherein assembling the cohort comprises administering a survey to individuals in the candidate group, administering screening tests to the individuals in the candidate group, or administering laboratory tests to the individuals in the candidate group.
  • 10. The system of claim 1, wherein the one or more processors are further configured to store information pertaining to a research project in association with the individuals in the cohort.
  • 11. The system of claim 10, wherein the one or more processors are further configured to assign the first role to the first user based on the research project associated with the individuals in the cohort.
  • 12. A method comprising: receiving genetic characteristic information pertaining to a desired genetic characteristic of a cohort;using the genetic characteristic information to search a data storage comprising information of previously genotyped individuals to derive a candidate group having the desired genetic characteristic, wherein the data storage of previously genotyped individuals comprises genetic information of the previously genotyped individuals and contact information of the previously genotyped individuals;assembling the cohort based at least in part on the candidate group; andin response to a request to gain access to personal information of the cohort by a first user having a first assigned role permitting access to the genetic information of the previously genotyped individuals: sending genetic data pertaining to individuals in the cohort; andpreventing, pursuant to the first assigned role, the first user from accessing contact information associated with the individuals in the cohort.
  • 13. A computer program product, the computer program product being embodied in a non-transitory computer readable storage medium and comprising computer instructions for: receiving genetic characteristic information pertaining to a desired genetic characteristic of a cohort;using the genetic characteristic information to search a data storage comprising information of previously genotyped individuals to derive a candidate group having the desired genetic characteristic, wherein the data storage of previously genotyped individuals comprises genetic information of the previously genotyped individuals and contact information of the previously genotyped individuals;assembling the cohort based at least in part on the candidate group; andin response to a request to gain access to personal information of the cohort by a first user having a first assigned role permitting access to the genetic information of the previously genotyped individuals: sending genetic data pertaining to individuals in the cohort; andpreventing, pursuant to the first assigned role, the first user from accessing contact information associated with the individuals in the cohort.
  • 14. The computer program product of claim 13, wherein the genetic information of the previously genotyped individuals comprises genetic information that was collected from saliva samples of the previously genotyped individuals and genotyped using a DNA microarray.
  • 15. The computer program product of claim 13, wherein the computer program product further comprises computer instructions for, in response to the first user requesting to be designated a second role that permits access to the contact information of the of the previously genotyped individuals: prohibiting the designation of the second role; andissuing an alert to a second user having an administrator role that such a designation.
  • 16. The computer program product of claim 13, wherein the data storage of previously genotyped individuals comprises personal information, and wherein the personal information comprises phenotypic, family history, or environmental information.
  • 17. The computer program product of claim 16, wherein at least a portion of the personal information stored in the data storage was entered by one or more of the previously genotyped individuals, and wherein the personal information comprises disease conditions, blood test results, liver panel test results, age, ethnicity, personal habits, exercise habits, diet habits, smoking habits, or health conditions of relatives.
  • 18. The computer program product of claim 13, wherein the desired genetic characteristic of the cohort is a disease-causing genetic condition, and wherein the computer program product further comprises computer instructions for providing information to the individuals in the cohort regarding treatment of the disease-causing genetic condition.
  • 19. The computer program product of claim 13, wherein assembling the cohort comprises adding relatives of individuals in the candidate group to the cohort.
  • 20. The computer program product of claim 13, wherein assembling the cohort comprises administering a survey to individuals in the candidate group, administering screening tests to the individuals in the candidate group, or administering laboratory tests to the individuals in the candidate group.
