This application claims priority from Japanese Patent Application No. 2009-197856 filed Aug. 28, 2009. The entire content of the priority application is incorporated herein by reference.
The present invention relates to a coil component, and particularly to a coil component including a bobbin and coils formed of wires wound around a core part of the bobbin.
There has been provided a coil component including a bobbin and coils formed of wires. The bobbin has a core part formed substantially cylindrical in shape and a pair of flanges. Each of the flanges has a first surface attached to an axial end of the core part.
One of the flanges is provided with a plurality of terminal-mounting parts on a second surface of the flange opposite to the first surface, and is formed with notches near the terminal-mounting parts. Each notch extends from the peripheral edge of the flange to a position near the core part. Each wire is electrically connected at its end to a metallic terminal of the corresponding terminal-mounting part, extended from the second surface side to the first surface side of the flange through the notch and further to the core part, and wound about the core part many times such that the wound parts align in the axial direction of the core part, thereby forming the coil.
In this configuration, a part of each wire past the notch bends substantially at a right angle and extends along the first surface to the core part. Here, the wire does not bend at a rigid right angle, but rather bends along a curve. Thus, the curved portion of the wire protrudes away from the first surface of the flange in the axial direction of the core part. When winding the wire about the core part, the protruding portion of the wire causes problems in the alignment of the winding, and the coil in this area may bulge in the axial direction of the core part, i.e., push the winding in the axial direction away from the first surface. This makes it difficult to produce a coil component with a reduced height in the axial direction of the core part.
In view of the foregoing, it is an object of the invention to provide a coil component having a structure capable of minimizing problems in the winding alignment of wires constituting coils to allow for a reduction in the height of the coil component with respect to the axial direction of the core part.
In order to attain the above and the other objects, the invention provides a coil component including a bobbin and at least one wire. The bobbin includes a core part formed substantially cylindrical in shape and having an axial end, a flange having a first surface on a first side and a second surface on a second side opposite to the first side with respect to a first direction, a plurality of terminal-mounting members, and a wire-supporting member. The first surface of the flange is attached to the axial end of the core part. Each of the terminal-mounting members is disposed on the flange and has a metallic terminal. The at least one wire is wound about the core part to form a coil, and each of the at least one wire has a first end and a second end. The at least one wire includes a particular wire. Each of the metallic terminals is in one-to-one correspondence with each of the first and second ends of the at least one wire, and each of the first and second ends of the at least one wire is electrically connected to a corresponding one of the metallic terminals. The flange is formed with a notch at a position near a first one of the terminal-mounting members. The notch extends from a peripheral edge of the flange toward the core part. The wire-supporting member is disposed in the notch at a position closer to the second surface than the first surface in the first direction, and extends in a second direction from the peripheral edge of the flange toward the core part. The first segment of the particular wire near the first end thereof extends from the second side to the first side of the flange through the notch and further to the core part. The first segment is hooked around the wire-supporting member in the notch.
In the drawings;
a) is a right-side view of a part of a coil component according to another modification of the embodiment; and
b) is a right-side view of a part of a coil component according to still another modification of the embodiment.
A coil component 1 according to an embodiment of the present invention will be described with reference to
Note that in order to facilitate the description of the embodiment, the terms “upward,” “downward,” “upper,” “lower,” “above,” “below,” “rear,” “front,” “right,” “left” and the like will be used throughout the description assuming that the coil component 1 is disposed in an orientation shown in
The core 10 includes a first magnetic core 11 and a second magnetic core 12 formed of ferrite. Since the first and second magnetic cores 11 and 12 have the same shape, only the first magnetic core 11 will be described below.
As shown in
As shown in
The flange 52 has an upper surface 52C and a lower surface 52D. As shown in
As shown in
The terminal-mounting parts 52A and 52B confront each other across the notch 52b, and have first notch-defining walls 52F and 52G opposing each other. The first notch-defining walls 52F and 52G extend in the front-rear direction and define the rectangular part of the notch 52b therebetween.
The terminal-mounting parts 52A and 52B are attached with metallic terminals 54-1 and 54-2 configured of rod-shaped metal brackets having a rectangular cross section taken orthogonal to the longitudinal direction thereof. Specifically, the metallic terminals 54-1 and 54-2 are fixed at base ends thereof to the terminal-mounting parts 52A and 52B through insert molding, and extend frontward from the base ends thereof, bend to extend substantially upward, bend again to extend frontward, and finally bend at a right angle to extend downward. Endfaces of the metallic terminals 54-1 and 54-2 facing downward are flush with lower surfaces 52W and 52X, respectively, of the corresponding terminal-mounting parts 52A and 52B, respectively, as shown in
As shown in
Note that the first notch-defining walls 52F and 52G and the second notch-defining walls 52H and 52I correspond to edges of the flange 52 that define the notch 52b.
