This invention claims the benefit of Japanese Patent Application No. 2018-039132 filed on Mar. 5, 2018, which is incorporated herein by reference.
The present invention relates to a coil component and a coil device used for inverter circuits and various motors and the like used for automobiles and the like and, more specifically, to a coil component configured with two angular-tubular shaped laminated coils formed with a single flat wire and provided adjacent to each other and to a coil device using the same.
A coil component such as a reactor, for example, can generate an inductance with a structure where a winding coil is wound around a magnetic core.
There are various types known as the reactors depending on the purpose of use from a type of a large capacitance used for a power transmission system to a component of a communication apparatus.
Incidentally, as the reactors or the like used for booster circuits used on board, known is a type formed by placing two laminated coil components in parallel so that a high inductance value can be acquired when a high electric current is flown.
As a conventional example of such reactors, known is a type acquired by forming two coil elements disposed in parallel through edgewise-winding a single flat wire (see Japanese Patent No. 3398855, for example).
In Japanese Patent No. 3398855, a first coil element and a second coil element are formed in parallel acquired by winding the flat wire with edgewise-winding while shaping the flat wire into a circular shape. The flat wire drawn between the two coil elements is drawn from one element to the other by being twisted by 180 degrees between the two coil elements.
Further, in the technique disclosed in Japanese Patent No. 5949137, at a position opposing to a magnetic core forming a closed loop, formed in parallel are a first coil element 28a and a second coil element 28b which are formed by edgewise-winding a flat wire wound in a rectangular shape as a whole with four corners being bent portions. Further, at an interconnection part 29c of the two coil elements 28a and 28b, the flat wire is drawn from a winding end portion of one of the coil elements to a winding start portion of the other coil element while being slightly floated up to a front side of an end-face.
Further, in the conventional case depicted in Japanese Patent No. 5949137, as shown in
In the technique depicted in Japanese Patent No. 3398855 described above, the twisted flat wire comes in a gap between the two coil elements so that a distance between the two coil elements is expanded. Therefore, it is difficult to downsize the coil device.
Expansion of the gap between the two coil elements even by several millimeters, for example, results in a great deterioration in the magnetic property, so that it is desired to employ a structure causing no such twisting of the flat wire.
Meanwhile, following shortcomings are pointed out with the technique depicted in Japanese Patent No. 5949137 described above.
That is, in the conventional technique depicted in Japanese Patent No. 5949137, the conductor configuring the coil 28 is pinched, positioned and fixed by a slit of a coil support part 60. Therefore, such structure with the coil support part 60 results in increase in the number of manufacturing steps and increase in manufacturing cost.
In view of such circumstances, it is an object of the present invention to provide a coil component and a coil device capable of shortening the distance of the gap between coils elements so that it is unnecessary to position and fix a flat wire configuring the coil by using another member when drawing out the flat wire.
In order to overcome such shortcomings, the coil component and the coil device according to the present invention includes following features.
That is, the coil component according to a first aspect of the present invention includes: a first coil element and a second coil element formed by dividing and folding, at a prescribed position, into two a winding coil formed by laminating a single flat wire into a rectangular shape with edgewise-winding, the first coil element and the second coil element being disposed with opposing side-faces placed along in parallel to each other; and an interconnection part to connect those two coil elements. Provided that, in end-faces where the first coil element and the second coil element are connected, a side of the first coil element and a side of the second coil element adjacent to each other among each of sides of a rectangular part forming the end-faces of each of the coil elements and sides in parallel to those sides are referred to as first sides, the interconnection part connects a coil element winding end portion located in vicinity of an edge of one of the first sides of one of the two coil elements or on an extension of the first side with a coil element winding start portion located in vicinity of an edge of one of the first sides of the other one of the two coil elements or on an extension of the first side. Further, the interconnection part includes, in the coil element winding start portion and the coil element winding end portion, a coil element winding start portion side raised part and a coil element winding end portion side raised part configured by twisting and raising the flat wire at a right angle in a same direction with respect to each other, and includes an intermediate part extended between those two raised parts.