US Referenced Citations (214)
Number Name Date Kind
7668658 Koster et al. Feb 2010 B2
7797302 Kenedy et al. Sep 2010 B2
7818310 Kenedy et al. Oct 2010 B2
7844609 Kenedy et al. Nov 2010 B2
7917438 Kenedy et al. Mar 2011 B2
7933912 Kenedy et al. Apr 2011 B2
7941329 Kenedy et al. May 2011 B2
7941434 Kenedy et al. May 2011 B2
7957907 Sorenson et al. Jun 2011 B2
8024348 Kenedy et al. Sep 2011 B2
8051033 Kenedy et al. Nov 2011 B2
8055643 Kenedy et al. Nov 2011 B2
8065324 Kenedy et al. Nov 2011 B2
8099424 Kenedy et al. Jan 2012 B2
8108406 Kenedy et al. Jan 2012 B2
8156158 Rolls et al. Apr 2012 B2
8185461 Kenedy et al. May 2012 B2
8187811 Eriksson et al. May 2012 B2
8200509 Kenedy et al. Jun 2012 B2
8209319 Kenedy et al. Jun 2012 B2
8224835 Kenedy et al. Jul 2012 B2
8255403 Kenedy et al. Aug 2012 B2
8326648 Kenedy et al. Dec 2012 B2
8386519 Kenedy et al. Feb 2013 B2
8428886 Wong et al. Apr 2013 B2
8452619 Kenedy et al. May 2013 B2
8458097 Kenedy et al. Jun 2013 B2
8458121 Kenedy et al. Jun 2013 B2
8463554 Hon et al. Jun 2013 B2
8464046 Kragh Jun 2013 B1
8510057 Avey et al. Aug 2013 B1
8543339 Wojcicki et al. Sep 2013 B2
8589437 Khomenko et al. Nov 2013 B1
8606761 Kenedy et al. Dec 2013 B2
8645343 Wong et al. Feb 2014 B2
8655899 Kenedy et al. Feb 2014 B2
8655908 Kenedy et al. Feb 2014 B2
8655915 Kenedy et al. Feb 2014 B2
8738297 Sorenson et al. May 2014 B2
8786603 Rasmussen et al. Jul 2014 B2
8788283 Kenedy et al. Jul 2014 B2
8788286 Kenedy et al. Jul 2014 B2
8855935 Myres et al. Oct 2014 B2
8990198 Rolls et al. Mar 2015 B2
8990250 Chowdry et al. Mar 2015 B1
9031870 Kenedy et al. May 2015 B2
9116882 Macpherson et al. Aug 2015 B1
9170992 Kenedy et al. Oct 2015 B2
9213944 Do et al. Dec 2015 B1
9213947 Do et al. Dec 2015 B1
9218451 Wong et al. Dec 2015 B2
9336177 Hawthorne et al. May 2016 B2
9367800 Do et al. Jun 2016 B1
9390225 Barber et al. Jul 2016 B2
9405818 Chowdry et al. Aug 2016 B2
9582647 Kenedy et al. Feb 2017 B2
9836576 Do et al. Dec 2017 B1
9864835 Avey et al. Jan 2018 B2
9977708 Do et al. May 2018 B1
10025877 Macpherson Jul 2018 B2
10162880 Chowdry et al. Dec 2018 B1
10275569 Avey et al. Apr 2019 B2
10296847 Do et al. May 2019 B1
10379812 Kenedy et al. Aug 2019 B2
10432640 Hawthorne et al. Oct 2019 B1
10516670 Hawthorne et al. Dec 2019 B2
10572831 Do et al. Feb 2020 B1
10643740 Avey et al. May 2020 B2
10658071 Do et al. May 2020 B2
10691725 Naughton et al. Jun 2020 B2
10699803 Do et al. Jun 2020 B1
10755805 Do et al. Aug 2020 B1
10777302 Chowdry et al. Sep 2020 B2
10790041 Macpherson et al. Sep 2020 B2
10803134 Kenedy et al. Oct 2020 B2
10841312 Hawthorne et al. Nov 2020 B2
10854318 Macpherson et al. Dec 2020 B2
10891317 Chowdry et al. Jan 2021 B1
10896233 Kenedy et al. Jan 2021 B2
10957455 Kenedy et al. Mar 2021 B2
10991467 Kenedy et al. Apr 2021 B2
11003694 Kenedy et al. May 2021 B2
20020010679 Felsher Jan 2002 A1
20020019746 Rienhoff, Jr. et al. Feb 2002 A1
20020095585 Scott Jul 2002 A1
20020119775 Mukherjee et al. Aug 2002 A1
20030037054 Dutta et al. Feb 2003 A1
20030125983 Flack et al. Jul 2003 A1
20030140044 Mok et al. Jul 2003 A1