The flange 52 is further provided with wire-supporting parts 52J and 52K at the notch 52b. The wire-supporting parts 52J and 52K are disposed at center positions of the first notch-defining walls 52F and 52G and the second notch-defining walls 52H and 52I in the up-down direction. Because the wire-supporting parts 52J and 52K are substantially plate-shaped and thinner than the height of the first notch-defining walls 52F and 52G in the up-down direction, the wire-supporting parts 52J and 52K are at positions lower than the upper surface 52C of the flange 52 and higher than the lower surfaces 52W and 52X, respectively, of the terminal-mounting parts 52A and 52B, respectively. The distance between the lower surfaces of the terminal-mounting parts 52A and 52B and the wire-supporting parts 52J and 52K in the up-down direction is identical to the distance between the upper surface 52C of the flange 52 and the wire-supporting parts 52J and 52K. These distances are greater than the diameters of a first wire 31 and a second wire 32 described later.
The wire-supporting parts 52J and 52K have upper and lower surfaces parallel to the upper surface 52C of the flange 52. As shown in
As shown in
The terminal-mounting parts 52L and 52M are attached with metallic terminals 54-3 and 54-4, respectively. As with the metallic terminals 54-1 and 54-2 described above, the metallic terminals 54-3 and 54-4 are configured of rod-shaped metal brackets having a rectangular cross section taken orthogonal to the longitudinal direction thereof. The metallic terminals 54-3 and 54-4 are fixed at base ends thereof to the terminal-mounting parts 52L and 52M through insert molding, and extend rearward from the base ends thereof, bend to extend substantially upward, bend again to extend rearward, and finally bend at a right angle to extend downward. Endfaces of the metallic terminals 54-3 and 54-4 are flush with the lower surfaces 52Z and 52Y, respectively, of the corresponding terminal-mounting parts 52L and 52M, respectively, as shown in
As shown in
The first notch-defining walls 52O and 52P of the terminal-mounting parts 52L and 52M extend along the front-rear direction and defines the notch 52c therebetween near the periphery of the flange 52.
As shown in
The flange 52 is also provided with wire-supporting parts 52Q and 52R disposed at center positions on the first notch-defining walls 52O and 52P in the up-down direction so as to span the entire notch-defining walls 52O and 52P in the front-rear direction as shown in
The wire-supporting parts 52O and 52R are disposed away from and oppose each other in the right-left direction, and has top and bottom surfaces parallel to the upper surface 52C of the flange 52 and edges 52U and 52V (
As shown in
The wires 30 include the first wire 31 and the second wire 32 (
The first wire 31 is extended from the first end 31A into a lower part of the notch 52b beneath the wire-supporting part 52J and is hooked around the edge 52S of the wire-supporting part 52J located to the left of the metallic terminal 54-1. After passing through an upper part of the notch 52b above the wire-supporting part 52J, the first wire 31 is run on the upper surface 52C of the flange 52.
As shown in
The second wire 32 is run similar to the first wire 31 described above. Specifically, as shown in
Then, the second wire 32 is run onto the upper surface 52C of the flange 52 and further to the core 51, wound over the first wire 31 already wound about the core 51, inserted into an upper part of the notch 52c above the wire-supporting part 52R, routed around the edge 52V of the wire-supporting part 52R to a lower part of the notch 52c beneath the wire-supporting part 52R, and run to the metallic terminal 54-4. A second end 32B of the second wire 32 is electrically connected to a part of the metallic terminal 54-4 extending rearward from the base end thereof.
As described above, according to the present embodiment, the first wire 31 is hooked around the edges 52S and 52T of the wire-supporting parts 52J and 52K disposed in the notch 52b. This configuration prevents segments of the first wire 31 that run from the notch 52b onto the upper surface 52C of the flange 52 from being bent at a large angle and largely protruding upward from the upper surface 52C. Therefore, it is possible to reduce a bulge formed when winding the first wire 31 and the second wire 32 about the core 51.
Further, parts of the first wire 31 extending between either the wire-supporting part 52J or 52K and the upper surface 52C of the flange 52 are accommodated inside the notch 52b. Hence, when winding the first wire 31 or the second wire 32 about the core 51, it is possible to prevent the portion of the first or second wire 31 or 32 to be wound about the core 51 from contacting the part of the first wire 31 accommodated in the notch 52b, and this minimizes parts of the first wire 31 and the second wire 32 wound about the core 51 that bulge in the axial direction of the core 51. Consequently, it is possible to minimize problems in the winding alignment of the first wire 31 and the second wire 32 about the core 51 and, hence, minimize the winding space that is wasted.
Further, as shown in
Similarly, the second wire 32 is hooked around the edges 52U and 52V of the wire-supporting parts 52Q and 52R disposed in the notch 52c. This configuration prevents segments of the second wire 32 that run from the notch 52c onto the upper surface 52C of the flange 52 from being bent at a large angle and largely protruding upward from the upper surface 52C of the flange 52. Therefore, it is possible to reduce a bulge formed when winding the second wire 32 about the core 51.
