The present invention relates to a coil bobbin and an electromagnetic device.
Conventional electromagnetic devices have a movable core passing through the interior of a coil bobbin around which a coil is wound. Because the coil bobbin and the movable core are movable, the movement of the movable core causes the coil bobbin to be worn away. Movable wear debris that is generated from the coil bobbin increases as the coil bobbin is worn away, thereby increasing friction of the movable core when it moves. This causes the movement of the movable core to be unstable, which results in a reduced life of the electromagnetic device. Consequently, a coating made from a rigid polyvinyl chloride resin is applied to the movable core or the movable core is provided with an irregular surface to make recessed portions serve as oil reservoirs, thereby improving movability and ensuring the life of the device. The electromagnetic device as described above, in which the coil bobbin and the movable core are movable, is disclosed as a conventional technology.
Patent Literature 1: Japanese Patent Application Laid-Open No. H3-83304
Patent Literature 2: Japanese Patent Application Laid-Open No. 2010-212016
With the conventional technology, however, when the thickness of the coating that is made from a rigid polyvinyl chloride resin and is applied to the movable core is exfoliated by opening and closing of an electromagnetic contactor or the like, the exfoliated part of the movable core scrapes off the coil bobbin to generate movable wear debris. Moreover, with the conventional technology where the movable core is provided with an irregular surface to make the recessed portions serve as oil reservoirs, there is a concern that deterioration of the oil over time causes the movable core and the coil bobbin to stick to each other.
As has been described, the conventional technology has a problem in that movable wear debris increases due to the exfoliation of the thickness of the coating made from a rigid polyvinyl chloride resin or a problem in that the movable core and the coil bobbin stick to each other.
The present invention has been made in order to solve such problems and an object of the present invention is to reduce wear of the coil bobbin and the movable core caused by the movement thereof and to reduce movable wear debris.
A coil bobbin according to an aspect of the present invention is a coil bobbin to be used with a coil wound around a body, provided with a cylindrical hollow portion in a center of the body, and used in an electromagnetic device that moves a movable core due to magnetic force generated by energization of the coil, with the movable core being inserted from one of two openings of the cylindrical hollow portion, the two openings being maintained at substantially a same height. A first protrusion and a second protrusion facing a part of a lower half of the movable core are formed on an inner peripheral surface of the cylindrical hollow portion in ranges extending from the two openings to a middle point, respectively, and the movable core is supported by the first protrusion and the second protrusion when the movable core moves.
The present invention includes a protrusion according to the present invention; therefore, wear of the coil bobbin and the movable core due to the movement thereof can be reduced and movability of the movable core can be further improved compared to conventional electromagnetic devices.
An embodiment of the present invention will now be described with reference to
A fixed core 1 is U-shaped. A permanent magnet 2 has one magnetic pole face (such as an S pole face) in contact with each of the upper inner side face and the lower inner side face of the fixed core 1 with the opening of the fixed core 1 as a center. An auxiliary core 3 is in contact with the other magnetic face (such as an N pole face) of the permanent magnet 2, which is in contact with each of the upper inner side face and the lower inner side face of the fixed core 1. A coil 4 is also provided. The coil 4 is wound around the surface of a coil bobbin 5. Note that as illustrated in
A description will be given next of a characteristic configuration and a principle for reducing movable wear debris due to movement of the coil bobbin 5 and the movable core 6.
The side on which the movable core plates 9 and 10 are disposed is defined as the entry side and the side on which the movable core plates 7 and 8 are disposed is defined as the exit side, and accordingly, in the embodiment of the present invention, in a cylindrical hollow portion, a protrusion facing a part of the lower or upper half of the movable core 6 is formed in each of the range extending from the middle point between the entry side and the exit side to the entry side and the range extending from the middle point to the exit side.
In the embodiment of the present invention, a protrusion facing a part of the lower half of the movable core 6 is formed inside the cylindrical hollow portion in each of the ranges extending from the two openings to the middle point. Accordingly, the movable core 6 is supported by the two protrusions when the movable core 6 moves. For example, a first protrusion is formed in the range extending from the middle point between the entry that is one of the two openings and the exit that is the opening on the opposite side of the entry to the entry, while a second protrusion is formed in the range extending from the middle point to the exit; therefore, the movable core 6 is supported by the first protrusion and the second protrusion when the movable core 6 moves.
According to the first embodiment, as illustrated in
As illustrated in
In the first embodiment, with respect to the movable core 6 moving in a horizontal direction, the first protrusion 11A1 provided in the region A1 vertically below the movable core 6 in the cylindrical hollow portion of the coil bobbin 5 on the entry side and the second protrusion 11A2 provided in the region A2 vertically below the movable core 6 on the exit side are disposed to face each other with respect to the central axis of the cylindrical hollow portion. Moreover, the third protrusion is provided in the region B1 vertically above the movable core 6.
