The present application claims the benefit of priority of Japanese Patent Application No. 2010-116750, filed on May 20, 2010, the disclosure of which is incorporated herein by reference.
The present disclosure relates to a coil binding apparatus configured to form a helical coil from a wire and to bind a stack of papers output from copy machines, printers, or the like with the helical coil.
Some copy machines and printers are equipped with finishers which, for example, form punch holes in the copied or printed papers and automatically insert a helical coil into the punch holes of the papers to produce a document.
WO2008/120503A1 discloses a paper processing apparatus related to such binding of a stack of papers using a helical coil. The paper processing apparatus includes a wire feeding unit, a coil forming mechanism to form a helical coil having a desired coil diameter from a wire fed from the wire feeding unit, a binding mechanism to bind a stack of papers with the helical coil, and a cutting unit to cut the helical coil after the binding.
The coil forming mechanism is configured to form a plurality of kinds of helical coils so that a coil diameter can be changed in accordance with the thickness of a stack of papers to be bound. In the coil forming mechanism, in accordance with a change in the coil diameter, a coil center axis position of a helical coil with respect to the bottom side of the helical coil shifts along on a straight line in a direction (a vertical direction) perpendicular to an entrance direction of the wire. The coil center axis position is a position of a center axis of a helical coil drawn out of the coil forming mechanism (see, e.g.,
Illustrative aspects of the present disclosure provide a coil binding apparatus capable of smoothly and consistently insert helical coils of different diameters into punch holes of a paper stack by guiding a coil center axis position of each of the helical coils to a suitable a coil rotation axis position in a binding mechanism. The coil rotation axis position is a position of a rotation axis of the helical coil when the binding mechanism rotates the helical coil to insert the helical coil into the paper stack.
An illustrative aspect of the present disclosure provides a coil binding apparatus including a coil forming mechanism configured to form a helical coil from a wire, a binding mechanism configured to bind a punched portion of a paper stack with the helical coil drawn out of the coil forming mechanism, and a coil introducing mechanism disposed between the coil forming mechanism and the binding mechanism to receive the helical coil drawn out of the coil forming mechanism and to introduce the helical coil to the binding mechanism. The coil introducing mechanism has a center axis shifting unit configured to shift a coil center axis position to a coil rotation axis position.
That is, when the coil introducing mechanism receives a helical coil from the coil forming mechanism and introduces the helical coil to the binding mechanism, the center axis shifting unit of the coil introducing mechanism shifts the coil center axis position of the helical coil to the coil rotation axis position.
Accordingly, the coil introducing mechanism absorbs a positional deviation amount between the coil center axis position of the helical coil drawn out of the coil forming mechanism and the coil rotation axis position of the helical coil in the binding mechanism, without moving one of the coil forming mechanism and the binding mechanism with respect to the other, which may cause a complex structure of the entire apparatus.
Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. As shown in
In this example, four kinds of helical coils 11a, 11b, 11c, 11d can be formed. The helical coil 11a is a small-diameter coil having a diameter of 8 mm, the helical coil 11b is a middle-diameter coil having a diameter of 12 mm, the helical coil 11c is a large-diameter coil having a diameter of 16 mm, and the helical coil 11d is a super-large-diameter coil having a diameter of 20 mm.
The paper tray 2 is attached to upper portions of the left plate 4a and the right plate 4b and is arranged between the left plate 4a and the right plate 4b. On the paper tray 2, a paper stack 3 having punch holes 3a formed therein as shown in
When the lower side of the paper tray 2, that is, a side to which paper sheets 3′ are transferred and fed is referred to a downstream side, the paper stack aligning unit 36 is attached on the downstream side of the paper tray 2 and is arranged between the left plate 4a and the right plate 4b. The paper stack aligning unit 36 is operable to align the paper sheets 3′ to be in a stack in order to smoothly insert a helical coil into the punch holes 3a of paper sheets 3′.
The paper stack aligning unit 36 includes an alignment pin mechanism 50 shown in
The coil forming mechanism 20 is attached near the center of the left plate 4a. The wire cartridge 10 is detachably attached below the coil forming mechanism 20 and feeds a wire 1 for forming a helical coil.
The coil forming mechanism 20 forms the wire 1 drawn out of the wire cartridge 10 to draw the helical coil. This example is configured to be capable of selecting one formation guide from among a plurality of formation guides. The formation guides are arc-shaped molds for forming the four kinds of helical coils 11a, 11b, 11c, 11d having diameters of 8 mm, 12 mm, 16 mm, and 20 mm, respectively.
In this example, the coil forming mechanism 20 includes a wire cutting section 25. The wire cutting section 25 cuts the helical coil in a coil length obtained by adding the length of the side of the paper stack 3 having the punch holes 3a formed therein and cutting and bending margins at respective ends of the helical coil (see
When the right side of the coil forming mechanism 20 shown in
The coil introducing mechanism 30 includes a center axis shifting unit 310 of a rotary-type to shift a coil center axis position to a coil rotation axis position. The coil center axis position is a position of the center axis of the helical coil drawn out of the coil forming mechanism 20. The coil rotation axis position is a position of a rotation axis when the binding mechanism 40 rotates the helical coil to insert the helical coil into the paper stack 3.
The binding mechanism 40 is disposed on the outer side of the paper stack aligning unit 36 and on an inside of the left plate 4a. The binding mechanism 40 is operable to bind the paper stack 3 through the punch holes 3a with the helical coil drawn out of the coil forming mechanism 20. The binding mechanism 40 includes a coil-fore-end inserting section 80 and a coil transferring section 85.
The coil-fore-end inserting section 80 is attached to share the same shaft portion hung near the center between the left plate 4a and the right plate 4b with the coil transferring section 85. The coil transferring section 85 is attached at a position connected to the coil-fore-end inserting section 80. The coil-fore-end inserting section 80 is operable to consistently insert a fore end of the helical coil into the first punch hole 3a of the paper stack 3.
The coil transferring section 85 is disposed at a position adjacent to the coil-fore-end inserting section 80. The coil transferring section 85 includes two roller members, a metal roller 86 and a resin roller 87, brought into contact with the outer circumference of the helical coil and maintaining an insertion posture in the movement direction of the helical coil, and includes one the planar member 88 (see
In this example, the coil transferring section 85 can consistently insert the fore end of the helical coil up to the last punch hole 3a of the paper stack 3 even after the helical coil loses a formation torque, and stops in a state in which the fore end portion of the helical coil protrudes from the last punch hole 3a. The formation torque of the helical coil is a torque generated when the coil forming mechanism 20 forms the wire for a coil and draws the helical coil.
The paper stack transferring mechanism 60 is provided below the binding mechanism 40 and between the left plate 4a and the right plate 4b. The paper stack transferring mechanism 60 is operable to receive the bound paper stack 3, which has the helical coil inserted into the punch holes 3a of the paper stack 3 and having cutting and bending margins on respective sides, from the binding mechanism 40, and to guide the bound paper stack 3 to the end processing unit 70.
The end processing unit 70 is provided below the paper stack transferring mechanism 60 and between the left plate 4a and the right plate 4b. The end processing unit 70 includes a cutting mechanism, and is operable to receive the bound paper stack 3 from the paper stack transferring mechanism 60, and to cut and bend the end portions of the helical coil. Accordingly, it is possible to consistently bind the paper stack 3 with the helical coil.
Subsequently, a coil binding method according to an exemplary embodiment of the present disclosure will be described. The paper stack 3 shown in (A) of
The punch holes 3a are formed with a predetermined pitch by an automatic punching process, however, they may be formed in a predetermined shape with a predetermined pitch by a manual puncher. As long as the arrangement arrangement pitch of the punch holes 3a coincide with a coil pitch and the punch holes 3a has a predetermined shape, the punch holes 3a may be formed by any method.
Subsequently, according to a binding process shown in (B) of
For example, the helical coil is inserted into the first half of the punch holes 3a by the formation torque generated when the coil forming mechanism 20 shown in
Subsequently, the paper stack aligning unit 36 will be described with reference to
When receiving a paper sheet 3′ guided by a rear guide sheet (not shown), the paper curl pressing mechanism 331 guides the fore-end side of the paper sheet 3′ to a space between protrusions 342 adjacent to curl fences 34a, 34b. When the paper sheet passes, the paper curl pressing mechanism 331 retreats the protrusions 342 from the lower surface of the paper stack 3 and presses the rear-end side of the paper sheet 3′ with next protrusions 342 at the same time. A metal frame having a resin film attached thereon or fixed thereto by screws is used as the rear guide sheet.
A paper holding unit 32 stocks and temporarily holds the paper stack 3. The curl fences 34a, 34b are provided on the left and right sides of the vicinity of a paper-sheet entrance port of the paper holding unit 32, and form the paper curl pressing mechanism 331. The curl fences 34a, 34b are attached to a power transmission shaft 337 (a curl fence shaft). A motor 340 is attached to one end of the power transmission shaft 337 through a deceleration gear 339. The motor 340 rotates the curl fences 34a, 34b.
The curl fence 34a includes a disk-shaped rotary body 341 and the plurality of protrusions 342. The rotary body 341 includes a shaft portion 341a. The power transmission shaft 337 is attached to the shaft portion 341a. On the circumferential portion of the rotary body 341, for example, four protrusions 342 are disposed at intervals of 90°. Each of the protrusions 342 has a shape protruding in parallel with the shaft portion 341a. If the curl fence 34a is configured as described above, when the paper sheets are aligned and temporarily held, it is possible to press a curly the paper sheet 3′ with the protrusions 342.
For example, whenever a paper sheet is received, the protrusions 342 travel on the paper sheet, thereby capable of maintaining a state in which the protrusions 342 press a curly portion of the paper stack 3 which is being piled up. The structure and function of the curl fence 34b are the same as those of the curl fence 34a and thus a description thereof is omitted.
As described above, according to the curl fences 34a, 34b, when a paper sheet 3′ guided by a rear guide sheet (not shown) is received, the fore-end side of the paper sheet 3′ is guided to the space between the protrusions 342 adjacent to the curl fences 34a, 34b. When the paper sheet passes, the protrusions 342 are retreated from the lower surface of the paper stack 3, and at the same time, the rear-end side of the paper sheet 3′ is pressed by the next protrusions 342.
In the vicinity of a paper discharge port of the paper holding unit 32, the shutter 383′ having a reference surface is provided to close a paper deliver path I when the paper stack 3 is aligned. On the inside (the paper holding unit 32 side) of the shutter 383′, a clamp 801a which is an upper arm on the movable side of a clamp moving mechanism 380 and a clamp 801b which is a lower arm on the fixed side of the clamp moving mechanism 380 are released, and in this state, the paper sheets 3′ are bound. When the paper sheets are discharged, the shutter 383′ is opened, and the paper stack is clamped by the clamps 801a, 801b and is fed to the next process.
The paper guide press down mechanism 332 is provided in parallel to the rotation shaft of the curl fences 34a, 34b of the paper curl pressing mechanism 331, and includes the rear guide sheet (not shown) and curl pressing arms 31a, 31b, 31c. The curl fences 34a, 34b receive power from the power transmission shaft 337 and rotate. For example, the curl pressing arms 31a, 31b, 31c may be formed by injecting a resin into a J-shaped mold.
The rear guide sheet is rotatably joined to a pivot support unit (not shown), and performs an opening/closing operation by rotating counterclockwise, so as to lift the rear-end side of the paper sheet 3′ when the rear end of the paper sheet enters. After the paper sheet 3′ enters, when the rear guide sheet lifts and releases the rear-end side of the paper sheet 3′, the curl pressing arms 31a, 31b, 31c operate to push the rear-end side of the paper sheet 3′ into the lower side of the rear guide sheet. The curl pressing arms 31a, 31b, 31c are attached to a guide support member 343.
The curl pressing arms 31a, 31b, 31c are mounted at positions facing the rear guide sheet. For example, the curl pressing arms 31a, 31b, 31c are pressed into metal rods which have a D-shaped cross section and constitute the guide support member 343, and are fixed. Three curl pressing arms 31a, 31b, 31c are provided in the guide support member 343, thereby obtaining a downward pressing effect on the paper sheet 3′ over the entire width of the paper sheet.
The rear guide sheet provided in the vicinity of the left and right curl fences 34a, 34b guides the fore end portion of the paper stack 3 entering the paper stack aligning unit 36 toward the paper holding unit 32. On the front and rear sides of the power transmission shaft 337 connecting the curl fences 34a, 34b, rear fixing guides 335, 336 are provided. The rear fixing guides 335, 336 guide the paper sheet 3′ guided by the rear guide sheet to the paper holding unit 32.
The rear fixing guides 335, 336 are fixed at positions apart from a paper-sheet alignment surface of the paper holding unit 32. For example, the rear fixing guides 335, 336 are cross-linkably fixed to a set of guide support members 343, 344 disposed on the front and rear sides of the power transmission shaft 337. The rear fixing guides 335, 336 are disposed on the left and right sides of the paper-sheet entrance port.
An upper guide 333 is attached to the guide support member 343 and controls the entrance direction of the fore end portion of the paper sheet 3′ to guide the fore end portion of the paper sheet 3′ to the paper holding unit 32. The rear fixing guides 335, 336 are, for example, injection-molded pieces using a resin, and have bottom portions having arc-shaped R surfaces as seen from above. The rear fixing guides 335, 336 may be made from a metal. The sizes of the rear fixing guides 335, 336 are about 20 mm to 30 mm in width, about 60 mm to 80 mm in length, and about 8 mm to 10 mm in height. If the rear fixing guides 335, 336 are formed as described above, in a case where curly the paper sheet 3′ enters, it is possible to reduce a rising force of the paper sheet 3′ and thus prevent a jam caused by entrance of curly the paper sheet 3′. The curl fence 34b is also configured in the same way as the curl fence 34a and functions in the same way as the curl fence 34a, and thus a description thereof is omitted.
A disk (not shown) having a predetermined shape (four-leaf shape in this example) for sensing curl fence home positions is attached to the other end of the power transmission shaft 337. At positions connected to the disk, home position sensors 112 for curl fences are provided. The sensors 112 detect stop positions of the curl fences 34a, 34b rotating by the motor 340. For example, the sensors 112 may be transmissive optical sensors having light emitting and receiving elements.
On the inside of the paper discharge port of the paper holding unit 32, a multi-oar-type rotatable member (hereinafter, a paddle roller 353) and a side jogger 370 are provided. In order to align the width of the paper stack 3 when aligning the paper stack, left and right side-jogging #1 and #2 (not shown) are brought closer to both sides of the paper stack 3. When the paper sheet 3′ enters, the paddle roller 353 brings the fore end of the paper sheet 3′ into contact with a reference position to align the paper stack 3.
When paper sheets are discharged, the left and right jogging members of the side jogger 370 retreat from both sides of the paper stack 3 in order to give room to paper deliver path I. In the vicinity of an outlet of paper deliver path I, a drawing roller (not shown) and a press roller 355 are provided to operate when giving and receiving the paper stack 3. They constitute the paper stack aligning unit 36.
Subsequently, the coil forming mechanism 20 will be described with reference to
The wire cartridge 10 has a drum 12 in which the consumable wire 1 is winded. For example, about 300 m to 1000 m of the wire 1 can be winded in the drum 12. The wire 1 may be a nylon-coated iron-core wire, a vinyl-coated iron-core wire, an aluminum wire, a plated aluminum-core wire, a plated iron-core wire, or the like.
