The present invention relates to a coil component and, more particularly, to a coil component having a spiral planar conductor.
As coil components used for various electronic devices, there are known coil components of a type in which a wire (coated conductive wire) is wound around a magnetic core and of a type in which a spiral planar conductor having a plurality of turns is formed on a surface of an insulating layer. For example, JP 2013-251455 A discloses a coil component having a configuration in which spiral planar conductors formed on different insulating layers are connected to each other at their inner peripheral ends or outer peripheral ends.
To reduce DC resistance and AC resistance in a coil component including a spiral planar conductor, the width of the spiral planar conductor may be made large.
However, simply making the width of the planar conductor large increases unevenness of a current density distribution and thus cannot reduce DC resistance and AC resistance sufficiently. As described in JP 2001-319813 A, to make the current density distribution more even, a method of dividing each turn of a planar conductor into a plurality of parts by spiral slits can be adopted. In this case, however, a difference may occur in the current density distribution between the inner and outer peripheral sides of the planar conductor constituting the same turn.
It is therefore an object of the present invention to provide a coil component in which DC resistance and AC resistance can be reduced and in which a difference in current density distribution between an inner peripheral side conductor part and an outer peripheral side conductor part is eliminated so as to make the current density distribution even.
A coil component according to the present invention includes a first coil part spirally wound in a plurality of turns and a second coil part laid so as to overlap the first coil part and spirally wound in a plurality of turns in the direction opposite to the winding direction of the first coil part. At least the innermost turn of the first coil part is radially divided into first and second conductor parts by a spiral slit, and at least the innermost turn of the second coil part is radially divided into third and fourth conductor parts by a spiral slit. The first conductor part is positioned radially inward of the second conductor part, and the third conductor part is positioned radially inward of the fourth conductor part. The inner peripheral end of the first conductor part is connected to the inner peripheral end of the fourth conductor part, and the inner peripheral end of the second conductor part is connected to the inner peripheral end of the third conductor part.
According to the present invention, at least the innermost turn of each of the first and second coil parts is radially divided by the spiral slit, so that unevenness of a current density distribution can be reduced to thereby allow reduction in DC resistance and AC resistance. In addition, the first conductor part positioned on the inner peripheral side is connected to the fourth conductor part positioned on the outer peripheral side, and the second conductor part positioned on the outer peripheral side is connected to the third conductor part positioned on the inner peripheral side, so that a difference in current density between inner and outer peripheries is eliminated. This makes the current density distribution more even, allowing further reduction in DC resistance and AC resistance.
In the present invention, the turns of the first coil part including the innermost turn may each be divided into the first and second conductor parts by the slit, and the turns of the second coil part including the innermost turn may each be divided into the third and fourth conductor parts by the slit. With this configuration, unevenness of the current density distribution is further reduced to thereby allow further reduction in DC resistance and AC resistance.
In the present invention, the first to fourth conductor parts each have a circumferential area in which the radial position of the conductor is not shifted and a transition area in which the radial position of the conductor is shifted. The circumferential area of the first conductor part and the circumferential area of the third conductor part may overlap each other, and the circumferential area of the second conductor part and the circumferential area of the fourth conductor part may overlap each other. This facilitates pattern design of the first and second coil parts.
The coil component according to the present invention may further include an insulating film. The first coil part may be formed on one surface of the insulating film, and the second coil part may be formed on the other surface of the insulating film. The inner peripheral end of the first conductor part and the inner peripheral end of the fourth conductor part may be connected to each other through a first through hole conductor formed so as to penetrate the insulating film, and the inner peripheral end of the second conductor part and the inner peripheral end of the third conductor part may be connected to each other through a second through hole conductor formed so as to penetrate the insulating film. This facilitates the manufacture of the coil component. In this case, the coil component according to the present invention may further include a magnetic member having a protruding part, the insulating film may have a through hole formed at a portion corresponding to the inner diameter area of each of the first and second coil parts, and the protruding part of the magnetic member may be inserted through the through hole of the insulating film. With this configuration, high inductance can be obtained.
The coil component according to the present invention may include a plurality of sets each including the first coil part and second coil part are provided, and the plurality of sets may be connected in parallel. With this configuration, DC resistance and AC resistance can be further reduced.
Thus, according to the present invention, it is possible to reduce DC resistance and AC resistance and eliminate a difference in current density distribution between the inner peripheral side conductor part and the outer peripheral side conductor part to thereby make the current density distribution even.
