This application claims the benefit under 35 USC 119 (a) of Korean Patent Application No. 10-2019-0101780 filed on Aug. 20, 2019 in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference for all purposes.
The present disclosure relates to a coil component.
An inductor, a coil component, is a representative passive element used in an electronic device together with a resistor and a capacitor.
A thin film type power inductor is manufactured by forming a coil portion using a plating process, curing a magnetic powder-resin composite, in which magnetic powder particles and a resin are mixed, to form a body, and forming external electrodes on external surface of the body.
However, in the case in which the body is formed using magnetic metal powder particles having high conductivity, plating bleeding may occur on a surface of the body when external electrodes are formed on external surfaces of the body by plating.
Accordingly, there is a need for an effective method of maintaining component characteristics while preventing plating bleeding by forming an insulating layer on a surface of a body.
An aspect of the present disclosure is to provide a coil component in which plating bleeding may be prevented to improve reliability thereof.
Another aspect of the present disclosure is to provide a coil component in which a decrease in a surface area of a magnetic material of a body may be efficiently prevented.
According to an aspect of the present disclosure, a coil component includes a support substrate and a coil portion disposed on the support substrate, a body, in which the support substrate and the coil portion are embedded, having one surface and the other surface opposing each other, one side surface and the other side surface connecting the one surface and the other surface to each other and opposing each other, and one end surface and the other end surface, opposing each other, each connecting the one side surface and the other side surface to each other, a first lead-out portion and a second lead-out portion, respectively extending from the coil portion to be exposed to the one side surface and the other side surface of the body, an insulating layer disposed on each of the one surface and the other surface of the body, and an oxide insulating layer disposed on each of the one side surface and the other side surface of the body and each of the one end surface and the other end surface of the body. The insulating layer is provided with a plurality of slits spaced apart from each other to expose portions of the one surface and the other surface of the body of the body.
The above and other aspects, features, and advantages of the present disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. However, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be apparent to one of ordinary skill in the art. The sequences of operations described herein are merely examples, and are not limited to those set forth herein, but may be changed, as will be apparent to one of ordinary skill in the art, with the exception of operations necessarily occurring in a certain order. Also, descriptions of functions and constructions that are well known to one of ordinary skill in the art may be omitted for increased clarity and conciseness.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided so that this disclosure will be thorough and complete, and will convey the full scope of the disclosure to one of ordinary skill in the art.
Hereinafter, examples of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily carry out the present disclosure.
In the drawing, the X direction may be defined as a first direction or a length direction, the Y direction as a second direction or a width direction, and the Z direction as a third direction or a thickness direction.
Hereinafter, a coil component according to an embodiment will be described in detail with reference to the accompanying drawings. Referring to the accompanying drawings, the same or corresponding components are denoted by the same reference numerals, and duplicate descriptions thereof will be omitted.
Various types of electronic components are used in electronic devices. Various types of coil components may be suitably used for noise removal or the like between these electronic components.
For example, the coil component in an electronic device may be used as a power inductor, a high frequency (HF) inductor, a general bead, a bead for high frequency (GHz Bead), a common mode filter, or the like.
Referring to
The body 100 forms the exterior of the coil component 1000 according to an embodiment, and includes coil portions embedded therein.
The body 100 may be formed to have a substantially hexahedral shape, for example.
Referring to
As an example, the body 100 may be formed such that the coil component 1000, including the external electrodes 710 and 720 to be described later, has a length of 0.2±0.1 mm, a width of 0.25±0.1 mm, and a maximum thickness of 0.4 mm, but an example thereof is not limited thereto.
The body 100 may include a magnetic material and a resin. More specifically, the body 100 may be formed by laminating one or more magnetic composite sheets including a resin and a magnetic material dispersed in the resin. Alternatively, the body 100 may have a structure other than the structure in which the magnetic material is dispersed in the resin. For example, the body 100 may be formed of a magnetic material such as ferrite.
The magnetic material may be ferrite or magnetic metal powder particles.