The diameter of the wire 1 is about 0.8 mm to 1.2 mm. When paper sheets to be bound have an A4 size and the number of the punch holes 3a is 47, and when the super-large-diameter coil having the coil diameter of 20 mm is used, consumed amount of the wire 1 is about 3.3 m. When the large-diameter coil having the coil diameter of 16 mm is used, consumed amount of the wire 1 is about 2.7 m. When the middle-diameter coil having the coil diameter of 12 mm is used, consumed amount of the wire 1 is about 2.1 m. When the small-diameter coil having the coil diameter of 8 mm is used, consumed amount of the wire 1 is about 1.4 m.
In this example, the coil forming mechanism 20 is operated by six motors 201 to 206. The motor 201 rotates in response to a driving signal S21 and inserts the fore end of the wire 1 from the wire cartridge 10 into the coil forming mechanism 20 during initial setting.
The coil forming mechanism 20 shown in
The wire transferring section 22 is attached to the base 21, adjacent to the wire cartridge 10. The wire transferring section 22 includes a pair of feed rollers 24a, 24b to feed the wire 1 inserted from the wire cartridge 10 to the coil forming section 28. The wire transferring section 22 has the motor 202. The motor 202 is attached to the base 21 and rotates in response to a driving signal S22 to drive the feed rollers 24a, 24b through the mid gear 24c.
The coil forming section 28, the forming-guide selecting section 23, and the forming-guide moving section 26 are provided next to the wire transferring section 22. The coil forming section 28 is operable to push the wire 1 into a forming guide (see
The forming-guide selecting section 23 is operable to select one forming adapter from a plurality of arc-shaped forming adapters #φ8, #φ12, #φ16, #φ20 of a forming guide 28a.
The forming adapter #φ8 is an arc-shaped mold for forming the small-diameter coil having the diameter of 8 mm, the forming adapter #φ12 is an arc-shaped mold for forming the middle-diameter coil having the diameter of 12 mm, the forming adapter #φ16 is an arc-shaped mold for forming the large-diameter coil having the diameter of 16 mm, and the forming adapter #φ20 is an arc-shaped mold for forming the super-large-diameter coil having the diameter of 20 mm. The forming guide 28a defines a coil diameter of the helical coil.
The forming-guide selecting section 23 has a motor 203 that rotates in response to a driving signal S23 to select one of the forming adapters #φ8, #φ12, #φ16, #φ20. In this example, it is possible to form four kinds of coils, that is, the super-large-diameter coil having the diameter of 20 mm, the large-diameter coil having the diameter of 16 mm, the middle-diameter coil having the diameter of 12 mm, and the small-diameter coil having the diameter of 8 mm.
The forming-guide moving section 26 is provided adjacent to the forming-guide selecting section 23. The forming-guide moving section 26 is operable to move the forming-guide selecting section 23 in the entrance direction of the wire 1. The forming-guide moving section 26 has the motor 206. The motor 206 rotates in response to a driving signal S26 and moves the position of the forming-guide selecting section 23 with respect to the entrance direction of the wire 1 when one of the arc-shaped forming adapters #φ8, #φ12, #φ16, #φ20 is selected.
That is, the forming-guide moving section 26 moves the forming-guide selecting section 23 in the direction X shown in
The pitch formation section 29 is provided on the base 21 so as to be substantially perpendicular to the coil forming section 28. The pitch formation section 29 forms a pitch of helical coil drawn out of the coil forming section 28. The pitch formation section 29 has the motor 204. The motor 204 is attached to the base 21 and rotates in response to a driving signal S24 to finely adjust the pitch of helical coil drawn out of the coil forming section 28.
Here, when a side to which the helical coil is drawn out of the coil forming section 28 is referred to a downstream side and a side of the coil forming section 28 to which the wire 1 is sent is referred to an upstream side, on the upstream side of the coil forming section 28, the wire cutting section 25 is provided. The wire cutting section 25 cuts the helical coil to be in a length consisting of the length of the edge of the paper stack 3 on the side in which punch holes 3a are formed and cut and bent margins of respective end portions of the helical coil (see
The wire cutting section 25 has the motor 205 attached to the coil forming section 28 and rotates in response to a driving signal S25 to separate the helical coil drawn out of the coil forming section 28 from the wire 1. The motors 201 to 206 may be stepping motors.
According to the coil forming mechanism 20 described above, the forming-guide selecting section 23 selects one of the arc-shaped forming adapters #φ8, #φ12, #φ16, #φ20 of the forming guide 28a, and the coil forming section 28 forms the helical coil by the selected forming adapter and at the same time provides the helical coil to the coil introducing mechanism 30. Thus, it is possible to bind the paper stack 3 with the helical coil selected from four kinds having different coil diameters, that is, the super-large-diameter coil having the diameter of 20 mm, the large-diameter coil having the diameter of 16 mm, the middle-diameter coil having the diameter of 12 mm, and the small-diameter coil having the diameter of 8 mm.
Here, configurations and operations of the pitch formation section 29 and a pitch formation unit 29e will be described with reference to
The guide plate 29b is made of a rectangular metal plate having the same size and thickness as the cover plate 29a. The guide plate 29b has a rectangular opening 293. The pitch formation block 29c is fitted into the opening 293.
The block plate 29d is made of a rectangular metal plate having almost the same size as the cover plate 29a and the guide plate 29b and a thickness greater than the cover plate 29a and the guide plate 29b. The block plate 29d has a coil outlet 296. The coil outlet 296 has an almost J shape by combining a crescent-shaped opening with a rectangular opening into which the pitch formation block 29c is inserted. In this example, a helical coil having a coil diameter of 8 mm, 12 mm, 16 mm, or 20 mm is drawn out of the coil outlet 296.
The pitch formation block 29c is configured to finely adjust the pitch of the helical coil. The pitch formation block 29c has, for example, a rectangular shape, and is movable between an opening 293 of the guide plate 29b and the coil outlet 296 of the block plate 29d.
A hollow portion (a tunnel) is formed between the opening 293 and the coil outlet 296 so as to enable the pitch formation block 29c to move. The hollow portion is formed to enable the pitch formation block 29c to move forward and backward in the helical coil carrying direction, thereby finely adjusting the coil pitch. Therefore, it is possible to correct the coil pitch of the helical coil, formed by pitch formation section 29, by the pitch formation block 29c in correspondence with the tensile strength of the wire 1.
A stepped pitch formation unit 29e is attached to a portion of the block plate 29d above the J-shaped coil outlet 296. The pitch formation unit 29e is made of the rectangular metal plate and has a delivery guide portion 298 formed at a corner (see
Subsequently, a configuration and a operation of the pitch formation unit 29e during coil forming will be described with reference to
Further, the pitch formation unit 29e has a rotation shaft 295 in a direction perpendicular to the coil forwarding direction. The pitch formation unit 29e is attached to the block plate 29d shown in
In this example, when the eccentric cam unit 29f is rotated by the motor 204 shown in
Further, in a case of making the coil pitch of the helical coil large, the eccentric cam unit 29f rotates in the opposite direction to move the pitch formation unit 29e away from the block plate 29d (see
Subsequently, an example of the function of the pitch formation section 29 during coil forming will be described. In this example, the coil forming section 28 has the forming guide 28a. The forming guide 28a has four kinds of arc-shaped forming adapters #φ8, #φ12, #φ16, #φ20. Each of the forming adapters #φ8, #φ12, #φ16, #φ20 has a pick-up function when wire enters. An example is shown where an arc-shaped forming adapter (e.g., #φ8) of the forming guide 28a is selected in the coil forming section 28.
The wire 1 pushed out of the wire transferring section 22 shown in
Further, when the wire 1 is pushed out from the wire transferring section 22, the wire 1 shown in
When the wire 1 is pushed out from the wire transferring section 22, the wire 1 rotates along the inside of the forming adapter of the forming guide 28a and then the fore end of the wire 1 altered to the helical shape by the forming adapter is limited by a fore end of the pitch formation block 29c so as to change the movement direction thereof.
In this case, the pitch formation block 29c adjusts a discharge position of the helical coil. In this example, in a case where the wire 1 has a high tensile strength, the pitch formation block 29c is adjusted to correct the coil pitch of the helical coil to be wide. On the contrary, in a case where the wire 1 has s low tensile strength, the coil pitch of the helical coil is corrected to be narrow.
This enables the coil pitch to be finely adjusted. Accordingly, the coil pitch of the helical coil adjusted by the pitch formation section 29 can be corrected in response to the tensile strength of the wire 1 by the pitch formation block 29c. As a result, it is possible to finely adjust the coil pitch of the helical coil.
In the coil forming mechanism 20, the helical coil 11a is discharged to a direction (hereinafter, a coil discharge direction) almost perpendicular to the movement direction (the insertion direction) of the wire 1. Furthermore, when the wire 1 is pushed out from the wire transferring section 22, the wire 1 is discharged to the coil discharge direction from the coil outlet 296 of the block plate 29d while rotating to draw a circle. At this moment, the wire 1 altered to the helical shape becomes the helical coil 11a. The fore end portion thereof moves to the delivery guide portion 298 of the pitch formation unit 29e, whereby the helical coil moves along the quarter-arc-shaped step form of the delivery guide portion 298 for the coil diameter of 8 mm.
Therefore, it is possible to discharge the helical coil having the coil diameter of 8 mm from the coil outlet 296. When a forming adapter #φ12 is selected from the forming guide 28a, the helical coil 11b having the coil diameter of 12 mm can move along the quarter-arc-shaped step form of the delivery guide portion 298 for the coil diameter of 12 mm and be discharged from the coil outlet 296.
Similarly, in a case where a forming adapter #φ16 is selected from the forming guide 28a, the helical coil 11c having the coil diameter of 16 mm can move along the quarter-arc-shaped step form of the delivery guide portion 298 for the coil diameter of 16 mm and be discharged from the coil outlet 296. In a case where the forming adapter #φ20 is selected from the forming guide 28a, the helical coil lid having the coil diameter of 20 mm can move along the quarter-arc-shaped step form of the delivery guide portion 298 for the coil diameter of 20 mm and be discharged from the coil outlet 296. In this way, it is possible to make the coil pitch almost constant.
Subsequently, the coil introducing mechanism 30 will be described with reference to
In the binding mechanism 40, in order to smoothly and consistently insert four kinds of helical coils 11a, 11b, 11c, 11d into the punch holes 3a, the coil center axis positions Oc of the respective helical coils 11a, 11b, 11c, 11d are guided to different coil rotation axis positions Oc′, as shown in
Further, according to a pitch formation example in the pitch formation section 29 shown in
When forming the helical coils having the diameters 8 mm, 12 mm, 16 mm, and 20 mm to have the same coil pitches, the pitch formation amounts differ according to the coil diameters, as the springiness of the respective helical coils are different from each other. In other words, as the coil diameter increases, a larger the pitch formation amount is required. Since the super-large-diameter coil 11d having the diameter of 20 mm has springback larger than the small-diameter coil 11a having the diameter of 8 mm, unless a slightly lager the pitch formation amount is set, the helical coil 11d having the same coil pitch cannot be obtained.
In this example, the position where the wire 1 is fed to the coil forming mechanism 20 is fixed during coil forming. Thus, the coil center axis position Oc of the helical coil 11d is deviated by a difference in the pitch formation amount. Therefore, each of the coil center axis positions Oc of the helical coils 11a, 11b, 11c, 11d is deviated with respect to the respective coil rotation axis positions Oc′ to the punch holes 3a of the paper stack 3.
As a result, for example, a position of a paper stack 3 may need to be adjusted in accordance with the coil diameter with reference to the coil center axis positions Oc of the helical coils 11a, 11b, 11c, 11d. According to an exemplary embodiment of the present disclosure, the coil introducing mechanism 30 is provided between the coil forming mechanism 20 and the binding mechanism 40 to absorb the positional deviation between the coil center axis position Oc in the coil forming mechanism 20 and the coil rotation axis position Oc′ in the binding mechanism 40.
An arrangement of the coil introducing mechanism 30 will be described with reference to
Subsequently, an example of a configuration of the coil introducing mechanism 30 will be described with reference to
In this example, the center axis shifting unit 310 includes four coil accommodating units 311 to 314, an example of a plurality of tubular bodies (coil receivers). The coil accommodating units 311 to 314 are provided for each of the coil diameters of the helical coils. The center axis shifting unit 310 is operable to select one of the coil accommodating units 311 to 314 corresponding to the coil diameter of the helical coil. The coil accommodating unit has an accommodating portion formed as a space having an area accommodating the helical coil drawn out of the coil forming section 28.
For example, the coil accommodating unit 311 has a center position that coincides with the coil rotation axis position Oc′ of the helical coil 11a in the binding mechanism 40, and functions to receive the helical coil 11a having the diameter of 8 mm drawn out of the coil forming mechanism 20 and to introduce the helical coil 11a to the binding mechanism 40.
Similarly, the coil accommodating unit 312 has a center position that coincides with the coil rotation axis position Oc′ of the helical coil 11b in the binding mechanism 40, and functions to receive the helical coil 11b having the diameter of 12 mm and to introduce the helical coil 11b to the binding mechanism 40.
The coil accommodating unit 313 has a center position that coincides with the coil rotation axis position Oc′ of the helical coil 11c in the binding mechanism 40, and functions to receive the helical coil 11c having the diameter of 16 mm and to introduce the helical coil 11c to the binding mechanism 40. The coil accommodating unit 314 has a center position that coincides with the coil rotation axis position Oc′ of the helical coil 11d in the binding mechanism 40, and functions to receive the helical coil 11d having the diameter of 20 mm and to introduce the helical coil 11d to the binding mechanism 40.
The coil accommodating units 311 to 314 are attached and fixed to the outer circumference of the rotation shaft 316, parallel to the coil forwarding direction. The coil accommodating units 311 to 314 are formed by resin injection molding. In this example, the coil accommodating units 311 to 314 are formed such that an inlet from which the helical coil is introduced is wider than an outlet from which the helical coil is drawn out.
A holder 315 is an example of a support member and is configured by bending a metal plate such as a light metal plate, an iron plate, or the like in a U shape. The holder 315 includes pivot support portions 317 at two side wall, respectively. The holder 315 rotatably holds a rotation shaft 316. The rotation shaft 316 to which the coil accommodating units 311 to 314 are attached bridges the pivot support portions of the holder 315, and is rotatably supported by the pivot support portions 317. The holder 315 is attached to, for example, the left plate 4a of an apparatus main body 101 and is fixed by screws or the like.
Subsequently, a layout of a driving source of the coil introducing mechanism 30 will be described with reference to
In a case where the coil introducing mechanism 30 shown in
The motor 318 is attached to the base 21, rotates the motor shaft in response to a driving signal S318, and is driven when the coil accommodating unit 311 or the like corresponding to the coil diameter of the helical coil drawn out of the coil forming mechanism 20 is selected (see
The coil accommodating unit 313 shown in
Subsequently, an example of a divided structure of the coil accommodating unit 314 will be described with reference to
The coil accommodating unit 314 has a vertically divided structure such that the cover can be opened from the container 314a when fixing a jam, it is possible to smoothly fix a jam, as compared to the coil accommodating unit which is a simple tube body. Fixing a jam is, for example, a process of removing a helical coil remaining in, the coil accommodating unit 314 from the container 314a.