Further, the coil component according to a second aspect of the present invention includes: a first coil element and a second coil element formed by dividing and folding, at a prescribed position, into two a winding coil formed by laminating a single flat wire into a rectangular shape with edgewise-winding, the first coil element and the second coil element being disposed with opposing side-faces placed along in parallel to each other; and an interconnection part to connect those two coil elements. Provided that, in end-faces where the first coil element and the second coil element are connected, a side of the first coil element and a side of the second coil element adjacent to each other among each of sides of a rectangular part forming the end-faces of each of the coil elements and sides in parallel to those sides are referred to as first sides, the interconnection part connects a coil element winding end portion located in vicinity of an edge of one of the first sides of one of the two coil elements or on an extension of the first side with a coil element winding start portion located in vicinity of an edge of one of the first sides of the other one of the two coil elements or on an extension of the first side. Further, the interconnection part includes, in the coil element winding start portion and the coil element winding end portion, a coil element winding start portion side bent part and a coil element winding end portion side bent part configured by bending the flat wire at a right angle in directions approaching each other, and includes an intermediate part extended between those two bent parts.
Further, when the first sides located on inner side of the first coil element and the second coil element are referred to as inner first sides and the first sides located on outer side are referred to as outer first sides, the interconnection part connects either one of the coil element winding start portion and the coil element winding end portion located in vicinity of an edge of one of the inner first sides of one of the two coil elements or on an extension of the inner first side with another one out of the coil element winding start portion and the coil element winding end portion located in vicinity of an edge of one of the outer first sides of the other one out of the two coil elements or on an extension of the outer first side.
It is preferable that among the side-faces of the first coil element and the second coil element, an end-face position on a prescribed side of the intermediate part is located in outer side of a radial direction of the first coil element and the second coil element than side-face positions of the side-faces on the prescribed side most adjacent to a position where the intermediate part is provided.
Further, it is preferable that the intermediate part is formed in a curved shape.
Further, it is preferable that the intermediate part is formed in a planar shape.
Preferably, a coil device includes the coil component according to the present invention and a magnetic core forming a closed magnetic path by inserting each leg part into a hollow part of the coil component.
Note here that “edgewise-winding” mentioned above refers to a winding method with which the flat wire is wound vertically and laminated in a tabular form having a short side that is one of side edges of the flat wire as an inner diameter face.
In the coil component according to the first aspect of the present invention, the interconnection part for connecting the two coil elements is configured to connect the coil element winding end portion located in the vicinity of the edge of one of the first sides of one of the two coil elements or on the extension of the first side with the coil element winding start portion located in the vicinity of the edge of one of the first sides of the other one of the two coil elements or on the extension of the first side.
Further, the interconnection part includes, in the coil element winding start portion and the coil element winding end portion, the coil element winding start portion side raised part and the coil element winding end portion side raised part configured by twisting and raising the flat wire at a right angle in the same direction with respect to each other, and includes the intermediate part extended between those two raised parts.
Thereby, the interconnection part is formed to be projected out toward the end-face side since both raised parts are provided by twisting the flat wire at right angle in the same direction with respect to each other from one of the end-faces side of the both coil elements. Therefore, it is possible to prevent the twisted flat wire from being interposed in the gap between the both coil elements so that expansion of the distance between the two coil elements can be avoided. As a result, the core can be downsized, and deterioration of the magnetic property can be avoided.
This is the same also with the coil component according to the second aspect of the present invention.
Further, each of the raised parts is provided not on a second side orthogonal to the first side but provided in the vicinity of the edge of the first side or on the extension of the first side and twisting at a right angle in the same direction with respect to each other is applied to the both raised parts as well. This makes it possible to provide a state with no twisting generated in the intermediate part between the both raised parts. Also, twisting provides the both raised parts with a function of self-standing and remaining at the positions. As a result, unlike the conventional technique shown in
This is also the same with a coil element winding start portion side bent part and a coil element winding end portion side bent part configured to be bent at a right angle in directions approaching each other in the coil component according to the second aspect of the present invention.
Hereinafter, coil components and coil devices according to preferred embodiments of the present invention will be described by referring to the accompanying drawings. The coil components of the preferred embodiments are applied to reactors, for example.