20030140060 Gehlot et al. Jul 2003 A1
20030188200 Paquin et al. Oct 2003 A1
20030220917 Copperman et al. Nov 2003 A1
20040093334 Scherer May 2004 A1
20040133358 Bryant Jul 2004 A1
20040210548 Ketcherside, Jr. Oct 2004 A1
20040215981 Ricciardi et al. Oct 2004 A1
20050086009 Hinds Apr 2005 A1
20050176031 Sears et al. Aug 2005 A1
20050222981 Lawrence et al. Oct 2005 A1
20060047657 Frieder et al. Mar 2006 A1
20060229909 Kaila et al. Oct 2006 A1
20070042369 Reese et al. Feb 2007 A1
20070043757 Benton et al. Feb 2007 A1
20070061169 Lorsch Mar 2007 A1
20070220614 Ellis et al. Sep 2007 A1
20070244701 Erlanger Oct 2007 A1
20070294110 Settimi Dec 2007 A1
20070294113 Settimi Dec 2007 A1
20080126277 Williams et al. May 2008 A1
20080131887 Stephan et al. Jun 2008 A1
20080140449 Hayes Jun 2008 A1
20080208801 Friedlander et al. Aug 2008 A1
20080227063 Kenedy et al. Sep 2008 A1
20080228043 Kenedy et al. Sep 2008 A1
20080228410 Kenedy et al. Sep 2008 A1
20080228451 Kenedy et al. Sep 2008 A1
20080228677 Kenedy et al. Sep 2008 A1
20080228698 Kenedy et al. Sep 2008 A1
20080228699 Kenedy et al. Sep 2008 A1
20080228700 Kenedy et al. Sep 2008 A1
20080228701 Kenedy et al. Sep 2008 A1
20080228702 Kenedy et al. Sep 2008 A1
20080228704 Kenedy et al. Sep 2008 A1
20080228705 Kenedy et al. Sep 2008 A1
20080228706 Kenedy et al. Sep 2008 A1
20080228708 Kenedy et al. Sep 2008 A1
20080228722 Kenedy et al. Sep 2008 A1
20080228753 Kenedy et al. Sep 2008 A1
20080228756 Kenedy et al. Sep 2008 A1
20080228757 Kenedy et al. Sep 2008 A1
20080228765 Kenedy et al. Sep 2008 A1
20080228766 Kenedy et al. Sep 2008 A1
20080228767 Kenedy et al. Sep 2008 A1
20080228768 Kenedy et al. Sep 2008 A1
20080228797 Kenedy et al. Sep 2008 A1
20080243843 Kenedy et al. Oct 2008 A1
20090029371 Elliott Jan 2009 A1
20090043752 Kenedy et al. Feb 2009 A1
20090099789 Stephan et al. Apr 2009 A1
20090118131 Avey et al. May 2009 A1
20090119083 Avey et al. May 2009 A1
20090138251 Bugrim et al. May 2009 A1
20090240513 Angell et al. Sep 2009 A1
20090299645 Colby et al. Dec 2009 A1
20090318297 Cappucilli Dec 2009 A1
20100042438 Moore et al. Feb 2010 A1
20100063830 Kenedy et al. Mar 2010 A1
20100063835 Kenedy et al. Mar 2010 A1
20100063865 Kenedy et al. Mar 2010 A1
20100070292 Kenedy et al. Mar 2010 A1
20100070455 Halperin et al. Mar 2010 A1
20100076950 Kenedy et al. Mar 2010 A1
20100076988 Kenedy et al. Mar 2010 A1
20100122083 Gim et al. May 2010 A1
20100169022 Bangera et al. Jul 2010 A1
20100169262 Kenedy et al. Jul 2010 A1
20100169313 Kenedy et al. Jul 2010 A1
20100169338 Kenedy et al. Jul 2010 A1
20100191735 Reiss et al. Jul 2010 A1
20100223281 Hon et al. Sep 2010 A1
20100287190 Anderson Nov 2010 A1
20110009707 Kaundinya et al. Jan 2011 A1
20110078168 Kenedy et al. Mar 2011 A1
20110184656 Kenedy et al. Jul 2011 A1
20120035954 Yeskel Feb 2012 A1
20120078901 Conde Mar 2012 A1
20120260346 Carey Oct 2012 A1
20120270190 Kenedy et al. Oct 2012 A1
20120270794 Eriksson et al. Oct 2012 A1
20130345988 Avey et al. Dec 2013 A1
20140006433 Hon et al. Jan 2014 A1
20140067355 Noto et al. Mar 2014 A1