Subsequently, an example of the function of coil accommodating units 311 to 314 will be described with reference to
In this example, a first correction section Ia and a second correction section IIa are sequentially set to be adjacent to a tubular portion having attraction diameter φ01 in the coil accommodating unit 311. The correction section Ia (a tapered section) is configured such that the inner diameter gradually decreases from the tubular portion having diameter φ01 toward the coil diameter of 8 mm. In the correction section Ia, in order to adjust the outer diameter of the helical coil 11a having the diameter of 8 mm formed by the coil forming mechanism 20, the helical coil 11a is induced from the correction section Ia to the correction section IIa.
In the correction section IIa of the coil accommodating unit 311, a correction groove 361 is formed to correct a difference of the pitch formation amount α of the small-diameter helical coil 11a having the diameter of 8 mm. The difference of the pitch formation amount α is a difference in the coil pitch between helical coils having different coil diameters such as helical coils 11a and 11b, helical coils 11b and 11c, helical coils 11c and 11d, and helical coils 11a and 11d. In the correction groove 361 of the coil accommodating unit 311, a plurality of inclined rib portions are formed to be arranged in the coil forwarding direction. In this example, the correction groove 361 has four rib portions 361a to 361d. Each of rib portions 361a to 361d has a structure similar to a screw formed by peaks and valleys.
Referring to (A) of
Further, a pick-up groove width p11 is set to a valley portion between the rib portion 361a and the rib portion 361b of the correction groove 361. Furthermore, a correction groove width p12 is set to a valley portion between the rib portion 361c and the rib portion 361d. Moreover, a correction groove width p13 is set to a valley portion between the rib portion 361e and the rib portion 361f. In this example, a relationship of p11>p12>p13 is set among the pick-up groove width p11 and the correction groove widths p12, p13 so as to make it possible to correct the outer diameter of the helical coil 11a entering the coil accommodating unit 311 and function to consistently introduce the helical coil 11a having a different coil diameter to the binding mechanism 40. As described above, the correction groove 361 is set to have a groove width that is gradually narrowed as the helical coil moves, like the correction groove widths p12, p13.
In the coil accommodating unit 312 shown in (B) of
Even in this example, the first correction section Ia and the second correction section IIa are sequentially set to be adjacent to a tubular portion having the attraction diameter φ02 in the coil accommodating unit 312. The correction section Ia is configured such that the inner diameter gradually decreases from the tubular portion having diameter φ02 toward the coil diameter of 12 mm. In the correction section Ia, in order to adjust the outer diameter of the helical coil 11b having the diameter of 12 mm formed by the coil forming mechanism 20, the helical coil 11b is induced from the correction section Ia to the correction section IIa.
In the correction section IIa, like the coil accommodating unit 311, a correction groove 362 is formed to correct a difference of the pitch formation amount α of small-diameter the helical coil 11b having the diameter of 12 mm. The pick-up angle θ and the pick-up groove widths are set in the same manner as the coil accommodating unit 311 and thus a description thereof is omitted (see (A) of
In the coil accommodating unit 313 shown in (C) of
In this example, a first correction section Ib and a second correction section IIb are sequentially set to be adjacent to a tubular portion having the attraction diameter φ03 in the coil accommodating unit 313. The correction section III) has substantially the same length as the correction section IIa in the coil accommodating units 311, 312. In contrast, the correction section Ib is longer than the correction section Ia in the coil accommodating unit 313. This setting is for making it easy to induce the helical coil 11c having a larger diameter than the small-diameter helical coil 11a and the middle-diameter helical coil 11b to the correction section IIb by lengthening the correction section Ib.
Also in this example, the correction section Ib is configured such that the inner diameter gradually decreases from the tubular portion having the diameter φ03 toward the coil diameter of 16 mm. In the correction section Ib, in order to adjust the outer diameter of the helical coil 11c having the diameter of 16 mm formed by the coil forming mechanism 20, the helical coil 11c is induced from the correction section Ib to the correction section IIb.
In the correction section IIb, like the coil accommodating units 311 and 312, a correction groove 363 is formed to correct a difference of the pitch formation amount α of the large-diameter helical coil 11c having the diameter of 16 mm. The pick-up angle θ and the pick-up groove widths are set in the same manner as the coil accommodating units 311 and 312 and thus a description thereof is omitted (see (A) of
In the coil accommodating unit 314 shown in (D) of
Also in this example, a first correction section Ib and a second correction section IIb are sequentially set to be adjacent to a tubular portion having attraction diameter φ04 in the coil accommodating unit 314. The correction section IIb is set to have the same length as the correction section IIa. Further, the correction section Ib is configured such that the inner diameter gradually decreases from the tubular portion having the diameter φ04 toward the coil diameter of 20 mm. In the correction section Ib, in order to adjust the outer diameter of the helical coil 11d having the diameter of 20 mm formed by the coil forming mechanism 20, the helical coil 11d is induced from the correction section Ib to the correction section IIb.
In the correction section IIb, like the coil accommodating units 311 to 313, a correction groove 364 is formed to correct a difference of the pitch formation amount α of the super-large-diameter helical coil 11d having the diameter of 20 mm. The pick-up angle θ and the pick-up groove widths are set in the same manner as the coil accommodating units 311 to 313 and thus a description thereof is omitted (see (A) of
In this example, in (A) to (D) of
However, the helical coil 11a having the diameter of 8 mm picked up and put into the coil accommodating unit 311 shown in (A) of
As a result, the differences of the pitch formation amount α of four kinds of helical coils 11a, 11b, 11c, 11d observed at coil drawing point iii of the center axis shifting unit 310 are corrected by the correction groove 361 of the coil accommodating unit 311, the correction groove 362 of the coil accommodating unit 312, the correction groove 363 of the coil accommodating unit 313, and the correction groove 364 of the coil accommodating unit 314, respectively, such that helical coils 11a, 11b, 11c, 11d do not generate a positional deviation in each of the coil pitches. Therefore, the coil pitch is corrected by the center axis shifting unit 310, thereby capable of consistently introducing the helical coil with the aligned coil fore-end portion to the binding mechanism 40.
As described above, according to the coil binding apparatus 100 described above, the coil introducing mechanism 30 is provided. The center axis shifting unit 310 is provided in the coil introducing mechanism 30, and the center axis shifting unit 310 shifts the coil center axis position Oc of the helical coil drawn out of the coil forming mechanism 20 to the coil rotation axis position Oc′ when the binding mechanism 40 rotates and inserts the helical coil into the paper stack 3, by the coil accommodating unit corresponding to the coil diameter.
Therefore, the center axis shifting unit 310 can absorb the positional deviation amount between the coil center axis position Oc of the helical coil drawn out of the coil forming mechanism 20 and the coil rotation axis position Oc′ of the helical coil in the binding mechanism 40 caused by the difference in the pitch formation amount α. Therefore, helical coils having different coil diameters can be consistently introduced into the binding mechanism 40 by the coil accommodating units 311 to 314 of the center axis shifting unit 310 selected in correspondence with the coil diameter.
Subsequently, an example of a configuration of a coil introducing mechanism 30′ according to a first modification will be described with reference to
The center axis shifting unit 320 includes, for example, a rotary plate 325 (a rotary base) having arc-shaped portions on respective corner portions of a rectangle (hereinafter, the shape is referred to as a deformed cross shape), a flange unit 327, and four revolver units 321 to 324, and is operable to select one of the revolver units 321 to 324 having a thickness corresponding to the coil diameter of the helical coil. The four revolver units 321 to 324 are examples of rod-shaped members (coil receivers).
Each of the revolver units 321 to 324 has a thickness designed to externally wind the helical coil drawn out of the coil forming mechanism 20. For example, the revolver unit 321 is set such that the center position of the cross section thereof coincides with the coil rotation axis position Oc′ when the binding mechanism 40 binds the paper stack with the helical coil 11a having the diameter of 8 mm, and functions to receive the helical coil 11a drawn out of the coil forming mechanism 20 and to introduce the helical coil 11a to the binding mechanism 40.
Similarly, the revolver unit 322 is set such that the center position of the cross section thereof coincides with the coil rotation axis position Oc′ when the binding mechanism 40 binds paper stack with the helical coil 11b having the diameter of 12 mm, and functions to receive the helical coil 11b and to introduce the helical coil 11b to the binding mechanism 40.
The revolver unit 323 is set such that the center position of the cross section thereof coincides with the coil rotation axis position Oc′ when the binding mechanism 40 binds paper stack with the helical coil 11c having the diameter of 16 mm, and functions to receive the helical coil 11c and to introduce the helical coil 11c to the binding mechanism 40. The revolver unit 324 is set such that the center position of the cross section thereof coincides with the coil rotation axis position Oc′ when the binding mechanism 40 binds paper stack with the helical coil 11d having the diameter of 20 mm, and functions to receive the helical coil 11d and to introduce the helical coil 11d to the binding mechanism 40.
Each of the revolver units 321 to 324 is attached to the rotary plate 325 on binding mechanism side so as to protrude in a reverse direction to the coil forwarding direction. Each fore end portion of the revolver units 321 to 324 is chamfered like a warhead section. Chamfering is for making it easy to insert helical coils 11a, 11b, 11c, 11d having the predetermined coil diameters into each of the revolver units 321 to 324, respectively.
The rotary plate 325 has a shape obtained by cutting a metal plate such as a light metal plate, an iron plate, or the like into a deformed cross shape. The rotary plate 325 having the revolver units 321 to 324 attached thereto is attached to the flange unit 327. The flange unit 327 is attached and fixed to a rotation shaft 326.
In this example, the rotation shaft 326 having the flange unit 327 attached thereto is rotatably attached to the left plate 4a of the apparatus main body 101 shown in
The motor 328 rotates around a motor shaft in response to a driving signal S328 and is driven when selecting the revolver unit 321 or the like corresponding to the coil diameter of the helical coil drawn out of the coil forming mechanism 20. Since a block diagram of
Accordingly, for example, the helical coil 11a having the diameter of 8 mm drawn out of the coil forming mechanism 20 is received by the revolver unit 321 and is drawn from the revolver unit 321 to the binding mechanism 40. Guide surfaces 371, 372, 373, 374 are formed in the rotary plate 325 described above.
Subsequently, an example of the function of the guide surfaces of the center axis shifting unit 320 will be described with reference to
For example, the guide surface 371 is provided in the rotary plate 325 on the rear side (a downstream side) of the revolver unit 321, and corrects the difference of the pitch formation amount α of the small-diameter helical coil 11a having the diameter of 8 mm. The difference of the pitch formation amount α is a difference in the coil formation position between helical coils having different coil diameters such as helical coils 11a and 11b, helical coils 11b and 11c, helical coils 11c and 11d, and helical coils 11d and 11a. The guide surface 371 has a protrusion portion that becomes an outlet of the helical coil.
This configuration of absorbing the difference of the pitch formation amount α by the guide surface 371 has a function to compress the helical coil 11a to align the helical coil 11a to the passing position. This function makes it possible to performing correction so as to reduce the coil pitch within an elastic deformation range of the helical coil 11a when passing by the guide surface 371, such that the positional relationship between the coil forming mechanism 20 and the binding mechanism 40 can be constantly maintained.
Similarly, the guide surface 372 is provided in the rotary plate 325 on the rear side of the revolver unit 322, and corrects the difference of the pitch formation amount α of the middle-diameter helical coil 11b having the diameter of 12 mm. The guide surface 373 is provided in the rotary plate 325 on the rear side of the revolver unit 323, and corrects the difference of the pitch formation amount α of the large-diameter helical coil 11c having the diameter of 16 mm. The guide surface 374 is provided in the rotary plate 325 on the rear side of the revolver unit 324, and corrects the difference of the pitch formation amount α of the super-large-diameter helical coil 11d having the diameter of 20 mm.
As shown in
The shape of the rotary plate 325 on the rear side of the revolver unit 322 has a beak shape which is a combination of a semi-circular shape and a 90° (π/2) arc shape. On the opposite side of the rotary plate 325 to the beak-shaped portion, a straight-edged inclined portion 366 is formed. The inclined portion 366 constitutes an outlet of the revolver unit 322 and is provided to smoothen the movement of the helical coil 11b having the diameter of 12 mm.
The shape of the rotary plate 325 on the rear side of the revolver unit 323 has a beak shape which is a combination of a semi-circular shape and a 90° (π/2) arc shape. On the opposite side of the rotary plate 325 to the beak-shaped portion, a straight-edged inclined portion 367 is formed. The inclined portion 367 constitutes an outlet of the revolver unit 323 and is provided to smoothen the movement of the helical coil 11c having the diameter of 16 mm.
The shape of the rotary plate 325 on the rear side of the revolver unit 324 has a beak shape which is a combination of a semi-circular shape and a 90° (m/2) arc shape. On the opposite side of the rotary plate 325 to the beak-shaped portion, a straight-edged inclined portion 368 is formed. The inclined portion 368 constitutes an outlet of the revolver unit 324 and is provided to smoothen the movement of the helical coil 11d having the diameter of 20 mm.
As described above, the guide surface 371 is formed in the revolver unit 321 introducing the small-diameter helical coil 11a having the diameter of 8 mm, the guide surface 372 is formed in the revolver unit 322 introducing the middle-diameter helical coil 11b having the diameter of 12 mm, the guide surface 373 is formed in the revolver unit 323 introducing the large-diameter helical coil 11c having the diameter of 16 mm, and the guide surface 374 is formed in the revolver unit 324 introducing the super-large-diameter helical coil 11d having the diameter of 20 mm. As a result, the coil fore-end portion can pass through the same position after moving beyond the guide surfaces 371, 372, 373, 374, regardless of the coil diameters.
As a result, the helical coil in which the difference of the pitch formation amount α has been corrected by the guide surfaces 371, 372, 373, 374 of the rotary plate 325 of the center axis shifting unit 320 can be consistently introduced to the binding mechanism 40.
In the center axis shifting unit 320 shown in (A) of
Similarly, the super-large-diameter helical coil 11d having the diameter of 20 mm shown in (B) of
Here, when an arrangement pitch of the punch holes 3a of the paper stack 3 is denoted by Pa, the coil pitch of the small-diameter helical coil 11a having the diameter of 8 mm is denoted by Pb, and the coil pitch of the super-large-diameter helical coil 11d having the diameter of 20 mm is denoted by Pc, a relationship of Pb<Pa is established between the pitch Pa of the punch holes 3a and the coil pitch Pb. Further, a relationship of Pc<Pa is established between the pitch Pa of punch holes 3a and the coil pitch Pc.
Since the wire 1 is fed to the same position of the coil forming mechanism 20 during coil forming, the coil center axis position Oc of the helical coil 11a having the diameter of 8 mm and the coil center axis position Oc of the helical coil 11d having the diameter of 20 mm are different from each other. Further, the difference of the pitch formation amount α shown in (B) of
In the first modification of the present disclosure, the coil introducing mechanism 30′ is provided between the coil forming mechanism 20 and the binding mechanism 40 to absorb the positional deviation between the coil center axis position Oc corresponding to each coil diameter in the coil forming mechanism 20 and the coil rotation axis position Oc′ corresponding to each coil diameter in the binding mechanism 40 by the center axis shifting unit 320.