The above and other objects, features and advantages of this invention will become more apparent by reference to the following detailed description of the invention taken in conjunction with the accompanying drawings, wherein:
Preferred embodiments of the present invention will now be explained in detail with reference to the drawings.
As illustrated in
The first and second coil parts 100 and 200 are each constituted by a spiral planar conductor spirally wound in a plurality of turns. The winding directions of the first coil part 100 and second coil part 200 are opposite to each other. Specifically, assuming that the outer peripheral end of the coil part is the starting point, the first coil part 100 is wound in the clockwise direction (right-handed direction), while the second coil part 200 is wound in the counterclockwise direction (left-handed direction). The inner peripheral end of the first coil part 100 and that of the second coil part 200 are connected to each other through first and second through hole conductors TH1 and TH2, thereby constituting one coil.
As illustrated in
The spiral planar conductor constituting the first coil part 100 has a transition area S1 in which the radial position of the conductor is shifted, and the five turns constituted of the first turn 101 to fifth turn 105 are defined with the transition area S1 as a boundary. The first turn 101 is the outermost turn, and the fifth turn 105 is the innermost turn. A part of each of the turns 101 to 105 other than the transition area S1 is a circumferential area in which the radial position of the conductor is not shifted. The end portion of the first turn 101 constitutes the outer peripheral end of the first coil part 100, and the end portion of the fifth turn 105 constitutes the inner peripheral end of the first coil part 100. The outer peripheral end of the first coil part 100 is connected to a terminal electrode 100A through a lead-out pattern 110. The lead-out pattern 110 does not have the slit.
As illustrated in
The spiral planar conductor constituting the second coil part 200 has a transition area S2 in which the radial position of the conductor is shifted, and the five turns constituted of the first turn 201 to fifth turn 205 are defined with the transition area S2 as a boundary. The first turn 201 is the outermost turn, and the fifth turn 205 is the innermost turn. A part of each of the turns 201 to 205 other than the transition area S2 is a circumferential area in which the radial position of the conductor is not shifted. The end portion of the first turn 201 constitutes the outer peripheral end of the second coil part 200, and the end portion of the fifth turn 205 constitutes the inner peripheral end of the second coil part 200. The outer peripheral end of the second coil part 200 is connected to a terminal electrode 200A through a lead-out pattern 210. The lead-out pattern 210 does not have the slit.
As described above, in the present embodiment, the turns constituting the coil part (first and second coil part 100 or 200) are each radially divided by the slit (slit SL1 or SL2), so that as compared with a case where such a slit is not formed, unevenness of a current density distribution is reduced. As a result, DC resistance and AC resistance can be reduced.
In the present embodiment, as illustrated in
An inner peripheral end C1a of the first conductor part C1 included in the first coil part 100 is connected to an inner peripheral end C4a of the fourth conductor part C4 included in the second coil part 200 through the first through hole conductor TH1. Further, an inner peripheral end C2a of the second conductor part C2 included in the first coil part 100 is connected to an inner peripheral end C3a of the third conductor part C3 included in the second coil part 200 through the second through hole conductor TH2.
With the above configuration, as illustrated in
As illustrated in
Further, it is possible to place the insulating film 11 having the first and second coil parts 100 and 200 on the front and back surfaces thereof on a substrate which is a magnetic member. In this case, as illustrated in
As illustrated in
With the above configuration, the set A and the set B are connected in parallel, so that as illustrated in
As illustrated in
In the example of
It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
For example, in the above embodiments, the first and second coil parts 100 and 200 are formed on the front and back surfaces of the insulating film 11 (14A, 14B); however, the present invention is not limited to this, and a configuration may be adopted, in which the first and second coil parts 100 and 200 are laminated on the same surface of a substrate with an intervention of an interlayer insulating film therebetween so as to separate them.
Further, in the above embodiments, all the turns constituting each of the first and second coil parts 100 and 200 are radially divided by the spiral slit; however, in the present invention, not all the turns need to be radially divided, and it is sufficient to radially divide at least the innermost turn (turn 105, turn 205) by the slit.
Further, in the above embodiments, the turns constituting each of the first and second coil parts 100 and 200 are each divided into two parts by one slit; however, the number of divisions of each turn is not limited to two. That is, each turn may be divided into three or more parts using two or more slits.
Number | Date | Country | Kind |
---|---|---|---|
2017-115958 | Jun 2017 | JP | national |