A reactor is used as an electric circuit element of various apparatuses loaded on automobiles, for example, and includes a magnetic core and a reactor coil wound around the core. Normally, a leg part is attached to a reactor main body formed by inserting the reactor core inside the reactor coil so that the reactor main body can be housed in a casing while securing an insulation property between the reactor main body and the case.
As shown in
The flat wire 101 is wound such that there is a margin of the flat wire 101 remained to be used for the interconnection part 113 at the prescribed position of the wound and laminated coil.
The flat wire 101 has a rectangular cross section and formed by applying insulation coating on the surface of a copper wire, for example.
The first coil element 111 and the second coil element 112 are disposed in parallel such that opposing single side-face 111F and single side-face 112F are placed along in parallel to each other with a prescribed space provided therebetween.
The interconnection part 113 includes: a coil element winding end portion side raised part 123A and a coil element winding start portion side raised part 123B configured by twisting and raising the flat wire 101 at a right angle in a same direction with respect to each other in a coil element winding start portion 112D and a coil element winding end portion 111D; and an intermediate part 123C extended between the two raised parts 123A and 123B.
It is to be noted in explanations hereinafter that: among each of sides of a rectangular part forming an end-face of each of the coil elements 111 and 112, the sides of the first coil element 111 and the second coil element 112 opposing to each other and the sides in parallel to those sides are referred to as longitudinal sides (first sides) 111C, 112C; and respective sides of the first coil element 111 and the second coil element 112 adjacent (orthogonal) to those longitudinal sides are referred to as lateral sides (second sides) 111G, 112G. Further, the longitudinal sides 111C, 112C of the first coil element 111 and the second coil element 112 located on inner side are referred to as inner longitudinal sides 111H, 112H, and the longitudinal sides 111C, 112C located on outer side are referred to as outer longitudinal sides 111I, 112I.
As described, in the present embodiment, the interconnection part 113 is pulled out to a front side on the sheet of
Further, the flat wire 101 is twisted and raised at 90 degrees (coil element winding end portion side raised part 123A) at the coil element winding end portion 111D of the first coil element 111. At the same time, the flat wire 101 is twisted and raised at 90 degrees in the same direction as the direction of the coil element winding end portion 111D (coil element winding start portion side raised part 123B) at the coil element winding start portion 112D of the second coil element 112. Thereby, twisting angles of the oil element winding end portion side raised part 123A and the coil element winding start portion side raised part 123B are offset, so that the intermediate part 123C comes in an untwisted state. Thereby, the magnetic property is also stabilized.
In the present embodiment, at the above-described interconnection part 113, twisting is employed for forming each of the raised parts 123A and 123B, and extent of bending is kept to necessary minimum amount. Therefore, exfoliation of the insulation coating on the surface of the flat wire 101, which is easily caused by bending work, can be suppressed.
Compared to an interconnection part 213 of Embodiment 2 to be described later, the interconnection part 113 of the present embodiment is in a shape curved toward the front side. Thereby, when manufacturing, it is possible with the coil component of the present embodiment to absorb an error in winding lengths of the coil elements 111 and 112 to some extent.
Further, by having the end-faces of the two coil elements 111 and 112 folded at the position of the interconnection part 113 facing each other, the coil component can be formed through winding the flat wire in the same direction. Therefore, it is possible to reduce the number of man-hours of edgewise-winding and to simplify mechanisms of winding machines.
Regarding the coil component 100 shown in
First, as shown in
Then, as shown in
As shown in
At last, as shown in
As described, the twisted angle, 90 degrees, of the coil element winding end portion side raised part 123A and the twisted angle, 90 degrees, of the coil element winding start portion side raised part 123B are offset, so that the intermediate part 123C of the interconnection part 113 comes in an untwisted state.
In this Embodiment 2, there are many members common (corresponding) to the members of Embodiment 1 described above. Therefore, reference numerals acquired by adding 100 to the reference numerals of the members of Embodiment 1 are applied to such common (corresponding) members, and detailed explanations of such members are to be omitted.
That is, as shown in
Further, while working effects of the interconnection part 213 are also similar, the interconnection part 213 has its intermediate part 223C configured substantially in a flat-plate shape but not in a curved shape like the intermediate part 123C of the interconnection part 113 of Embodiment 1. With the coil component 200 of Embodiment 2, it is easy to precisely define length of the intermediate part 223C so that precision of the magnetic property can be improved.