As a result, even when springiness of spring coils 11a, 11b, 11c, 11d having four kinds of diameters of 8 mm, 12 mm, 16 mm, and 20 mm are different from one another, and for example, as shown in (B) of
Similarly, with respect to the other guide surfaces 372 to 374, it is possible to absorb the positional deviation between the coil center axis position Oc and the coil rotation axis position Oc′, and make the coil pitch Pc equal to the pitch Pa of the paper stack 3. Therefore, the positional relationship between the coil forming mechanism 20 and the binding mechanism 40 are constantly maintained.
Subsequently, an example of an operation of the center axis shifting unit 320 will be described with reference to
In this case, the guide surface 374 formed in the revolver unit 324 functions to correct difference εα of the pitch formation amount α and draw the helical coil 11d.
As described above, the coil binding apparatus 100 according to the exemplary embodiments of the present disclosure includes the coil introducing mechanism 30 or the coil introducing mechanism 30′. The center axis shifting unit 320 is provided in the coil introducing mechanism 30′, and the center axis shifting unit 320 shifts the coil center axis position Oc of the helical coil drawn out of the coil forming mechanism 20 to the coil rotation axis position Oc′ when the helical coil is rotated and inserted into the paper stack 3 in the binding mechanism 40, by the revolver unit 321 or the like. As a result, it is possible to consistently introduce helical coils having different coil diameters to the binding mechanism 40 by the revolver units 321 to 324 of the center axis shifting unit 320 selected in correspondence with the coil diameters.
Therefore, it is possible to absorb the positional deviation amount between the coil center axis position Oc of the spring coil drawn out of the coil forming mechanism 20 and the coil rotation axis position Oc′ of the spring coil in the binding mechanism 40, caused by difference εα in the pitch formation amount α, by the center axis shifting unit 320. It is possible to consistently introduce the spring coils having different coil diameters to the binding mechanism 40 by the revolver units 321 to 324 of the center axis shifting unit 320 selected in correspondence with the coil diameters.
As a result, it is possible to omit time for moving the binding mechanism 40 with respect to the coil forming mechanism 20 or moving the coil forming mechanism 20 with respect to the binding mechanism 40 to match the coil center axis position Oc of the spring coil drawn out of the coil forming mechanism 20 with the coil center axis position Oc′ of the spring coil in the binding mechanism 40. Therefore, it is possible to compactly adjust difference εα of the pitch formation amount α by the center axis shifting unit 310 or 320, as compared to a case of moving the coil forming mechanism 20 with respect to the binding mechanism 40 to adjust the positional relationship.
Subsequently, a layout of the binding mechanism 40 will be described with reference to
In this example, the binding mechanism 40 includes the coil-fore-end inserting section 80 and the coil transferring section 85. The coil-fore-end inserting section 80 includes at least the metal roller 81, a resin roller 82, and the planar member 88, receives the helical coil drawn out of the coil forming mechanism 20 through the coil introducing mechanism 30, and inserts the fore-end portion of the helical coil into the first punch hole 3a of the paper stack 3 (see
In this example, the coil transferring section 85 is provided in the binding mechanism 40 to be close to the coil-fore-end inserting section 80. The coil transferring section 85 includes a metal roller 86 and a resin roller 87 brought into contact with the outer circumference of the helical coil, and a planar member 88 shared with the coil-fore-end inserting section 80. The metal roller 86 regulates the insertion position of the coil fore-end portion in the movement direction of the helical coil. The resin roller 87 maintains the posture in the movement direction of the helical coil.
The coil transferring section 85 rotatably drives (transfers) the helical coil such that the helical coil is inserted into the first punch hole 3a of the paper stack 3 by the coil-fore-end inserting section 80 and is cut by the coil forming mechanism 20, and the fore-end portion of the helical coil having lost the formation torque is guided up to the last punch hole 3a of the paper stack 3.
Subsequently, an example of a configuration of the coil-fore-end inserting section 80 will be described with reference to
The metal roller 81 is one of the two roller members, and is brought into contact with the outer circumference of the helical coil to function to restrict the insertion position of the coil fore-end portion of the helical coil into punch holes 3a of the paper stack 3. The metal roller 81 may be a metal roller having a plurality of the grooves 804 in the outer circumference. The metal roller 81 is fit on a shaft unit 802 and rotates freely.
On the upstream side (a coil introducing mechanism side) of the metal roller 81 described above, a guide roller 84 is rotatably joined with the shaft unit 802. The guide roller 84 may be a resin roller. The leading portion of the guide roller 84 has a truncated cone shape. At a position facing the guide roller 84, the resin roller 82 is provided having an almost same truncated cone shape as that of the leading portion of the guide roller 84.
The guide roller 84 is driven to rotate together with the resin roller 82 by the formation torque of the helical coil. In this example, the truncated-cone-shaped leading portion of the guide roller 84 and the truncated-cone-shaped leading portion of the resin roller 82 picks up the fore-end portion of the helical coil with respect to the binding mechanism 40. The resin roller 82 constitutes the other one of the two roller members, and is brought into contact with the outer circumference of the helical coil to function to maintain the insertion posture in the movement direction of the helical coil.
The resin roller 82 has grooves 805 formed in the outer circumference. The resin roller 82 is fit on and rotates freely supported by a shaft unit 803. The grooves 805 are provided to absorb an elasticity which the resin roller 82 receives from the fore-end portion of the helical coil during coil guide.
In this example, the metal roller 81 and the resin roller 82 are rotated together by the formation torque of the helical coil as shown in
In the binding mechanism 40, in the first half of a binding process, the helical coil is inserted into the paper stack 3 by using the formation torque. In the second half of the binding process, since the helical coil is separated from the wire 1 by the coil forming mechanism 20 to lose the above-mentioned formation torque, the helical coil is inserted into the paper stack 3 by using the coil transferring section 85 shown in
The planar member 88 supports three points of the helical coil in a coil diameter direction together with the metal roller 81 and the resin roller 82, as shown in
The planar member 88 functions to determine the position of the helical coil and maintain the coil movement posture of the helical coil together with the metal roller 81 and the resin roller 82. On the planar member 88 shown in
According to this configuration, after the posture of the helical coil is stabilized by the metal roller 81 and the resin roller 82, the metal roller 81 establishes a function of determining the position of the helical coil in the circumferential direction so as to determine the coil center axis position (not shown) of the helical coil to the coil rotation axis position Oc′ as the fore-end portion of the helical coil approaches the first punch hole 3a of the paper stack 3.
Subsequently, a function of determining the position of the helical coil in a pitch direction by the metal roller 81 will be described with reference to
In this example, when the widths of the grooves 804 of the metal roller 81 on a side from which the helical coil is sent to the coil transferring section 85 are denoted by w and the pick-up width of a groove 804 of the metal roller 81 on a side receiving the helical coil from the coil introducing mechanism 30 is denoted by w21, the pick-up width w21 is set to be larger than the width w of the grooves 804 on the helical-coil sending side.
For example, the pick-up width w21 is set to about 3.9 mm, a pick-up width w22 is set to about 3.5 mm, and a pick-up width w23 is set to about 3.2 mm. Widths w of the next the grooves 804 on the side from which the helical coil is sent to the coil transferring section 85 are set to 3.2 mm (=w23). Therefore, the coil fore-end portion of the helical coil can be guided to punch holes 3a of the paper stack 3 such that the pick-up width w21 gradually decreases to be constant the pick-up width w23 on the way.
Further, on the planar member 88 of the coil-fore-end inserting section 80 shown in
The comb-tooth arrangement unit 89 is provided at a fore-end portion of the paper holding unit 32. The paper holding unit 32 is formed in the paper stack aligning unit 36 described above, such that the paper stack 3 having aligned punch holes 3a are mounted on the paper holding unit 32. In an edge portion of one side of the comb-tooth arrangement unit 89, a plurality of comb-tooth-type notch portions for coil guide are formed with almost the same layout pitch as the layout pitch of punch holes 3a of the paper stack 3. The comb-tooth arrangement unit 89 is formed by performing a clipping process on an iron plate.
The comb-tooth arrangement unit 89 functions to fix the paper stack 3 from the above when the coil is inserted. For example, in a case where punch holes 3a of the paper stack 3 are aligned by the paper stack aligning unit 36, the comb-tooth arrangement unit 89 is opened, such that the paper stack 3 is free, and the paper stack 3 is temporarily held in the paper holding unit 32.
Next, the paper stack 3 having punch holes 3a aligned to some extent by the paper stack aligning unit 36 is set from the paper holding unit 32 to the binding mechanism 40, punch holes 3a are obliquely aligned by an pin inclination and insertion mechanism (not shown), and then the comb-tooth arrangement unit 89 is operable to pin down the paper stack 3 from the above. Therefore, the helical coil can be stably inserted into punch holes 3a of the paper stack 3.
Subsequently, an example of an operation of the coil-fore-end inserting section 80 will be described with reference to
Further, the metal roller 81 and the comb-tooth arrangement unit 89 guide the coil fore-end portion of the helical coil and insert the coil fore-end portion into the first punch hole 3a of the paper stack 3 in cooperation with each other. Moreover, the coil fore-end portion of the helical coil is continued from the coil-fore-end inserting section 80 to the coil transferring section 85 by the formation torque of the helical coil.
Then, since the helical coil is separated from the wire 1 in the coil forming mechanism 20, such that the above-mentioned helical coil loses the formation torque, in the coil transferring section 85, the metal roller 81 and the resin roller 82 are driven to rotate and operate to insert the fore-end portion of the helical coil into last punch hole 3a of the paper stack 3 in cooperation with the planar member 88.
As described above, the coil-fore-end inserting section 80 according to the exemplary embodiment of the present disclosure has a configuration in which widths w of the grooves 804 of the metal roller 81 gradually decrease like pick-up widths (from w21 to w23) to reach the arrangement pitch of the punch holes 3a of the paper stack 3, such that the coil pitch is matched. According to this configuration, the fore-end portion of the helical coil drawn out of the coil forming mechanism 20 and picked up and put into the coil-fore-end inserting section 80 by the coil introducing mechanism 30 can be consistently inserted into the first punch hole 3a of the paper stack 3.
Accordingly, the fore-end portion of the helical coil inserted into the first punch hole 3a of the paper stack 3 can be smoothly inserted into second and following punch holes 3a of the paper stack 3. Therefore, it is possible to improve insertion stability of the coil fore-end portion when the fore-end portion of the helical coil is inserted into punch holes 3a of the paper stack 3, thereby providing the binding mechanism 40 having high reliability.
Subsequently, an example of a configuration of a coil-fore-end inserting section 811 according to a second modification will be described with reference to
The metal roller 81′ shown in the coil-fore-end inserting section 811 is open right in front of the resin roller 82 (in a direction in which the paper stack 3 having both edges unprocessed descends). Further, components having the same reference symbols and names as those described with respect to the coil-fore-end inserting section 80 have the same functions as those described with respect to the coil-fore-end inserting section 80, and thus a description thereof is omitted.
In this example, the pick-up width w21 of first the groove 804 of the metal roller 81′ adjacent to the guide roller 84 is set to ‘B’ larger than the pick-up width w21 of the metal roller 81. Further, both peaks defining the groove 804 in the metal roller 81′ are set to be higher than those in the metal roller 81. Setting both peaks of the groove 804 of the metal roller 81′ to be higher is for making it easy to pick up the fore-end portion of the helical coil as compared to the metal roller 81.
In this example, the pick-up width w21 of the groove 804 on the helical-coil receiving side, the pick-up width of the groove 804 on the way, and the width w of groove on the helical-coil sending side are set to the same the pick-up width w21. Further, the layout pitch of the grooves 804 is set to be almost equal to the layout pitch of punch holes 3a of the paper stack 3.
The coil-fore-end inserting section 811 easily receives the helical coil without gradually decreasing pick-up widths w21 and the like as described above with respect to the coil-fore-end inserting section 80. Therefore, in the coil-fore-end inserting section 811, in an early stage, it is possible to determine the position of the fore-end portion of the helical coil from the first punch hole 3a of the paper stack 3 in an early stage.
Subsequently, the coil-fore-end inserting section 812 according to a third modification will be described with reference to
The resin roller 83 is disposed at a position capable of supporting the helical coil from obliquely below the helical coil, for example, on the inside of the left plate 4a shown in
In this example, as shown in
Also in this example, the metal roller 81″, the resin roller 82, and the resin roller 83 function to be rotated together by the formation torque of the helical coil. The formation torque of the helical coil is generated when the coil forming mechanism 20 forms the wire 1 for a coil and draws the helical coil.
When a distance from an outlet of the coil introducing mechanism 30 shown in
Therefore, it is possible to accurately determine the position of the helical coil in the circumferential direction by the metal roller 81″, the resin roller 82, and the resin roller 83 without interrupting the movement of the helical coil.
Subsequently, an example of the divided structure of the metal roller 81″ will be described with reference to
The metal roller 81a is a roller member on the side receiving the helical coil from the coil introducing mechanism 30. The groove width of the grooves 804 of the metal roller 81a is denoted by w31. The metal roller 81b is a roller member on the side sending the helical coil to the coil transferring section 85. The groove width of the grooves 804 of the metal roller 81b is denoted by w32. In order to improve the helical-coil pick-up characteristic, the groove width w31 of the metal roller 81a is set to be larger than groove width w32 of the metal roller 81b. Groove width w32 of the metal roller 81b is set to be small to match with the layout intervals of punch holes 3a of the paper stack 3.
By using the divided structure of the metal roller 81″, it is possible to absorb a rotation error between the metal roller 81a on the helical-coil receiving side and the metal roller 81b on the helical-coil sending side when the metal rollers 81a, 81b rotate together. Even in this example, in the metal roller 81a having a pitch-direction-position determining function, the widths of the grooves 804 on the helical-coil receiving side is set to be gradually decreased and the width of the final groove is set to be almost equal to the width w32 of the grooves 804 on the helical-coil sending side.
When the coil-fore-end inserting section 812 is configured as described above, after the coil center axis position Oc of the helical coil is stabilized by the metal roller 81a, the resin roller 82, and the resin roller 83, the position of the fore-end portion of the helical coil is determined by the pitch-direction-position determining function of the metal roller 81a as the fore-end portion of the helical coil approaches the first punch hole 3a of the paper stack 3. Further, the coil fore-end portion of the helical coil is continued from the metal roller 81b of the coil-fore-end inserting section 812 to the coil transferring section 85 by the formation torque of the helical coil.
Subsequently, a layout of the binding mechanism 40, an example of a configuration of a driving source thereof, and an example of a function thereof will be described with reference to
In this example, on the basis of the total length of the length of the metal roller 81 of the coil-fore-end inserting section 80 plus the length of the metal roller 86 of the coil transferring section 85, the length of the metal roller 86 of the coil transferring section 85 occupies about ¾ of the total length. Similarly, the length of the resin roller 87 also occupies about ¾ of the total length (the length of the resin roller 82 plus the length of the resin roller 87).
In the coil transferring section 85, the metal roller 86 and the resin roller 87 having those lengths can be driven to rotate and insert the coil fore-end portion of the helical coil, separated from the wire 1 by the coil forming mechanism 20 so as to lose the formation torque, up to last punch hole 3a of the paper stack 3 in cooperation with the planar member 88 and comb-tooth arrangement units 89 described above.