A non-protruding portion 12 is also provided.
The movable core 6 moves in the cylindrical hollow portion of the coil bobbin 5 when the electromagnetic device is in the process of being turned on or off. At this time, the movable core 6 moves while being in contact with the contact portion 11a of each of the first protrusion 11A1 and the second protrusion 11B1. When the movable core 6 moves, movable wear debris is generated. The movable wear debris falls to the non-protruding portion 12 via the slope portion 11b due to the movement of the movable core 6 and thus does not build up in the contact portion 11a.
Furthermore, when the electromagnetic device is in the process of being turned on or off, the contact portion 11a of each of the first protrusion 11A1 and the second protrusion 11A2 is in contact with the movable core 6, at which time friction is exerted. The movable core 6 rises in order to avoid this friction. Accordingly, when the device is operated, the third protrusion 11B1 provided in a direction opposite to the direction of gravity of the movable core 6 inhibits the movable core 6 from rising.
Each of the first protrusion 11A1, the second protrusion 11A2, and the third protrusion 11B1 has an arch-shaped in cross section as illustrated in
When the diameter of the coil bobbin 5 equals 11.6 mm and the diameter of the movable core 6 equals 11 mm, for example, the first protrusion 11A1 and the second protrusion 11B1 illustrated in
The operation of the first embodiment will now be described.
The movable core 6 moves in the cylindrical hollow portion of the coil bobbin 5 in a direction indicated by an arrow in
Note that when excitation of the coil 4 is released, the movable core 6 as well as the movable core plates 7, 8, 9, and 10 are returned by the force of a spring not illustrated. The electromagnetic device is turned off when the movable core plate 9 is held fast against the auxiliary core 3, and can remain off due to the force of the permanent magnet 2.
With the basic structure of the electromagnetic device as described above, clearance is ensured between the coil bobbin 5 and the movable core 6 when the electromagnetic device is turned on or off; therefore, the coil bobbin 5 and the movable core 6 are not in contact with each other. The movable core 6 moves in the cylindrical hollow portion of the coil bobbin 5 when the electromagnetic device is the process of being turned on or off. Accordingly, in the conventional technologies, the movable core 6 and the coil bobbin 5 come into contact with each other. Consequently, when the electromagnetic device is in the process of being turned on or off, the bottom of the movable core 6 comes into contact with the bottom of the cylindrical hollow portion of the coil bobbin 5 to move in the direction of movement of the movable core 6. In the first embodiment, the first protrusion 11A and the second protrusion 11A2 move the movable core 6 while supporting them from below, whereby the movable core 6 comes into surface contact with the first protrusion 11A1 and the second protrusion 11A2; therefore, movable wear debris is reduced compared to a conventional contact. Consequently, movable wear debris is reduced when compared to the conventional case.
Note that generated sliding wear debris falls to the non-protruding portion 12 via the slope portion 11b due to the sliding of the movable core 6 and thus does not build up in the contact portion 11a and does not affect the sliding.
When the electromagnetic device is in the process of being turned on or off, wear of the movable core 6 is caused by the movement thereof relative to mainly the protrusions provided on the lower inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 with respect to the direction of movement of the movable core 6. In the first embodiment, the wear of the lower part of the cylindrical hollow portion of the coil bobbin 5 is caused by the movement between the movable core 6 and each of the contact portion of the first protrusion 11A1 provided at the lower end portion A1 on the entry side and the contact portion of the second protrusion 11A2 provided at the lower end portion A2 on the exit side. However, the movable core 6 is in surface contact with each of the first protrusion 11A1 and the second protrusion 11A2; therefore, movable wear debris is less than that generated in the conventional technologies. Movable wear debris is thus reduced when compared to the conventional technologies. Moreover, even when generated movable wear debris builds up in the non-protruding portion 12, because the movable wear debris is reduced, it does not affect movability. As a result, the movement of the movable core 6 in the cylindrical hollow portion of the coil bobbin 5 becomes stable.
While the configuration of the first embodiment has been described, the arrangement of the protrusion provided in the upper part of the coil bobbin 5 of the first embodiment is not limited to the arrangement of the third protrusion 11B1. The protrusion may be disposed inside the cylindrical hollow portion facing a part of the upper half of the movable core 6 in each of the ranges extending from the two openings to the middle point.
According to the first embodiment, an unnecessary movement, such as a vertical movement, other than the movement in the direction of movement of the movable core 6 is inhibited while at the same time the wear caused by the movement is reduced; therefore, generation of movable wear debris can be inhibited. Moreover, even when movable wear debris is generated, the generated movable wear debris falls to the non-protruding portion 12 via the slope portion 11b. As a result, the movable wear debris does not build up in the contact portion 11a of the protrusion, whereby an increase in the friction of the movable core 6 can be suppressed. A smooth, stable movement of the movable core 6 can thus be ensured in the cylindrical hollow portion of the coil bobbin 5. The life of the electromagnetic device can be extended as well.