Further, as shown in
Further,
That is,
In the manufacturing method of the coil component according to Embodiment 2, the twisted angle, 90 degrees, of a coil element winding end portion side raised part 223A and the twisted angle, 90 degrees, of a coil element winding start portion side raised part 223B are also offset, so that the intermediate part 223C of the interconnection part 213 comes in an untwisted state.
In this Embodiment 3, there are many members common (corresponding) to the members of Embodiment 1 described above. Therefore, reference numerals acquired by adding 200 to the reference numerals of the members of Embodiment 1 are applied to such common (corresponding) members, and detailed explanations of such members are to be omitted.
That is, as shown in
Further, while working effects of the interconnection part 313 are also similar, shapes of a coil element winding end portion side raised part 323A and a coil element winding start portion side raised part 323B of the interconnection part 313 are slightly different. That is, in the coil element winding end portion side raised part 323A, the flat wire 301 is twisted and raised and then formed into R-shape in the manner of edgewise-winding to provide an R-part 323E. Also, in the coil element winding start portion side raised part 323B, the flat wire 301 is twisted and raised and then formed into R-shape in the manner of edgewise-winding to provide an R-part 323D. Thereby, the interconnection part 313 as a whole is brought upward on the sheet of
Further, while the intermediate part 323C of the interconnection part 313 is formed in a tabular shape as in the case of Embodiment 2 described above, the intermediate part 323C may be formed in a curved shape as in the case of Embodiment 1 described above.
Further, as shown in
Further,
That is,
In the present embodiment, however, the coil element winding end portion side raised part 323A includes the R-part 323E, and the coil element winding start portion side raised part 323B includes the R-part 323D. Therefore, as shown in
Further, in manufacturing step 2, the bent part between the first coil element 311 and the interconnection part 313 and the bent part between the second coil element 312 and the interconnection part 313 are bent by 45 degrees in the manner of flatwise bending. In this case, the direction of bending between the first coil element 311 and the interconnection part 313 and the direction of bending between the second coil element 312 and the interconnection part 313 are also opposite with respect to each other.
Manufacturing step 3 and manufacturing step 4 are similar to those of Embodiment 1.
In the manufacturing method of the coil component according to Embodiment 3, the twisted angle, 90 degrees, of the coil element winding end portion side raised part 323A and the twisted angle, 90 degrees, of the coil element winding start portion side raised part 323B are also offset, so that the intermediate part 323C of the interconnection part 313 comes in an untwisted state.
Note that the coil component and the coil device of the present invention are not limited to those of the above-described embodiments but various kinds of other modes can be employed.
Like a coil component 400 of a modification shown in
That is, the interconnection part of the above-described embodiment (Embodiment 1) includes: the coil element winding end portion side raised part 123A and the coil element winding start portion side raised part 123B configured by twisting and raising the flat wire 101 at a right angle in the same direction with respect to each other in the coil element winding start portion 112D and the coil element winding end portion 111D, and includes the intermediate part 123C extended between the two raised parts 123A, 123B. However, the coil component 400 according to the modification shown in
Further, it is to be noted that the manufacturing method of the coil component is not limited to the manufacturing methods of the coil component depicted in the above-described embodiments but various kinds of manufacturing methods can be employed.
Further, in the embodiment described above, connecting points of the interconnection part 113 are provided in the vicinity of the edges of the longitudinal sides. However, the flat wire may be extended from the edges of the longitudinal sides and the connecting points may be set on the extended wire. Note that it is not preferable to set the connecting points in the midway of the longitudinal sides since the interconnection part interferes with the core.
Furthermore, while shown in the embodiments described above are the reactors (coil components) applied to the reactors used for automobiles, the coil component and the coil device according to the present invention are not limited to be used for automobiles but may be applicable to various kinds of application. For example, the coil component and the coil device of the present invention can be applied to reactors used for solar power panels.
Number | Date | Country | Kind |
---|---|---|---|
2018-039132 | Mar 2018 | JP | national |