Further, parts of the second wire 32 extending between either the wire-supporting part 52Q or 52R and the upper surface 52C of the flange 52 are accommodated inside the notch 52c. Hence, when winding the second wire 32 about the core 51, it is possible to prevent the portion of the second wire 32 to be wound about the core 51 from contacting the parts of the second wire 32 accommodated in the notch 52c, and this minimizes parts of the second wire 32 wound about the core 51 that bulge in the axial direction of the core 51. Consequently, it is possible to minimize problems in the winding alignment of the second wire 32 about the core 51 and, hence, minimize the winding space that is wasted.
Also, because the wire-supporting parts 52Q and 52R are positioned between the upper surface 52C of the flange 52 and the lower surfaces of the terminal-mounting parts 52L and 52M as shown in
Accordingly, it is possible to use a relatively short core as the core 51 of the coil component 1, enabling to reduce the height of the coil component 1. Thus, the present invention is particularly useful when using the coil component 1 as a transformer that requires the core to be short in the axial dimension.
In the present embodiment, the protruding parts 55 are provided on the wire-supporting parts 52Q and 52R so as to extend the edges 52U and 52V in a direction away from the through-hole 52a. Therefore, the second wire 32 can be routed smoothly over the protruding parts 55 even when the edges 52U and 52V are relatively short in length.
Also, as described above, the distance between the lower surfaces 52W and 52X, respectively,of the terminal-mounting parts 52A and 52B, respectively, and the wire-supporting parts 52J and 52K and the distance between the upper surface 52O of the flange 52 to the wire-supporting parts 52J and 52K are greater than the diameters of the first and second wires 31 and 32. Accordingly, a segment of the first wire 31 near the first end 31A and a segment near the second end 31B can be accommodated in the notch 52b so that no parts of these segments protrude therefrom.
While a coil component according to the present invention has been described in detail with reference to a specific embodiment thereof, it would be apparent to those skilled in the art that many modifications and variations may be made therein without departing from the spirit of the invention, the scope of which is defined by the attached claims.
For example, as shown in
Also, a terminal-mounting part 252A shown in
Alternatively, a metallic terminal 354-1 bent in an L-shape may be embedded in the terminal-mounting part 252A through insert molding as shown in
Further, the wire-supporting parts 52J, 52K, 52Q, and 52R are not limited to a plate shape, but may be configured in a rod shape, for example. In this case, the longitudinal dimension of the wire-supporting parts 52J, 52K, 52Q, and 52R should be aligned in the direction from the peripheral edge of the flange 52 to the through-hole 52a.
Further, while the wire-supporting parts 52J, 52K, 52Q, and 52R in the above-described embodiment are disposed at positions a step higher than the lower surfaces of the terminal-mounting parts 52A, 52B, 52L, and 52M, the wire-supporting parts 52J, 52K, 52Q, and 52R may be disposed such that the lower surfaces 52W, 52X, 52Z, and 52Y, respectively, of the wire-supporting parts 52J, 52K, 52Q, and 52R are flush with the lower surfaces of the 52A, 52B, 52L, and 52M, respectively.
Also, a part of the first wire 31 extending from the first end 31A may be run through the notch 52b from the lower part beneath the wire-supporting part 52J to the upper part above the wire-supporting part 52K and then onto the upper surface 52C of the flange 52. Similarly, a part of the first wire 31 extending from the second end 31B may be run through the notch 52b from the lower part beneath the wire-supporting part 52K to the upper part above the wire-supporting part 52J and then onto the upper surface 52C of the flange 52.
Similarly, a part of the second wire 32 extending from the first end 32A may be run through the notch 52c from the lower part beneath the wire-supporting part 52Q to the upper part above the wire-supporting part 52R and then onto the upper surface 52C of the flange 52, and a part of the second wire 32 extending from the second end 32B may be run through the notch 52c from the lower part beneath the wire-supporting part 52R to the upper part above the wire-supporting part 52Q and then onto the upper surface 52C of the flange 52.
Further, the numbers of wires, metallic terminals, terminal-mounting parts, notches, wire-supporting parts, and flanges described in the above embodiment are merely examples, and the present invention is not limited to these numbers.
Number | Date | Country | Kind |
---|---|---|---|
2009-197856 | Aug 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4352080 | Mitsui et al. | Sep 1982 | A |
4549158 | Mitsui et al. | Oct 1985 | A |
4716394 | Gordon | Dec 1987 | A |
7017851 | Matsuura et al. | Mar 2006 | B2 |
7061358 | Yang | Jun 2006 | B1 |
20040155542 | Matsuura et al. | Aug 2004 | A1 |
20070126542 | He et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
U-48-000049 | Jan 1973 | JP |
U-55-71505 | May 1980 | JP |
U-60-190019 | Dec 1985 | JP |
U-61-112615 | Jul 1986 | JP |
A-8-69923 | Mar 1996 | JP |
A-2004-179498 | Jun 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20110050378 A1 | Mar 2011 | US |