Here, an example of a configuration of the driving source of the binding mechanism 40 will be described with reference to
A connecting rod 835e is disposed between the movable plates 832a, such that the movable plates 832a are movably attached to fan-shaped (arc-shaped) movable gears 835a through the connecting rod 835e. Long holes 835d defining the above-mentioned movement allowance range are formed in the movable gears 835a, and the connecting rod 835e described above is movably provided in the long holes 835d. The positions of the metal rollers 81, 86 are controlled by using the long holes 835d of movable gears 835a.
The motor 832 rotating the metal roller 86 of the coil transferring section 85 is attached to the movable plate 832a. The motor 832 rotates a motor shaft in response to a driving signal S832 and is driven when rotating the metal roller 86. A gear (not shown) is attached to an end portion of the metal roller 86 and the torque of the motor 832 is transmitted to the gear through a motor gear.
The motor 833 for controlling the positions of resin rollers 82, 87 is attached to a second movable plate 833a. The motor 833 rotates a motor shaft in response to a driving signal S833 and rotates the resin rollers 82, 87. An arc-shaped gear 833b is mounted on the movable plate 833a. This gear 833b is engaged with a deceleration gear 833c, and the torque of the motor 833 is transmitted to the deceleration gear 833c through a shaft unit 833d.
The motor 834 rotating the resin roller 87 of the coil transferring section 85 is attached to the movable plate 833a. The motor 834 rotates a motor shaft in response to a driving signal S834 and is driven when rotating the resin roller 87. A pulley 834a is attached to an end portion of the resin roller 87 and the torque of the motor 834 is transmitted to pulley 834a through a belt 834b.
In the binding mechanism 40, the motor 835 for a transfer assembly (hereinafter, a transfer ASSY) is attached. The motor 835 rotates a motor shaft in response to a driving signal S835 and is driven when retreating the metal rollers 81, 86 from a binding work area of the paper stack 3 bound with the helical coil.
Regarding the motor 835, each of the movable gears 835a described above is engaged with deceleration gears 835b, and the torque of the motor 835 is transmitted to the deceleration gears 835b through a shaft unit 835c. Fan-shaped movable gears 835a are rotated to retreat the movable plates 832a having the metal rollers 81, 86 attached thereto. Each of the motors 831 to 835 may be a stepping motor. They serve as the driving source of the binding mechanism 40.
According to the binding mechanism 40 shown in
Accordingly, the fore-end portion of the helical coil is inserted into and passes through the first punch hole 3a of the paper stack 3. Next, the coil transferring section 85 receives the helical coil sequentially inserted into punch holes 3a of the paper stack 3 and rotates (transfers) the fore-end portion of the cut helical coil to guide the fore-end portion to last punch hole 3a of the paper stack 3.
If the binding mechanism 40 is configured as described above, the helical coil can be smoothly inserted into second and following punch holes 3a of the paper stack 3 by the metal roller 86, the resin roller 87 of the coil transferring section 85, and one the planar member 88, without interrupting the movement of the helical coil. Therefore, it is possible to consistently and smoothly bind the paper stack 3 with the helical coil.
Further, it is possible to transfer and stop the helical coil at any time by the coil transferring section 85 while maintaining a sliding-resistance reducing measure based on the rotation of the metal roller 86 having the pitch-direction-position determining function. Accordingly, since it is possible to transfer and stop the helical coil at any time, the coil transferring section 85 can stop at end positions of paper stacks 3 having a plurality of paper sizes and thus can deal with booklets having an A4 size, a B4 size, an A5 size, a B5 size, or the like.
A coil transferring section 851 according to a fourth modification will be described with reference to
In this example, the coil transferring section 851 inserts the helical coil into the comb-tooth arrangement unit 89 shown in
If the coil transferring section 851 is configured as described above, it is possible to smoothly insert the helical coil into second and following punch holes 3a of the paper stack 3 by one the resin roller 87 and two planar members 88 and 881 without interrupting the movement of the helical coil by the resin roller 87. Therefore, it is possible to perform a binding processing by consistently and smoothly inserting the helical coil into punch holes 3a of the paper stack 3.
Subsequently, the coil transferring section 852 according to a fifth modification will be described with reference to
The resin roller 821 shown in
If the coil transferring section 852 is configured as described above, it is possible to insert the fore-end portion of the helical coil inserted into the first punch hole 3a of the paper stack 3 to last punch hole 3a of the paper stack 3 by the resin roller 821, the metal roller 86, and the planar member 88. Therefore, it is possible to perform a binding process by consistently and smoothly inserting the helical coil into punch holes 3a of the paper stack 3.
The resin rollers 82, 83, 87, 821 described above may be rubber rollers using a rubber-based material in consideration of sliding movement, fraction, and the like with the helical coil.
Subsequently, the paper stack transferring mechanism 60 will be described.
In order to perform the pick-up function, the paper stack transferring mechanism 60 includes a motor 61a for pick-up, guide rods 61b, and a pickup 61c. The pickup 61c is slidably attached to the guide rods 61b, and is fixed to and driven by a belt (not shown) rotated by the motor 61a. For example, the pickup 61c advances from the lowermost position P8 shown in
In order to perform the paper-sheet aligning function of aligning the paper stack 3, the paper stack transferring mechanism 60 includes a motor 61i for paper-sheet alignment #1HP, a motor 61j for paper-sheet alignment #2HP, and substantially L-shaped plates 61k, 61m. The plate 61k is slidably attached to the main body 61d, and is fixed to and driven by a belt (not shown) rotated by the motor 61j. Further, the plate 61m is slidably attached to the main body 61d, and is fixed to and driven by a belt (not shown) rotated by the motor 61i. In this example, the distance between the plate 61k and the plate 61m is determined based on paper size information. The paper stack 3 sandwiched between the plates 61k, 61m and aligned is provided to the end processing unit 70.
Subsequently, the alignment pin mechanism 50 will be described.
The alignment pin mechanism 50 includes two alignment pins 51, a motor 386, and female screw members 58, and vertically moves the alignment pins 51 by the driving force of the motor 386. For example, the alignment pins 51 are movably attached to a front panel 520 by the female screw members 58 and alignment pin sleeves 59 and 501.
A fore-end portion 51a of the alignment pin 51 is formed in an almost cone shape, and the size of a body 51b of the alignment pin 51 is set slightly smaller than the size of punch holes 3a of the paper stack 3. Therefore, when the alignment pin 51 is inserted into and passes through punch holes 3a of the paper stack 3, it is possible to move individual paper sheets of the paper stack 3 according to the alignment pin 51.
The alignment pin 51 is provided with a male screw 57. The male screw 57 is threadably joined with the female screw member 58. Further, a spur gear 56 is fixed to the alignment pin 51. The spur gear 56 is engaged with a cylindrical gear 55, and the cylindrical gear 55 is engaged with a spur gear 54. The spur gear 54 is engaged with a spur gear 53 fixed to a shaft of the motor 386.
According to this configuration, when the motor 386 is driven, the driving force of the motor 386 is transmitted to the alignment pin 51 through the spur gear 53, the spur gear 54, the cylindrical gear 55, and the spur gear 56. Accordingly, the alignment pin 51 rotates and the rotation is converted into a translational motion by the male screw 57 and the female screw member 58, such that the alignment pin 51 is guided to the alignment pin sleeves 501 and 59 and vertically moves.
The movement direction of the alignment pin 51 is set to substantially the same direction as the movement direction of the helical coil in punch holes 3a of the paper stack 3. For example, as shown in
A range from the lowermost position to which the alignment pin 51 can descend to the uppermost position to which the alignment pin 51 can rise, that is, the operation range of the alignment pin 51 is about 40 mm. At the uppermost position of the alignment pin 51, as shown in
The alignment pin mechanism 50 first inserts the alignment pins 51 into the punch holes 3a of the paper stack 3 in a state where the paper stack 3 has not been clamped by the clamp moving mechanism 380. Next, the alignment pin mechanism 50 clamps the paper stack 3 by the clamp moving mechanism 380 in a state where the alignment pins 51 has been inserted into and passed through the punch holes 3a of the paper stack 3, and pulls the alignment pins 51 out of the punch holes 3a of the paper stack 3 in a state in which the paper stack 3 having the alignment pins 51 inserted therein has been clamped by the clamp moving mechanism 380.
Movement direction 504 of the alignment pins 51 shown in
As described above, according to the alignment pin mechanism 50, at least two alignment pins 51 formed to be movable in almost the same direction as the movement direction of the helical coils 11a, 11b, 11c, 11d in the punch holes 3a of the paper stack 3 are inserted into and pass through the punch holes 3a of the paper stack 3.
According to this configuration, it is possible to automatically and accurately align the punch holes 3a of the paper stack 3 in an oblique direction in which the helical coils 11a, 11b, 11c, 11d moves. Accordingly, it is possible to take a wide clearance between the helical coils 11a, 11b, 11c, 11d passing through the punch holes 3a of the paper stack 3 and the inner walls of the punch holes 3a of the paper stack 3. Therefore, the helical coils 11a, 11b, 11c, 11d do not come into contact with the inner walls of the punch holes 3a and thus it is possible to prevent a defect in inserting the helical coils 11a, 11b, 11c, 11d.
Subsequently, the end processing unit 70 will be described in detail.
The outlet-side end processing unit 71 and the inlet-side end processing unit 72 are attached in the case 73 to be movable in a direction (the longitudinal direction of the paper stack 3′) shown by an arrow P1, and moves in arrow direction P1 according to the paper size. This is because positions to process end portions of the helical coils 11a, 11b, 11c, 11d differ according to paper sizes.
In this example, the outlet-side end processing unit 71 includes a motor 710a for end processing unit positioning (see
A main body 715 of the outlet-side end processing unit 71 is movably attached to the guide rods 714. For example, the main body 715 of the outlet-side end processing unit 71 is slidably movable on the guide rods 714 inserted therein. The rack 712 fixed to a chassis 718 of the main body 715 is engaged with the spur gear 711.
According to this configuration, when the motor 710a is driven, the motor gear 713 and the spur gear 711 rotate. As the spur gear 711 rotates, a power is transmitted to the rack 712 engaged with the spur gear 711, such that the main body 715 of the outlet-side end processing unit 71 moves along the guide rods 714 in a left direction or a right direction shown by the arrow P1. Therefore, it is possible to move the outlet-side end processing unit 71 according to paper sizes.
Similarly, the inlet-side end processing unit 72 includes a motor 710b for end processing unit positioning (see
A main body 725 of the inlet-side end processing unit 72 is movably attached to the guide rail 724. For example, the main body 725 of the inlet-side end processing unit 72 is slidably fit into the guide rail 724. The rack 722 fixed to the chassis 728 of the main body 725 is engaged with the spur gear 721.
According to this configuration, when the motor 710b is driven, the motor gear 723 and the spur gear 721 rotate. As the spur gear 721 rotates, a power is transmitted to the rack 722 engaged with the spur gear 721, such that the main body 725 of the inlet-side end processing unit 72 moves along the guide rail 724 in a left direction or a right direction shown by the arrow P1. Therefore, it is possible to move the inlet-side end processing unit 72 according to paper sizes.
The outlet-side end processing unit 71 includes a drag unit 74 closely drawing the helical coil. The drag unit 74 includes drag holding teeth 741. The body on one end side of the helical coil having both end portions unprocessed is inserted between the drag holding teeth 741 and the helical coil is closely drawn. Similarly, the inlet-side end processing unit 72 includes a drag unit 75 closely drawing the helical coil. The drag unit 75 includes drag holding teeth 751. The body on the other end side of the helical coil having both end portions unprocessed is inserted between the drag holding teeth 751 and the helical coil is closely drawn. The motion of the drag unit 74 is synchronized with the motion of the drag unit 75.
Subsequently, the drag units 74, 75 will be described in detail.
Each of the arms 743 is slidably attached on the chassis 718. For example, a gear cutting portion 745 and a long hole 746 are formed in the arm 743, and the long hole 746 is slidably attached on the chassis 718 by a bolt 748. Another long hole is formed in the arm 743. The gear cutting portion 745 of the arm 743 is engaged with the spur gear 742 in a form of a rack-and-pinion structure. The arm 743 is pulled on the rear side (the long hole 746 side) by a spring 749.
At a fore-end of the arm 743, the links 744 are attached. The upper and lower links 744 have shafts at the rear ends, respectively, and are pulled in directions facing each other by a spring 747. The drag holding teeth 741 are fixed to the links 744. Upper and lower drag holding teeth 741 are formed by bending a linear metal plate in a rectangular shape. The rectangular drag holding teeth 741 have receiving surfaces P2, P3 receiving the helical coil formed to be inclined with respect to the movement direction of the helical coil, respectively. Accordingly, when the helical coil is brought into contact with the receiving surfaces P2, P3 and is pressed down, the upper and lower drag holding teeth 741 rotate in opposite directions to each other.
When the motor 741a (see
The drag unit 74 rotates the spur gear 742 with the helical coil inserted therein so as to retreat the arm 743 engaged with the spur gear 742 along the long hole 746. The helical coil retreated by the drag unit 74 comes into contact with a coil receiving member 703 so as to be positioned as shown in
Since the inlet-side end processing unit 72 has a configuration obtained by simply turning the layout of the outlet-side end processing unit 71 upside down, the drag unit 75 has the same configuration as the drag unit 74 described above. Therefore, a detailed description of the drag unit 75 is omitted.
Subsequently, a function of changing a cutting position to cut the helical coil according to the diameter size of the helical coil will be described.
In this example, the cutting and bending mechanism 76 is accommodated in the chassis 718 to be obliquely movable, and moves according to the diameter size of the helical coil. The cutting and bending mechanism 76 is disposed to be face the helical coils 11a, 11b, 11c, 11d and is attached to be movable in an oblique direction along the arc portions of the helical coils 11a, 11b, 11c, 11d. The cutting and bending mechanism 76 obliquely moves according to the diameters of the helical coils 11a, 11b, 11c, 11d, such that the cut surfaces of the helical coils 11a, 11b, 11c, 11d become an almost circular shape.
The cutting and bending mechanism 76 is fixed to rods 760, 761. In a side of the chassis 718, inclined holes 763, 764, 765 are formed. The inclined holes 763, 764, 765 are formed to be inclined in the same direction.
A rod 760 is fit into the inclined hole 764 of the chassis 718, a rod 761 is fit into the inclined hole 763, and a rod 762 is fit into the inclined hole 765. Both ends of each of the three rods 760 to 762 are fixed to triangular plates 766. For example, in each of the triangular plates 766, three holes 767 to 769 are formed. The rod 760 is fixed to the holes 767 of the triangular plates 766, the rod 761 is fixed to the holes 768, and the rod 762 is fixed to the holes 769.
The rod 762 is to be formed longer than the other rods 760, 761, and is joined with planar grooved cams 752, 753. For example, in the planar grooved cams 752, 753, the same cam grooves 754 are formed. Both ends of the rod 762 are fit into the cam grooves 754. The planar grooved cam 752 and the planar grooved cam 753 are connected by a shaft 759. The planer grooved cam 752 functions as a spur gear and is engaged with a spur gear 758, and the spur gear 758 is engaged with a spur gear 757. The spur gear 757 is engaged with a motor gear 785 (see
According to this configuration, a driving force of a motor 757a for a cut position (see
As the rod 762 moves along the inclined holes 765, the rods 760, 761 moves along inclined holes 763, 764 together with the triangular plates 766 fixed to both ends of the rod 762, respectively. Accordingly, the cutting and bending mechanism 76 fixed to the rods 760, 761 moves along the inclined holes 763, 764. Therefore, it is possible to change a cutting position of a helical coil according to the diameter of the helical coil, and thus it is possible to make the cut end surface shapes of the helical coils 11a, 11b, 11c, 11d uniform regardless of the diameters of the helical coils 11a, 11b, 11c, 11d.