20150051086 Hatchwell Feb 2015 A1
20150227610 Chowdry et al. Aug 2015 A1
20150248473 Kenedy et al. Sep 2015 A1
20150347566 Kenedy et al. Dec 2015 A1
20160026755 Byrnes et al. Jan 2016 A1
20160103950 Myres et al. Apr 2016 A1
20160171155 Do et al. Jun 2016 A1
20160277408 Hawthorne et al. Sep 2016 A1
20160350479 Han et al. Dec 2016 A1
20160371429 Patil et al. Dec 2016 A1
20170011042 Kermany et al. Jan 2017 A1
20170017752 Noto et al. Jan 2017 A1
20170053089 Kenedy et al. Feb 2017 A1
20170185719 Kenedy et al. Jun 2017 A1
20170220738 Barber et al. Aug 2017 A1
20170228498 Hon et al. Aug 2017 A1
20170277827 Granka et al. Sep 2017 A1
20170277828 Avey et al. Sep 2017 A1
20170329866 Macpherson Nov 2017 A1
20170329891 Macpherson et al. Nov 2017 A1
20170329899 Bryc et al. Nov 2017 A1
20170329901 Chowdry et al. Nov 2017 A1
20170329902 Bryc et al. Nov 2017 A1
20170329904 Naughton et al. Nov 2017 A1
20170329915 Kittredge et al. Nov 2017 A1
20170329924 Macpherson et al. Nov 2017 A1
20170330358 Macpherson et al. Nov 2017 A1
20180181710 Avey et al. Jun 2018 A1
20180239831 Boyce Aug 2018 A1
20180307778 Macpherson Oct 2018 A1
20190012431 Hon et al. Jan 2019 A1
20190034163 Kenedy et al. Jan 2019 A1
20190114219 Do et al. Apr 2019 A1
20190139623 Bryc et al. May 2019 A1
20190206514 Avey et al. Jul 2019 A1
20190267115 Avey et al. Aug 2019 A1
20200137063 Hawthorne et al. Apr 2020 A1
20200210143 Kenedy et al. Jul 2020 A1
20200372974 Chowdry et al. Nov 2020 A1
20210166823 Kenedy et al. Jun 2021 A1
20210209134 Kenedy et al. Jul 2021 A1
20210233665 Kenedy et al. Jul 2021 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2016073953 May 2016 WO
Non-Patent Literature Citations (14)
Entry
U.S. Office Action dated Aug. 27, 2013 issued in U.S. Appl. No. 13/270,429.
U.S. Final Office Action dated Feb. 6, 2014 issued in U.S. Appl. No. 13/270,429.
Notice of Allowance dated Nov. 21, 2014 issued in U.S. Appl. No. 13/270,429.
U.S. Office Action dated Oct. 14, 2015 issued in U.S. Appl. No. 14/624,380.
U.S. Office Action dated Apr. 28, 2016 issued in U.S. Appl. No. 14/624,380.
Notice of Allowance dated May 26, 2016 issued in U.S. Appl. No. 14/624,380.
U.S. Office Action dated Apr. 3, 2017 issued in U.S. Appl. No. 15/201,257.
U.S. Notice of Allowance dated Dec. 6, 2017 issued in U.S. Appl. No. 15/201,257.
U.S. Notice of Allowance dated Jul. 10, 2018 issued in U.S. Appl. No. 15/201,257.
U.S. Notice of Allowance dated Jul. 13, 2020 issued in U.S. Appl. No. 16/159,274.
U.S. Notice of Allowability dated Aug. 26, 2020 issued in U.S. Appl. No. 15/201,257.
U.S. Notice of Allowance dated Dec. 3, 2020 issued in U.S. Appl. No. 15/201,257.
Standford, Stanford Medicine Tools. <URL: https://med .stanford .edu/spectrum/b1_rec/toolsforcohortselection.html> (Year: 2020).
U.S. Notice of Allowance dated Oct. 20, 2020 issued in U.S. Appl. No. 16/159,274.
Continuations (4)
Number Date Country
Parent 16159274 Oct 2018 US
Child 17247539 US
Parent 15201257 Jul 2016 US
Child 16159274 US
Parent 14624380 Feb 2015 US
Child 15201257 US
Parent 13270429 Oct 2011 US
Child 14624380 US