In the first embodiment, when each of the protrusions disposed at the symmetrical positions on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 has the shape of a protrusion at the tip of a general cone, semicircle, or the like, the surface in contact with the movable core 6 is reduced to accelerate wearing and increase the movable wear debris.
Moreover, when the protrusion has the shape of a bearing or the like, the surface in contact with the movable core 6 is increased, and thus the friction is increased. Accordingly, provision of the general tip protrusion or bearing affects the on or off operation.
For convenience of description, the description herein is of the case where the protrusion is provided in the upper and lower parts at both ends of the cylindrical hollow portion of the coil bobbin 5, but the position at which the protrusion is disposed is not limited to both ends of the coil bobbin 5.
Moreover, the shape and configuration of the protrusions in the first embodiment are not limited to those of the first protrusion 11A1. The first protrusion 11A1 may be composed of a plurality of protrusions, for example. In this case, when the movable core 6 moves inside the cylindrical hollow portion due to magnetic force generated by energization of the coil 4, the protrusions are disposed at positions to support at least two points on the side face of the movable core 6 such that the lowest point of the movable core 6 is located between the two points in such a manner that the lowest point is not in contact with the lower end of the entry.
On the other hand, the second protrusion may also be composed of a plurality of protrusions as with the first protrusion. In the case where the first protrusion or the second protrusion is composed of a plurality of protrusions as described above, when the movable core 6 moves, one side of the movable core 6 is supported by the first protrusion 11A1 or the second protrusion 11A2 and the other side of the movable core 6 is supported while the side face of the lower half thereof is sandwiched between the protrusions. Alternatively, in the case where the first protrusion and the second protrusion are both composed of a plurality of protrusions, when the movable core 6 moves, both sides of the movable core 6 are supported while the side face of the lower half of the movable core 6 is sandwiched between the protrusions.
A second embodiment of the present invention will now be described with reference to
The first protrusion 11A1 and the second protrusion 11A2 in the electromagnetic device of the first embodiment are provided in the region A1 vertically below the movable core 6 on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 on the entry side and in the region A2 vertically below the movable core 6 on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 on the exit side in the direction perpendicular to the direction of movement of the movable core 6, while the third protrusion 11B1 is provided in the region B1 vertically above the movable core 6 on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 on the entry side. The second embodiment of the present invention is further provided with a fourth protrusion in a region B2 vertically above the movable core 6 on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 on the exit side, in addition to the arrangement of the first protrusion 11A1, the second protrusion 11A2, and the third protrusion 11B1 in the first embodiment.
That is, according to the second embodiment, as illustrated in
Then, according to the second embodiment of the present invention, the protrusion provided on the inner peripheral surface of the cylindrical hollow portion of the coil bobbin 5 can bring about the effect of stabilizing the movement of the coil bobbin 5 and the movable core 6 as with the first embodiment.
A third embodiment of the present invention will now be described with reference to
As illustrated in
As illustrated in
The electromagnetic device in the third embodiment includes a plurality of protrusions placed on the surface along the circumference of the inner peripheral surface of the cylindrical hollow portion in the coil bobbin 5. The arrangement of these protrusions can inhibit the movement of the movable core 6 not only in the vertical direction but in the horizontal and oblique directions when the electromagnetic device is in the process of being turned on or off. Therefore, stable movability can be ensured.
A fourth embodiment of the present invention will now be described.
The fourth embodiment is adapted by interchanging the arrangement on the entry side and the arrangement on the exit side in the third embodiment, where two protrusions are further provided at positions 120 degrees to the right and left of the protrusion provided in a lower part on the exit side, and two protrusions are further provided at positions 120 degrees to the right and left of the protrusion provided in an upper part on the entry side.
The fourth embodiment is adapted by interchanging the arrangement on the entry side and the arrangement on the exit side in the third embodiment; therefore, as with the effect of the third embodiment, the movement of the movable core 6 can be inhibited not only in the vertical direction but in the horizontal and oblique directions when an electromagnetic device is in the process of being turned on or off. Therefore, stable movability can be ensured.
While the first to fourth embodiments have been described with the protrusions symmetrically disposed on each of the two end sides of the coil bobbin, the arrangement is not limited to the symmetrical arrangement.
The electromagnetic device of the present invention can be applied to a switch, an electromagnetic contactor, or the like.
1 fixed core, 2 permanent magnet, 3 auxiliary core, 4 coil, 5 coil bobbin, 6 movable core, 7 to 10 movable core plate, 11A1 first protrusion, 11B1 third protrusion (first embodiment), 11B1 second protrusion (third embodiment), 11C protrusion, 11D protrusion, 11E protrusion, 11F protrusion, 11a contact surface, 11b slope portion, 12 non-protruding portion
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/005010 | 9/30/2014 | WO | 00 |