The cutter 787 of the cutting and bending mechanism 76 shown in
The cutter 787 of the cutting and bending mechanism 76 shown in
As described above, since the position of the cutting and bending mechanism 76 is moved according to the helical coil 11a having the coil diameter of φ8 mm, the helical coil 11b having the coil diameter of φ12 mm, the helical coil 11c having the coil diameter of φ16 mm, and the helical coil 11d having the coil diameter of φ20 mm, it is possible to perform cutting in a direction almost perpendicular to a tangential direction of a cut position of each of the helical coils 11a, 11b, 11c, 11d. Therefore, even when the coil diameter changes, since the cut surface becomes an almost circular shape, not an elliptical shape, it is possible to prevent cut end portions of the helical coils 11a, 11b, 11c, 11d from being sharpened.
Subsequently, an example of a configuration of the cutting and bending mechanism 76 will be described.
For example, in order to implement the function of pinching and holding an end portion of a helical coil, a planar grooved cam 770, a pinching member 771, and a pinch receiving member 772 are provided. The pinching member 771 is movably attached. The pinch receiving member 772 receives the pinching member 771. The end portion of the helical coil is pinched by the pinching member 771 and the pinch receiving member 772. The pinching member 771 and the pinch receiving member 772 are an example of a pinching unit.
For example, the pinch receiving member 772 is fixed to a plate 779 by screws 781a, 781b. The pinching member 771 has a protrusion 776 and a hole 777. The protrusion 776 of the pinching member 771 is fit into a cam groove (not shown) of the planar grooved cam 770, and a rod 778 is rotatably fit into the hole 777 through the plate 779. The rod 778 is fixed to a hole 783 of the plate 779.
A shaft 775 is fit into an almost semi-lunar shaft hole 780 of the planar grooved cam 770. The shaft 775 is fixed to a planar grooved cam 774 for bending. The planar grooved cam 774 functions as a spur gear, and receives a driving force of a motor 773a for cutting and bending so as to rotate. For example, the driving force of the motor 773a is transmitted to the planar grooved cam 774 through a worm gear and a mid gear (not shown).
According to this configuration, when the motor 773a is driven, the shaft 775 rotates together with the planar grooved cam 774. The planar grooved cam 770 rotates by the rotation of the shaft 775, such that the pinching member 771 rotates around the rod 778 as a rotational axis according to the cam groove of the planar grooved cam 770. Therefore, it is possible to pinch and hold the end portion of the helical coil by a fore-end portion 772a of the pinch receiving member 772 and a fore-end portion 771a of the pinching member 771.
In order to implement the function of cutting the helical coil, a planar grooved cam 789, a link 786, the cutter 787, and a cutter receiver 788 are provided. The cutter 787 is movably attached. The cutter receiver 788 receives the cutter 787. The fore-end-portion of the helical coil pinched by the pinching member 771 and the pinch receiving member 772 is cut by the cutter 787 and the cutter receiver 788. The cutter 787 and the cutter receiver 788 are an example of a cutting unit.
For example, the cutter receiver 788 is fixed to a plate 793 by screws 788b, 788c, 788d. The cutter 787 is rotatably attached to a pin 797 fixed to the plate 793 by the cutter receiver 788.
The link 786 has a protrusion 793a and a hole 791. The protrusion 793a of the link 786 is fit into a cam groove 790 of the planar grooved cam 789, and the rod 778 is rotatably fit into the hole 791. A fore-end portion 786a of the link 786 comes into contact with a rear end portion 787b of the cutter 787. The shaft 775 is fit into an almost semi-lunar shaft hole 792 of the planar grooved cam 789.
According to this configuration, when the motor 773a is driven, the shaft 775 rotates together with the planar grooved cam 774. The planar grooved cam 789 rotates by the rotation of the shaft 775, such that the link 786 rotates around the rod 778 as a rotational axis along the cam groove 790 of the planar grooved cam 789. In this case, the fore-end portion 786a of the link 786 manipulates the rear end portion 787b of the cutter 787 to rotate the cutter 787. Therefore, it is possible to pinch and cut the helical coil by the fore-end portion 787a of the cutter 787 and a fore-end portion 788a of the cutter receiver 788. When cutting the helical coil, the end portion of the helical coil is pinched and held by the pinch receiving member 772 and the pinching member 771.
In order to implement a helical-coil bending mechanism, the planar grooved cam 774 and a bending unit 782 are provided. The bending unit 782 is movably attached and bends the end portion of the helical coil cut by the cutter 787. The bending unit 782 has a protrusion 782a and a hole 782b. The protrusion 782a of the bending unit 782 is fit into a cam groove 774a of the planar grooved cam 774, and the rod 778 is rotatably fit into the hole 782b.
According to this configuration, when the motor 773a is driven, the planar grooved cam 774 rotates. The bending unit 782 rotates on the rod 778 along the cam groove 774a of the planar grooved cam 774 by the rotation of the planar grooved cam 774. Therefore, it is possible to bend the helical coil by a fore-end portion 782c of the bending unit 782. When bending the helical coil, the end portion of the helical coil is pinched and held by the pinch receiving member 772 and the pinching member 771.
In order to implement the function of holding offcuts after cutting helical coils, an offcut contact unit 794 and an offcut receiving unit 795 are provided. The offcut contact unit 794 is movably attached. The offcut receiving unit 795 receives the offcut contact unit 794. A coil offcut is pinched and then released by the offcut contact unit 794 and the offcut receiving unit 795. The offcut contact unit 794 and the offcut receiving unit 795 are an example of an offcut pinching unit.
For example, the offcut receiving unit 795 is fixed to the plate 793 by screws 788b, 788d with the cutter 787 and the cutter receiver 788 interposed therebetween. The offcut contact unit 794 is rotatably attached to the pin 797 fixed to the plate 793 to be close to the cutter receiver 788.
A tensile spring 796a (see
According to this configuration, when the motor 773a is driven, the shaft 775 rotates together with the planar grooved cam 774. The planar grooved cam 789 rotates by the rotation of the shaft 775, such that the link 786 rotates on the rod 778 along the cam groove 790 of the planar grooved cam 789. In this case, the fore-end portion 786a of the link 786 operates the rear end portion 794d of the offcut contact unit 794 to rotate the offcut contact unit 794 in a close direction by the tension of the tensile spring 796a. Therefore, the helical coil is pinched by the fore-end portion 794a of the offcut contact unit 794 and the fore-end portion 795a of the offcut receiving unit 795, so as to hold an offcut of the helical coil generated after cutting.
Subsequently, an example of the operation of the cutting and bending mechanism 76 will be described in detail.
The cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
Subsequently, the operation of the cutting and bending mechanism 76 will be described in detail with reference to a perspective view and an enlarged view of the cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
The cutting and bending mechanism 76 shown in
As described above, since the offcut 798 is configured to be released after the end portion of the helical coil is cut, it is possible to prevent the offcut 798 from being broken up by an impact during cutting.
Further, the fore-ends of the end portions 701a, 701b of the helical coil are accommodated inside the helical coil. Accordingly, it is possible to prevent the fore-ends of the end portions 701a, 701b from being hooked into clothes of a user. A bent base position P4 of the end portion 701a and a bent base position P5 of the end portion 701b are set to be the same phase.
Subsequently, operation timings of the end processing unit 70 will be described.
A horizontal axis shown in
When the phase of the shaft 775 is Q03, a cutting process starts. For example, the fore-end portion 786a of the link 786 shown in
When the phase of the shaft 775 is Q11, the process of pinching and holding the end portion is completed. For example, the end portion of the helical coil is pinched and held by the fore-end portion 772a of the pinch receiving member 772 and the fore-end portion 771a of the pinching member 771 shown in
When the phase of the shaft 775 is Q21, the cutting process is completed. For example, as shown in
When the phase of the shaft 775 is Q22, a bending process starts. For example, the end portion of the helical coil held by the pinch receiving member 772 and the pinching member 771 shown in
When the phase of the shaft 775 is Q31, the bending process is completed and retreating starts. When the phase of the shaft 775 is Q41, the retreating is completed. For example, the bending unit 782 shown in
When the phase of the shaft 775 is Q32, releasing of the end-portion holding processing starts, and when the phase of the shaft 775 is Q42, the releasing is completed. For example, the pinching member 771 shown in
When the phase of the shaft 775 is Q51, cutter retreat starts, and when the phase of the shaft 775 Q52, the retreat is completed. For example, the cutter 787 shown in
As described above, according to the coil binding apparatus 100 according to the exemplary embodiment of the present disclosure, the cutting and bending mechanism 76 pinches and holds the end portion of the helical coil by the pinching member 771 and the pinch receiving member 772 and cuts the pinched helical coil by the cutter 787 and the cutter receiver 788. The end portion of the cut helical coil is bent by the bending unit 782. Accordingly, it is possible to accurately cut and bend both ends of the helical coil. Further, when the coil is cut, since the offcut 798 is held by the offcut contact unit 794 and the offcut receiving unit 795, it is possible to prevent the offcut 798 from being broken up unexpectedly.
Subsequently, an assembly example of the coil binding apparatus 100 will be described with reference to
Next, the binding mechanism 40 is attached between the left plate 4a and the right plate 4b having the paper stack aligning unit 36 attached thereto. In this case, the binding mechanism 40 having the coil-fore-end inserting section 80 and the coil transferring section 85 attached thereto is used.
The constitutional element obtained by attaching the binding mechanism 40, the alignment pin mechanism 50, paper stack transferring unit 60, the coil-fore-end inserting section 80, and the coil transferring section 85 between the left plate 4a and the right plate 4b as described above is generally referred to the apparatus main body 101.
In order to attach the individual members between the left plate 4a and the right plate 4b, holes formed in the paper stack aligning unit 36, the binding mechanism 40, the paper stack transferring mechanism 60, the left plate 4a, and the right plate 4b are aligned with respect to the positions, bolts are inserted into and pass through the holes from one side to the other side, and end portions of the bolts exposed to the other side are screwed into female screws to be fixed.
In this example, the paper tray 2, the coil forming mechanism 20, the coil introducing mechanism 30, the paper stack aligning unit 36, and the end processing unit 70 are assembled and put into the apparatus main body 101 shown in
The fixing method between the members is not limited to a bolt and nut fastening method. The paper tray 2, the coil forming mechanism 20, the coil introducing mechanism 30, the paper stack aligning unit 36, and the end processing unit 70 may be fixed to the left plate 4a and the right plate 4b by using sheet metal screws. Next, the wire cartridge 10 is attached to the coil forming mechanism 20. The coil forming mechanism 20 having the wire cartridge 10 attached thereto may be used. Accordingly, the coil binding apparatus 100 as shown in
Subsequently, an example of a configuration of a control system of the paper stack aligning unit 36 will be described with reference to
The motor 340 rotates in response to a driving signal S34 from the control unit 799, and operates when driving the left and right curl fences 34a, 34b of the paper curl pressing mechanism 331 shown in
The motor 381 rotates in response to a driving signal S81 from the control unit 799 so as to rotate a paddle. The control unit 799 controls the rotation and the number of times of rotation of the paddle roller 353. The control unit 799 rotates the motor 381 counterclockwise (CCW: a reverse rotation) to drive the paddle roller 353.
The motor 382 rotates in response to a driving signal S82 from the control unit 799 to ascend or descend the paddle roller 353. The control unit 799 controls the ascending, descending, and position of the paddle roller 353. The control unit 799 rotates the motor 382 clockwise to descend the paddle roller 353, and rotates the motor 382 counterclockwise to ascend the paddle roller 353.
The motor 383 rotates in response to a driving signal S83 from the control unit 799 to set the side-jogging #1 of a reference side of the side jogger 370. The control unit 799 controls the position of side-jogging #1 of the reference side of side joggers 370. The control unit 799 rotates the motor 383 clockwise to perform a side-jogging operation, and rotates the motor 383 counterclockwise to perform an opening operation.
The motor 384 rotates in response to a driving signal S84 from the control unit 799 to drive side-jogging #2 of a movable side of side joggers 370. The control unit 799 controls the position of side-jogging #2 of the movable side of side joggers 370. The control unit 799 rotates the motor 384 clockwise to perform a movement control to the side-jogging reference position, and rotates the motor 384 counterclockwise to perform a movement control to the retreat position.
The motor 385 rotates in response to a driving signal S85 from the control unit 799 to drive the clamps 801a, 801b. The control unit 799 drives cams for closing and opening the clamps and controls the open positions of the clamps. The control unit 799 performs a rotation control so as to rotate the motor 385 clockwise to open the clamps 801a, 801b and rotate the motor 385 counterclockwise to close the clamps 801a, 801b.
The motor 386 rotates in response to a driving signal S86 from the control unit 799 to drive the alignment pins 51 of the alignment pin mechanism 50. The control unit 799 controls the alignment pins 51 of the alignment pin mechanism 50 to protrude and retreat. The control unit 799 performs a rotation control so as to rotate the motor 386 clockwise to protrude the alignment pins 51 and rotate the motor 386 counterclockwise to retreat the alignment pins 51.
The motor 387 rotates in response to a driving signal S87 from the control unit 799 to drive the shutter 383′. The control unit 799 performs control to open and close the shutter 383′. The control unit 799 performs rotation control so as to rotate the motor 387 clockwise to open the shutter and rotate the motor 387 counterclockwise to close the shutter.
The motor 388 rotates in response to a driving signal S88 from the control unit 799 to move the clamps 801a, 801b of the clamp moving mechanism 380. The control unit 799 performs control to move the clamps 801a, 801b to paper-sheet pressing positions and coil inserting positions. The control unit 799 performs a rotation control so as to rotate the motor 388 clockwise to move the clamps 801a, 801b to coil inserting positions and rotate the motor 388 counterclockwise to move the clamps 801a, 801b to the alignment positions.
The motor 389 rotates in response to a driving signal S89 from the control unit 799 and operates when rotating a drawing roller. The control unit 799 controls the rotation and the number of times of rotation of the drawing roller. The control unit 799 rotates the motor 389 counterclockwise to control the rotation of the drawing roller.
The motor 390 rotates in response to a driving signal S90 from the control unit 799 to rotate a pressing roller. The control unit 799 controls the ascending and descending of the pressing roller. The control unit 799 performs rotation control so as to rotate the motor 390 clockwise to descend the pressing roller and rotate the motor 390 counterclockwise to ascend the pressing roller.
The motor 391 rotates in response to a driving signal S91 from the control unit 799 to ascend the clamps 801a, 801b. The control unit 799 performs control to open the clamps 801a, 801b during booklet exchange. The control is switched by 180° rotation. Motors 340 and 381 to 391 described above may be stepping motors.
The sensor 111 senses the fore-ends of paper sheets 3′ and outputs a position sense signal S11 to the control unit 799. The control unit 799 performs residual-paper-sheet sensing to sense the presence or absence of residual paper sheets 3′ in the paper holding unit 32. As the sensor 111, a reflective optical sensor is used.
