The present invention relates to a coil body for inductive components such as transformers and inductors.
Inductive components such as inductors and transformers are used in many fields of technology, for example in the automotive industry. There, conductor plate components such as power electronics, in which so-called momentum transformers or pulse transformers are used to control the gate of an electronic switching element, are used in automobile electronics. A “gate drive transformer” is a pulse transformer that controls the timing of power MOSFETs or IGBTs in switching power supplies (“Switch-mode-power-supply” or SMPS) as shown for example in the publication “A guide to designing gate drive transformers”, power electronics technology, 2007: 32 to 36, by Patrick Scoggins.
Gate-drive transformers usually have a coil that is supported by a coil body that may be formed both as surface-mountable (SMD) components or as through-hole components. In this, safety standards that require, inter alia, compliance with insulation and creepage paths shall be complied with just as for general electric and electronic components. The requirements for creepage and insulation paths are normally complied with by ensuring the coil bodies to be cast with a casting compound in a housing.
During the equipment of conductor plates with inductive components, reflow soldering processes are implemented to connect, inter alia, inductive components with conductor plates electrically and mechanically. In this, high temperatures arise during the soldering processes so that a component is frequently exposed to temperature fluctuations of 100° C. or more during the manufacturing process. Due to the varying expansion coefficients among the different materials in inductive components, for example among the casting compound, the coil body, the ferrite core and the winding, there will also be different thermal expansions as a consequence that lead to tensions in the material and ultimately to breakage. In many cases, for example the casting compound breaks, whereby the creepage and air paths of an inductive component are strongly reduced so that the standard requirements according to IEC/UL etc. may no longer be complied with.
A component may be exposed to further temperature fluctuations during operation. For example automobile electronics in close proximity to the engine are also exposed to high temperature fluctuations of −40° C. to +155° C. or more during operation. Furthermore, electric and electronic components of automobile electronics are subject to high mechanical stresses due to shock effects.
Based on the situation explained above, a coil body for an inductive component in which the disadvantages described above are eliminated shall be provided.
The present invention provides a solution of the abovementioned problem in different aspects. Herein, it is suggested to replace the casting compound by accordingly designed structural measures. According to the invention, this is achieved by prolonging the creepage paths in a way that the casting compound is no longer needed.
In a first aspect of the invention, a coil body with a hollow housing body is provided, which has an opening on a first side to insert a coil in the housing body along an inserting direction and a housing wall that extends between a first side of the housing body and an opposite second side. Further, the housing body has multiple electric contacts and a plurality of guiding grooves that extend along the housing wall and that are formed respectively to guide a connection wire in order to connect a coil absorbed by the coil body with the contacts that are disposed on the second side of the housing.
In a descriptive embodiment of the first aspect, the coil body further has slits that are formed on the edge of the opening and that are disposed on the opening in a circumferential direction so that a defined throughput into the housing body and/or out of the housing body is provided for each guiding groove. These slits are aligned in particular in the area of the opening with the prolongation of creepage paths.
In a further descriptive embodiment of the first aspect, at least one guiding groove extends completely along the housing wall.
In a further descriptive embodiment of the first aspect, the housing body is formed to absorb a torus-shaped coil.
In a further descriptive embodiment of the first aspect, the guiding grooves are formed by fins that protrude from the housing wall and that are arranged in parallel along the inserting direction. In this way, guiding grooves for efficient prolongation of the creepage path are provided in a simple manner.
In a more advantageous embodiment herein, respectively two fins form a guiding groove and the fins of respectively one guiding groove are all arranged at a distance from the fins of the other guiding grooves so that respectively one insulation groove is formed between two guiding grooves. This provides another more advantageous prolongation of creepage paths between the connection wires that are routed in the guiding grooves.
In another more advantageous embodiment herein, the insulation grooves have different depths. In some examples herein, the dielectric strength is increased further so that the insulation grooves are provided with a greater depth respectively between the guiding grooves into which the connection wires that are on a higher potential are inserted. Consequently, a more compact design of the coil body may be achieved.
In a second aspect of the invention, a coil body is provided with two row of contacts, which are each equipped with a plurality of electric contacts, that are formed on two sides of the coil body that are located opposite to each other. Each row of contacts thereby has guiding grooves that are formed on a surface of the row of contacts and that are each designed to guide a connection wire in order to connect a coil disposed on the coil body to at least one of the contacts of the respective row of contacts, whereby it is advantageous that the guiding grooves of a first row of contacts and of the two row of contacts are longer than the guiding grooves of the other second row of contacts.
In a descriptive embodiment of the second aspect, the contacts on the first row of contacts are disposed at a larger distance from an inserting area for a coil than the contacts on the second row of contacts.
In a more advantageous embodiment herein, at least the guiding grooves of the first row of contacts have a constant or increasing depth at a growing distance from the inserting area.
In another descriptive embodiment of the second aspect, each guiding groove in the surface of at least the first row of contacts is formed by two fins that protrude from the surface. In some descriptive examples herein, a height and/or a width of each fin is larger or equal to a depth and/or width of each guiding groove.
In another descriptive embodiment of the second aspect, respectively one insulation groove is formed between two guiding grooves of at least the first row of contacts.
In another descriptive embodiment of the second aspect, the guiding grooves of at least the first row of contacts are arranged at a distance from each other through fins that are formed in the surface.
In another descriptive embodiment of the second aspect, the guiding grooves interfuse the surface of the first row of contacts completely along one direction in parallel to the surface.
In another descriptive embodiment of the second aspect, ends of the contacts for the connection with connectors of the coil on the first row of contacts protrude from the first row of contacts in a contact plane and the contact plane is disposed in an offset position by an offset in parallel to the surface.
Further advantages and features of the present invention may be taken from the following description together with the enclosed Figures in which
According to the illustration in
Guiding grooves 130 that extend in parallel to the direction C are formed in the housing wall 114 between the first side A and the second side B. The guiding grooves 130 extend preferably completely along the housing wall between the first side A and the second side B of the housing body 110. Each of the guiding grooves 130 is formed preferably for complete intake of a connection wire, i.e. a depth from each guiding groove 130 is greater than or equal to a diameter of the connection wire (not shown).
As shown in
A top view of the housing body 110 (along the direction C in
In some descriptive embodiments, an insulation groove 134 is formed between respectively two adjacent guiding grooves 130. The insulation grooves 134 and the guiding grooves 132 are consequently disposed alternatingly along the housing wall 114 (from a circumferential perspective). As shown by the top view in
Reference is made to
According to some embodiments that are not shown, the coil body 100 displayed in
Alternative embodiments of the present invention are described with reference to the
In some descriptive embodiments, the core guiding area 220 is designed for absorption of at least one leg of an E- and/or I-core. For this purpose, the core guiding area 230 has a core support area 232, for example the shown support piece or snap-fits (not shown) etc.
According to the illustration in
Fixing of a magnetic core on the coil body 200 may for example occur in that the core (not shown), which is guided by guiding areas 212 on the first row of contacts 210 and 232 on the second row of contacts 230, is inserted in the coil body 200 along an inserting direction D and supported by holding burls 224 in an intake area 226 of the coil body 200 through interaction with the support structure 222. Connection wires for windings (not shown) are led to the uncovered ends 224 of the contacts 240 on the bottom side of the coil body 200 and connected to such ends. A connection of the coil body 200 with a(n) (electric and/or mechanical) conductor board that is not shown is established via the uncovered ends 242 of the contacts 240.
In some descriptive embodiments, an insulation groove 218 is formed in at least one fin 216. Therefore, the insulation groove 218 contributes to the prolongation of the creepage path between two neighboring guiding groves 214 in addition to the fin 216. According to descriptive examples, a depth of the at least one insulation groove 218 is smaller than or equal to a depth of at least one of the surrounding guiding grooves 214. In addition, an optional guiding groove may further be provided at least in one of the fins 236 of the second row of contacts 230.
In some descriptive embodiments of the present invention, a height and/or width of each fin is greater than or equal to a depth and/or width of each guiding groove.
A further improvement of the dielectric strength of the coil body 220 may for example be achieved in that the guiding grooves 214 of the first row of contacts are longer than the guiding grooves 234 of the second row of contacts 230. According to some descriptive embodiments, this is achieved in that the contacts 240 on the first row of contacts 210 are arranged under a greater distance to the intake area 226 than the contacts 240 on the second row of contacts 230. For example the contacts 240 on the first row of contacts 210 may be provided as high voltage-conducting contacts during use of the coil body 200.
Reference is made to
In some descriptive examples, the magnetic core M may be achieved by three I-cores or an EII-core configuration. Alternatively, the core is formed according to a double-E configuration (cf. dotted lines) or an EI-core configuration.
A distance d1 between the core M and/or the winding 250 from the contacts 240 on the first row of contacts 210 is greater than a distance d2 between the contacts 240 on the second row of contacts 230 and the core M and/or the winding 250. This provides a prolonged creepage path on the first row of contacts 210. According to a special example, the following applies: d1≧1.5*d2 or d1≧2*d2 or d1≧3*d2.
Number | Date | Country | Kind |
---|---|---|---|
102015213499.7 | Jul 2015 | DE | national |