The sensor 112 senses stop positions (home positions HP) of the curl fences 34a, 34b, and outputs a position sense signal S12 to the control unit 799. The sensor 113 senses a stop position (a home position HP) of the paddle roller 353 at a predetermined height, and outputs a position sense signal S13 to the control unit 799.
The sensor 114 senses a predetermined stop position (a home position HP) of side-jogging #1 of the side jogger 370, and outputs a position sense signal S14 to the control unit 799. The sensor 115 senses a predetermined stop position (a home position HP) of side-jogging #2 of the side jogger 370, and outputs a position sense signal S15 to the control unit 799.
The sensor 116 senses predetermined stop positions (home positions HP) of the clamps 801a, 801b, and outputs a position sense signal S16 to the control unit 799. The sensor 117 senses a predetermined stop position (a home position HP) of the shutter 383′, and outputs a position sense signal S17 to the control unit 799.
The sensor 118 senses a predetermined stop position (a home position HP) of the clamp moving mechanism 380, and outputs a position sense signal S18 to the control unit 799. The sensor 119 senses a predetermined stop position (a home position HP) of the press roller 355, and outputs a position sense signal S19 to the control unit 799.
The sensor 120 senses ascending and descending stop positions (home positions HP) of a clamp-up motor, and outputs a position sense signal S20 to the control unit 799. The sensor 121 senses paper sheets 3′ after a punching processing, and outputs a paper-sheet sense signal S10 to the control unit 799. As each of the sensors 112 to 121, a transmissive optical sensor is used.
Subsequently, an operation example of the paper stack aligning unit 36 will be described with reference to
In this example, a plurality of paper sheets 3′ set with having aligned punch holes 3a in the paper tray 2 are fed and bound to be stacked in a paper stack 3. Punch holes 3a of the paper stack 3 are obliquely aligned to facilitate the insertion of a helical coil. Then, the paper stack 3 having obliquely aligned punch holes 3a is set to a coil insertion operation position. This case is exemplified.
Using them as paper-sheet conditions, in the paper stack aligning unit 36, the control unit 799 as shown in
The control unit 799 transmits high-level driving signal S85 shown in (L) of
Further, the control unit 799 having started the operation at the timing t0 transmits high-level driving signal S82 shown in (F) of
After the timing t1, the sensor 116 for clamp HP shown in (M) of
Further, before the timing t4, the control unit 799 activates high-level driving signal S833 shown in (J) of
After the timing t4, a sensor shown in (A) of
After the timing t5, the sensor 111 shown in (B) of
Also, before the timing t5, the sensor 115 for side-jogging #2 shown in (K) of
After the timing t6, the control unit 799 changes driving signal S82 shown in (F) of
In this example, after the timing t6, the sensor 112 for curl fence HP shown in (D) of
Further, at the timing t7, the control unit 799 transmits high-level driving signal S85 shown in (L) of
After the timing t8, the sensor 112 shown in (D) of
Further, before the timing t10, the sensor 116 for clamp HP shown in (M) of
Further, at the timing t10, the control unit 799 changes driving signal S81 shown in (E) of
Also, the control unit 799 changes driving signal S82 shown in (F) of
The control unit 799 changes driving signal S83 shown in (H) of
Also, the control unit 799 changes driving signal S84 shown in (J) of
Further, at the timing t10, the control unit 799 changes driving signal S85 shown in (L) of
Also, before the timing t13, the control unit 799 changes driving signal S86 shown in (N) of
Thereafter, the control unit 799 changes driving signal S85 shown in (L) of
At the timing t17, the HP sensor 116 for clamps shown in (M) of
The sensor 121 for use after punching shown in (A) of
Further, at the timing t18, the control unit 799 changes driving signal S87 shown in (A) of
The HP sensor 117 for the shutter shown in (B) of
Thereafter, before the timing t19, the control unit 799 changes driving signal S88 shown in (C) of
Also, the HP sensor 118 for clamp movement shown in (D) of
Subsequently, an example of a configuration of a control system of the coil forming mechanism 20 will be described with reference to
The motor 202 rotates feed roller 24a in response to driving signal S22 from the control unit 799, so as to send the wire 1 to the coil forming section 28. For example, the motor 202 rotates clockwise to send the wire 1 to the coil forming section 28.
The motor 203 selects one of the forming adapters of the forming guide 28a in response to driving signal S23 from the control unit 799. In this example, one of the forming adapters #φ8, #φ12, #φ16, and #φ20 corresponding to four kinds of coil diameters is selected.
For example, the control unit 799 may rotate the motor 203 clockwise to select one forming adaptor in order of the forming adapters #φ20, #φ16, #φ12, #φ8. The motor 203 may rotate counterclockwise to select one forming adaptor in order of the forming adapters #φ8, #φ12, #φ16, #φ20.
During coil forming, the motor 204 adjusts the coil pitch in response to driving signal S24 from the control unit 799. After the coil forming, the motor 205 cuts the wire 1 in response to driving signal S25 from the control unit 799.
When the coil diameter is changed, the motor 206 moves the forming guide 28a in response to driving signal S26 from the control unit 799. For example, the control unit 799 rotates the motor 206 counterclockwise to set one of the forming adapters of the forming guide 28a to the coil forming section 28. Further, the control unit 799 rotates the motor 206 clockwise to control the forming guide 28a to retreat from the coil forming section 28.
A solenoid 207 for a reel brake drives a reel brake (not shown) in response to a solenoid driving signal S27 from the control unit 799. Braking is performed to prevent the drum 12 from rotating excessively. The reel brake makes it possible to prevent the wire 1 drawn out of the wire cartridge 10 from being stretched. They constitute the control system of the coil forming mechanism 20.
Subsequently, an example of a configuration of a control system of the coil forming mechanism 20, the binding mechanism 40, and the paper stack transferring mechanism 60, and an example of an operation thereof will be described with reference to
The motor 318 selects one of coil accommodating units 311 to 314 of the center axis shifting unit 310 in response to driving signal S318. The control unit 799 controls the rotation movement and stop position of the center axis shifting unit 310. The motor 318 rotates the center axis shifting unit 310 counterclockwise.
The motor 831 sets the positions of the metal rollers 81, 86 in response to driving signal S831. The control unit 799 controls the rotation and rotation speeds of the metal rollers 81, 86. The control unit 799 rotates the metal rollers 81, 86 clockwise. The motor 832 rotates the metal roller 86 in response to driving signal S832. The control unit 799 controls the rotation and rotation speeds of the metal rollers 81, 86. The motor 832 rotates the metal rollers 81, 86 clockwise.
The motor 833 sets the positions of the resin rollers 82, 87 in response to driving signal S833. The control unit 799 controls the vertical positions and movement stop positions of the resin rollers 82, 87. The control unit 799 rotates the motor 833 clockwise in correspondence with the coil diameter, thereby performing position control to ascend the resin rollers 82, 87. The control unit 799 rotates the motor 833 counterclockwise, thereby performing position control to descend the resin rollers 82, 87.
The motor 834 rotates the resin roller 87 in response to driving signal S834. The control unit 799 controls the rotation and rotation speeds of the resin rollers 82, 87. The motor 834 rotates the resin rollers 82, 87 counterclockwise.
The motor 835 retreats the transfer ASSY in response to driving signal S835. The control unit 799 performs rotation movement and stop position control for the transfer ASSY retreat. The motor 835 rotates clockwise to move the transfer ASSY to the coil insertion operation position. The motor 835 rotates counterclockwise to retreat the transfer ASSY from the coil insertion operation position.
The sensor 338 senses a predetermined stop position (a home position HP) of the center axis shifting unit 310, and outputs a position sense signal S338 to the control unit 799. For example, the sensor 338 senses any one of the coil accommodating units 311 to 314 of the center axis shifting unit 310 at the HP.
The sensor 841 senses predetermined stop positions (home positions HP) of the metal rollers 81, 86, and outputs a position sense signal S841 to the control unit 799.
The sensor 843 senses predetermined stop positions (home positions HP) of the resin rollers 82, 87, and outputs a position sense signal S843 to the control unit 799.
The sensor 845 senses a retreat position of the transfer ASSY, and outputs a position sense signal S845 to the control unit 799. Each of sensors 338, 841, 843, and 845 described above is, for example, a transmissive optical sensor.
The motor 61n is, for example, a stepping motor, and rotates a transfer position on the basis of a driving signal S61n from the control unit 799. For example, the main body 61d of the paper stack transferring mechanism 60 shown in
The sensor 799i is, for example, a transmissive optical sensor, senses the home position of the pickup 61c shown in
The motor 61a is, for example, a stepping motor, and advances or retreat the pickup 61c shown in
The HP sensor 799j for paper-sheet alignment #1 is, for example, a transmissive optical sensor, senses the home position of plate 61k shown in
The HP sensor 799k for paper-sheet alignment #2 senses the home position of plate 61m shown in
The motor 61i for booklet alignment #1 slides plate 61m of
Subsequently, an example of an operation of the coil forming mechanism 20, the binding mechanism 40, and the paper stack transferring mechanism 60 will be described with reference to
Using them as a binding condition, in the binding mechanism 40, the control unit 799 shown in
Further, the control unit 799 transmits high-level driving signal S833 shown in (B) of
Thereafter, the control unit 799 outputs a high-level driving signal S833 to the motor 833 at the timing t28. The motor 833 sets the resin rollers 82, 87 to the coil insertion operation positions on the basis of driving signal S833.
Then, the control unit 799 outputs a high-level driving signal S833 to the motor 833 after the timing t30. The motor 833 escapes the resin rollers 82, 87 from the coil insertion operation positions on the basis of driving signal S833.
The sensor 843 senses the positions of the resin rollers 82, 87 from before the timing t25 until the timing t31, and outputs high-level position sense signal S843 shown in (C) of
Further, the control unit 799 transmits high-level driving signal S834 shown in (D) of
Furthermore, the control unit 799 transmits high-level driving signal S834 shown in (D) of
In the coil forming mechanism 20 shown in
The control unit 799 transmits a high-level solenoid driving signal S27 shown in (I) of
Also, the control unit 799 transmits a high-level driving signal S22 shown in (G) of
If the helical coil is formed and the drawing thereof is completed, the control unit 799 transmits a high-level driving signal S25 to the motor 205 from the timing t27 to the timing t28. The motor 205 drives the cutter (not shown) on the basis of the driving signal S25, so as to cut the wire 1 and separate the helical coil 11a from the wire 1.
Thereafter, the control unit 799 changes the driving signal S25 to the low level at the timing t28, to stop the motor 205. Further, the control unit 799 changes the driving signal S832 shown in (A) of
Subsequently, an example of an operation of the paper stack aligning unit 36, the binding mechanism 40 (retreat), and the paper stack transferring mechanism 60 will be described with reference to
Using them as binding conditions, in the paper stack aligning unit 36, the control unit 799 shown in
The control unit 799 transmits a high-level driving signal S90 shown in (B) of
Further, the control unit 799 transmits a high-level driving signal S90 shown in (B) of
The sensor 119 senses the position of the press roller 355 from the timing t33 until almost the timing t37, and outputs a high-level position sense signal S119 shown in (C) of
Also, the control unit 799 transmits a high-level driving signal S91 shown in (D) of
The sensor 120 senses the positions of the clamps from after the timing t33 until before the timing t36, and outputs a low-level position sense signal S120 shown in (E) of
In the coil introducing mechanism 30 shown in
Further, the control unit 799 changes the driving signal S831, which has the high level at the timing t31 and is shown in (H) of
The sensor 841 changes the position sense signal S841, which has the low level at the timing t31 and is shown in (I) of
The motor 832 for rotating the metal rollers shown in (J) of
Further, the control unit 799 transmits a high-level driving signal S835 shown in (N) of
The sensor 845 changes a position sense signal S845 shown (O) of
The control unit 799 changes driving signal S61n from the low level to the high level after the timing t32, to rotate the motor 61n. The motor 61n rotates, such that the main body 61d of the paper stack transferring mechanism 60 shown in
The control unit 799 changes driving signal S61a shown in (Q) of
After the pickup 61c receives the paper stack 3, the motor 61a shown in (Q) of
Subsequently, a control system of the end processing unit 70 will be described.
Similarly, the HP sensor 799b senses the home positions of the drag holding teeth 751 shown in
The motor 741a is, for example, a stepping motor, and advances or retreats the drag holding teeth 741 shown in
Further, the control unit 799 is connected to HP sensors 799c, 799d and motors 773a, 773b. The HP sensor 799c is, for example, a transmissive optical sensor, senses two light shielding members fixed to the shaft 775 of the motor 773a driving one the cutting and bending mechanism 76 shown in
Similarly, the HP sensor 799d senses two light shielding members fixed to the shaft 775 of the motor 773a driving the other the cutting and bending mechanism 76, and outputs a second sense signal S799d to the control unit 799. The second sense signal S799d is a signal to stop releasing of a coil offcut held by the cutting and bending mechanism 76.
The motors 773a, 773b are, for example, DC motors, and drive the cutting and bending mechanism 76 to cut and bending both end portions of the helical coil on the basis of control signals S773a and S773b from the control unit 799. For example, the motor 773a stops a cutting process or releasing of a coil offcut on the basis of control signal 773a.
Further, the control unit 799 is connected to HP sensors 799e and 799f and motors 757a and 757b. HP sensor 799e is, for example, a transmissive optical sensor, senses the home position of the cutting and bending mechanism 76 of the outlet-side end processing unit 71 shown in
Similarly, HP sensor 799f senses the home position of the cutting and bending mechanism 76 of the inlet-side end processing unit 72 shown in
Motors 757a and 757b are, for example, stepping motors, and changes the positions of individual cutting and bending mechanisms 76 from the home positions on the basis of control signals S757a, S757b from the control unit 799. For example, as shown in
Also, the control unit 799 is connected to HP sensors 799g, 799h and motors 710a, 710b. The HP sensor 799g is, for example, a transmissive optical sensor, senses the home position of the outlet-side end processing unit 71 shown in
Similarly, the HP sensor 799h senses the home position of the inlet-side end processing unit 72 shown in
The motors 710a, 710b are, for example, stepping motors, and changes the positions of the outlet-side end processing unit 71 and the inlet-side end processing unit 72 from the home positions on the basis of control signals S710a, S710b from the control unit 799 into the arrow (P1) direction of
Subsequently, an operation of the end processing unit 70 will be described.
Further, the control unit 799 rotates the HP the motor 61j for paper-sheet alignment #2 shown in (F) of
After retreating the plates 61m, 61k from the paper stack 3, the control unit 799 reversely rotates the motor 61a shown in (B) of
After the helical coil of the paper stack 3 having both ends to be processed is held by the drag holding teeth 741, 751, the control unit 799 rotates the motors 741a, 741b shown in (H) and (J) of
After drawing the helical coil toward the end processing unit 70, the control unit 799 rotates the motor 773a shown in (L) of
After the process by the outlet-side end processing unit 71, the control unit 799 rotates the motor 773b shown in (N) of
Further, after drawing of the drag holding teeth 741, 751 shown in (H) and (J) of
From the timing t43 until after the timing t48, the control unit 799 reversely rotates the motors 741a, 741b shown in (H) and (J) of
From after the timing t48 until before the timing t50, the control unit 799 rotates the motor 61a shown in (B) of
After the pickup 61c moves to uppermost position P7, the control unit 799 rotates the motor 61n shown in (A) of
The released helical coil offcut falls into an offcut accommodating container which is provided at lower level to be contact with the main body 61d of the paper stack transferring mechanism 60 set at the offcut discharge position of the inclined direction. Before the timing t51, the HP sensors 799c, 799d for cutting and bending shown in (M) and (O) of
After the cutting and bending mechanisms 76 release the helical coil offcuts, the control unit 799 reversely rotates the motor 61n shown in (A) of
The cutting positions of cutting and bending mechanisms 76 shown in FIGS. 45A and 45B and the positions where the end portions of the helical coils 11a, 11b, 11c, 11d are processed by the outlet-side end processing unit 71 and the inlet-side end processing unit 72 shown in
Subsequently, an example of the control in the coil binding apparatus 100 will be described with reference to
In the coil introducing mechanism 30, in correspondence with the coil diameter selected from the forming adapters #φ8, #φ12, #φ16, and #φ20, one the coil accommodating unit 311 or the like is selected from four coil accommodating units 311 to 314 of the center axis shifting unit 310 and is set. In the above-mentioned example, the coil accommodating unit 314 corresponding to the helical coil is automatically set.
Paper sheets 3′ are set on the paper tray 2, and are automatically fed to the paper stack aligning unit 36. In this example, a case where paper sheets 3′ have the A4 size and the forming adapter #φ20 is selected when the super-large-diameter helical coil 11d having the diameter of 20 mm is used for binding the paper stack 3, is exemplified.
Using them as a binding process condition, in step ST1 shown in
The motor 340 drives the left and right curl fences 34a, 34b of the paper curl pressing mechanism 331 shown in
The control unit 799 transmits the driving signal S81 to the motor 381 so as to control the rotation and the number of times of rotation of the paddle roller 353 on the basis of the position sense signal S13. The motor 381 rotates the paddle roller 353.
In order to perform ascent, descent, and position control of the paddle roller 353, the control unit 799 transmits the driving signal S82 to the motor 382. For example, the control unit 799 rotates the motor 382 clockwise to descend the paddle roller 353, and rotates the motor 382 counterclockwise to ascend the paddle roller 353.
In order to performing position control of side-jogging #1 of the reference side of the side jogger 370, the control unit 799 transmits the driving signal S83 to the motor 383. On the basis of the driving signal S83, the motor 383 sets side-jogging #1 of the reference side of the side jogger 370. For example, the control unit 799 rotates the motor 383 clockwise, to perform a side-jogging operation, and rotates the motor 383 counterclockwise, to perform an opening operation.
Further, in order to perform position control of side-jogging #2 of the movable side of the side jogger 370, the control unit 799 transmits the driving signal S84 to the motor 384. The motor 384 drives side jogging #2 of the movable side of the side jogger 370. In this case, the sensor 114 senses the predetermined stop position of side-jogging #1 of the side jogger 370, and outputs the position sense signal S14 to the control unit 799.
Furthermore, the HP sensor 115 for side-jogging #2 senses the predetermined stop position of side-jogging #2 of the side jogger 370, and outputs the position sense signal S15 to the control unit 799. For example, the control unit 799 rotates the motor 384 clockwise to perform control of movement to a side-jogging reference position, and rotates the motor 384 counterclockwise to perform control of movement to a retreat position.
Next, in step ST2, the control unit 799 opens the clamps 801a, 801b. In this case, in order to perform the driving of the cam for opening and closing the clamps and control of the open positions of the clamps, the control unit 799 transmits the driving signal S85 to the motor 385. On the basis of the driving signal S85, the motor 385 drives the clamps 801a, 801b. For example, the control unit 799 performs rotation control so as to rotate the motor 385 clockwise to open the clamps 801a, 801b.
Next, in step ST3, the control unit 799 obliquely inserts the alignment pins 51 into the punch holes 3a of the paper stack 3. In this case, in order to perform control to protrude and retreat the alignment pins of the alignment pin mechanism 50, the control unit 799 transmits the driving signal S86 to the motor 386. On the basis of the driving signal S86, the motor 386 drives the alignment pins 51 of the alignment pin mechanism 50. For example, the control unit 799 performs rotation control so as to rotate the motor 386 clockwise to protrude the alignment pins 51.
Next, in step ST4, the control unit 799 closes the clamps 801a, 801b. In this case, the control unit 799 performs rotation control so as to rotate the motor 385 counterclockwise to close the clamps 801a, 801b. The sensor 116 senses the predetermined stop positions of the clamps 801a, 801b, and outputs the position sense signal S16 to the control unit 799.
Subsequently, in step ST5, the control unit 799 pulls the alignment pins 51 out of punch holes 3a of the paper stack 3. In this case, the control unit 799 performs rotation control so as to rotate the motor 386 counterclockwise to retreat the alignment pins 51.
Next, in step ST6, the control unit 799 opens the shutter 383′. In this case, in order to perform control to open and close the shutter 383′, the control unit 799 transmits the driving signal S87 to the motor 387. On the basis of the driving signal S87, the motor 387 drives the shutter 383′.
For example, the control unit 799 performs rotation control so as to rotate the motor 387 clockwise to open the shutter and so as to rotate the motor 387 counterclockwise to close the shutter. The sensor 117 senses the predetermined stop position of the shutter 383′, and outputs the position sense signal S17 to the control unit 799.
Next, in step ST7, the control unit 799 moves the clamps 801a, 801b from paper stack aligning unit 36 to the coil insertion operation positions. In this case, in order to perform control to move the clamps 801a, 801b to the paper-sheet pressing positions and the coil insertion positions, the control unit 799 transmits the driving signal S88 to the motor 388. On the basis of the driving signal S88, the motor 388 moves the clamps 801a, 801b of the clamp moving mechanism 380.
For example, the control unit 799 performs rotation control so as to rotate the motor 388 clockwise to move the clamps 801a, 801b to the coil insertion positions and so as to rotate the motor 388 counterclockwise to move the clamps 801a, 801b to the alignment positions. The sensor 118 senses the predetermined stop position of the clamp moving mechanism 380, and outputs the position sense signal S18 to the control unit 799.
Further, in order to control the rotation and the number of times of rotation of the drawing roller (not shown), the control unit 799 transmits the driving signal S89 to the motor 389. On the basis of the driving signal S89, the motor 389 rotates the drawing roller (not shown). For example, the control unit 799 rotates the motor 389 counterclockwise to control the rotation of the drawing roller.
Furthermore, in order to perform rotation control to ascend the press roller 355, the control unit 799 transmits the driving signal S90 to the motor 390. On the basis of driving signal S90, the motor 390 rotates the press roller 355. In order to control ascent and descent of the press roller 355, the control unit 799 rotates the motor 390 clockwise to descend the press roller 355, and rotates the motor 390 counterclockwise to ascend the press roller 355. The sensor 119 senses the predetermined stop position of the press roller 355, and outputs the position sense signal S19 to the control unit 799.
Also, the control unit 799 transmits the driving signal S91 to the motor 391. On the basis of the driving signal S91, the motor 391 ascends the clamps 801a, 801b. The control unit 799 performs control to open the clamps 801a, 801b when giving and receiving a booklet. The sensor 120 senses the ascent and descent stop positions of the clamp-up motor, and outputs the position sense signal S20 to the control unit 799.
Next, in step ST8, the control unit 799 starts forming the helical coil. In this case, in the coil forming mechanism 20 shown in
In this case, in order to perform position setting control on the metal rollers 81, 86, the control unit 799 transmits the driving signal S831 to the motor 831. On the basis of the driving signal S831, the motor 831 sets the positions of the metal rollers 81, 86. The sensor 841 senses the predetermined stop positions of the metal rollers 81, 86, and outputs the position sense signal S841 to the control unit 799.
At the same time, in order to control the vertical positions and movement stop positions of the resin rollers 82, 87, the control unit 799 transmits the driving signal S833 to the motor 833. On the basis of the driving signal S833, the motor 833 sets the positions of the resin rollers 82, 87. For example, the control unit 799 rotates the motor 833 clockwise in correspondence with the coil diameter to perform position control for ascending the resin rollers 82, 87. The sensor 843 senses the predetermined stop positions of the resin rollers 82, 87, and outputs the position sense signal S843 to the control unit 799.
Then, in order to control the rotation and rotation speeds of the metal rollers 81, 86, the control unit 799 transmits the driving signal S832 to the motor 832. On the basis of the driving signal S832, the motor 832 rotates the metal roller 86. In this example, the motor 832 rotates the metal rollers 81, 86 clockwise.
At the same time, in order to control the rotation and rotation speeds of the resin rollers 82, 87, the control unit 799 transmits the driving signal S834 to the motor 834. On the basis of the driving signal S834, the motor 834 rotates the resin roller 87. For example, the motor 834 rotates the resin rollers 82, 87 counterclockwise. Accordingly, the rotation of the resin roller 87 starts at the same time with start of the rotation of the metal roller 86.
Subsequently, in step ST9, the control unit 799 stops formation of the helical coil 11d when the formation amount reaches a predetermined amount. If the paper size is set in advance, the formation amount is set to a coil length inserted into all of punch holes 3a formed on one side of paper sheets 3′. For example, in a case where paper sheets having the A4 size and the super-large-diameter helical coil 11d having the diameter of 20 mm are used, the formation amount of the helical coil 11d is set to a total length of a coil length of a portion to be inserted into the paper stack 3 and coil lengths of portions to be cut and bent at both end portions of the paper stack 3.
In this case, the control unit 799 stops only the rotation of the resin roller 82. At this time, the control unit 799 rotates the motor 833 counterclockwise to perform position control for descending the resin rollers 82, 87. Continuing the rotation of the metal roller 86 is for preventing the groove 804 of the metal roller 86 from resisting the coil forwarding direction when the helical coil 11d loses the formation torque.
Next, in step ST10, the control unit 799 cuts the wire 1 in the vicinity of a wire inlet of the coil forming section 28, to separate the helical coil 11d from the wire 1. Since the wire 1 being entering formation adapter #φ20 is already helical, the wire 1 is cut at a portion on the outside of the forming adapter #φ20.
Further, the coil introducing mechanism 30 may correct the coil pitch by the center axis shifting unit 310, and consistently introduce the helical coil 11d having the aligned coil fore-end portion to the binding mechanism 40. In the coil-fore-end inserting section 80, the metal roller 81 and the resin roller 82 rotates together by the formation torque of the helical coil 11d. Further, the coil-fore-end inserting section 80 transfers and receives the helical coil 11d to and from the coil transferring section 85.
Next, in step ST11, the control unit 799 controls the resin roller 87 to rotate while pressing the helical coil 11d. In this case, the control unit 799 transmits driving signal S834 to the motor 834. On the basis of driving signal S834, the motor 834 rotates the resin roller 87.
Next, in step ST12, the control unit 799 stops the movement of the helical coil 11d when the movement amount reaches a predetermined amount. In this example, the control unit 799 stops the rotations of the metal roller 86 and the resin roller 87 when the fore end portion of the helical coil 11d reaches last punch hole 3a of the paper stack 3 and values of portions to be cut and bent are secured.
Next, in step ST13, the control unit 799 retreats the resin rollers 82, 87. In this case, the control unit 799 transmits driving signal S833 to the motor 833. On the basis of driving signal S833, the motor 833 sets the positions of the resin rollers 82, 87. For example, the control unit 799 rotates the motor 833 counterclockwise so as to control the resin rollers 82, 87 to descend.
Further, in step ST14, the control unit 799 retreats the metal rollers 81, 86. In this case, the control unit 799 transmits driving signal S831 to the motor 831. On the basis of driving signal S831, the motor 831 sets the retreat positions of the metal rollers 81, 86. The control unit 799 rotates the metal rollers 81, 86 clockwise. The rotation of the motor 831 retreats the metal rollers 81, 86.
Next, in step ST15, the control unit 799 moves the transfer ASSY to the retreat position. The clamps 801a, 801b move to transfer exchange positions. In this case, in order to control the rotation movement and stop position of the transfer ASSY for retreat, the control unit 799 transmits driving signal S835 to the motor 835.
On the basis of the driving signal S835, the motor 835 is operable to retreat the transfer ASSY. For example, the motor 835 rotates clockwise to move the transfer ASSY to the coil insertion operation position. The motor 835 rotates counterclockwise to retreat the transfer ASSY from the coil insertion operation position. The sensor 845 senses the retreat position of the transfer ASSY and outputs the position sense signal S845 to the control unit 799.
Next, in step ST16, the control unit 799 starts pickup movement. For example, the control unit 799 drives the motor 61a to advance the pickup 61c shown in
At the same time, in step ST17, the control unit 799 moves the drawing roller (not shown) to a press position. Then, in step ST18, the control unit 799 releases a clamp member including clamp 801a which is the upper arm of the movable side of the clamp moving mechanism 380 and clamp 801b which is the lower arm of the fixed side of the clamp moving mechanism 380.
Then, in step ST19, the control unit 799 moves the pickup 61c shown in
In step ST21, the control unit 799 starts to descend the pickup 61c when a predetermine time (ms) elapses after the drawing roller starts to rotate. For example, the pickup 61c shown in
In step ST24 shown in
In step ST25, the control unit 799 moves the paper stack transferring mechanism 60 to the discharge position of the paper stack 3. For example, the control unit 799 drives the motor 61n, such that the main body 61d of the paper stack transferring mechanism 60 shown in
In steps ST26 and ST27, the control unit 799 aligns the paper stack 3 transferred by the pickup 61c. For example, the control unit 799 drives first HP the motor 61i for paper-sheet alignment #1 and second HP the motor 61j for paper-sheet alignment #2 to move the plates 61m, 61k shown in
In step ST28, the control unit 799 drives motors 61i and 61j to retreat plate 61m and plate 61k from the paper stack 3. Then, the control unit 799 proceeds to step ST29.
In step ST29, the control unit 799 moves the pickup 61c, having stopped in front of lowermost position P8 of
In step ST30, the control unit 799 drives motors 741a, 741b, such that the drag units 74, 75 shown in
In step ST31, the control unit 799 drives motors 773a, 773b to perform the cutting and bending process on both ends of the helical coil 11d by the outlet-side end processing unit 71 and the inlet-side end processing unit 72, as shown in
In step ST32, the control unit 799 drives motors 741a, 741b, such that the paper stack 3 with the helical coil 11d having both processed ends is discharged to the paper stack transferring mechanism 60 by the drag holding teeth 741, 751, and proceeds to step ST33.
In step ST33, the control unit 799 drives the motor 61a to move the pickup 61c from the lowermost position P8 up to uppermost position P7 shown in
In step ST34, the control unit 799 drives the motor 61n to rotate the main body 61d of the paper stack transferring mechanism 60 shown in
In step ST35, the control unit 799 drives motors 773a, 773b to return cutting and bending mechanisms 76 to the standby states shown in
In step ST36, the control unit 799 drives the motor 61n to rotate the main body 61d of the paper stack transferring mechanism 60 shown in
The present disclosure is suitable to be applied to a paper-sheet processing apparatus, a stand-alone apparatus, and the like for forming a helical coil from a wire and binding a paper stack output from a copy machine, a printer, or the like with the coil.
Number | Date | Country | Kind |
---|---|---|---|
2010-116750 | May 2010 | JP | national |