The ferrite powder particles may be at least one of spinel type ferrites such as Mg—Zn type, Mn—Zn type, Mn—Mg type, Cu—Zn type, Mg—Mn—Sr type, Ni—Zn type and the like, hexagonal ferrites such as Ba—Zn type, Ba—Mg type, Ba—Ni type, Ba—Co type, Ba—Ni—Co type and the like, garnet type ferrites such as a Y system and the like, and Li-based ferrites.
The magnetic metal powder particles may include at least one selected from the group consisting of iron (Fe), silicon (Si), chromium (Cr), cobalt (Co), molybdenum (Mo), aluminum (Al), niobium (Nb), copper (Cu), and nickel (Ni). For example, the magnetic metal powder particles may be at least one of pure iron powder particles, Fe—Si-based alloy powder particles, Fe—Si—Al based alloy powder particles, Fe—Ni based alloy powder particles, Fe—Ni—Mo based alloy powder particles, Fe—Ni—Mo—Cu based alloy powder particles, Fe—Co based alloy powder particles, Fe—Ni—Co based alloy powder particles, Fe—Cr based alloy powder particles, Fe—Cr—Si based alloy powder particles, Fe—Si—Cu—Nb based alloy powder particles, Fe—Ni—Cr based alloy powder particles, and Fe—Cr—Al based alloy powder particles.
The magnetic metal powder particles may be amorphous or crystalline. For example, the magnetic metal powder particles may be Fe—Si—B—Cr amorphous alloy powder particles, but is not limited thereto.
The ferrite particle and the magnetic metal powder particles may each have an average diameter of about 0.1 μm to 30 μm, but average diameters thereof are not limited thereto.
The body 100 may include two or more types of magnetic materials dispersed in a resin. The phrase “different types of magnetic materials” means that the magnetic materials dispersed in the resin are distinguished from each other by any one of an average diameter, a composition, crystallinity and a shape. Referring to
The resin may include, but is not limited to, an epoxy, polyimide, a liquid crystal polymer, or the like, alone or in combination.
The support substrate 200 is disposed inside the body 100 and has both surfaces on which the first and second coil portions 310 and 320 are disposed, respectively. The support substrate 200 has a thickness of 10 μm or more and 60 μm or less.
The support substrate 200 may be formed of an insulating material including a thermosetting insulating resin such as an epoxy resin, a thermoplastic insulating resin such as polyimide or a photoimageable dielectric resin, or may be formed of an insulating material in which this insulating resin is impregnated with a reinforcing material such as a glass fiber or an inorganic filler. For example, the insulating substrates 251 and 252 may be formed of an insulating material such as prepreg, Ajinomoto Build-up Film (ABF), FR-4, bismaleimide triazine (BT) resin, and a Photo Imageable Dielectric (PID) resin, or the like, but a material thereof is not limited thereto.
The inorganic filler may be one or more selected from the group consisting of silica (SiO2), alumina (Al2O3), silicon carbide (SiC), barium sulphate (BaSO4), talc, mud, mica powder, aluminum hydroxide (AlOH3), magnesium hydroxide (Mg(OH)2), calcium carbonate (CaCO3), magnesium carbonate (MgCO3), magnesium oxide (MgO), boron nitride (BN), aluminum borate (AlBO3), barium titanate (BaTiO3) and calcium zirconate (CaZrO3).
When the support substrate 200 is formed of an insulating material including a reinforcing material, the support substrate 200 may provide further improved rigidity. When the support substrate 200 is formed of an insulating material, not including a glass fiber, the support substrate 200 may be advantageous for thinning of the entire coil portions 310 and 320. When the support substrate 200 is formed of an insulating material including a photoimageable dielectric resin, the number of processes for forming the coil portions 310 and 320 may be decreased, which is advantageous for reduction in manufacturing costs and formation of fine vias.
The coil portions 310 and 320 are disposed on both surfaces of the support substrate 200, opposing each other, and exhibit characteristics of a coil component. For example, when the coil component 1000 according to this embodiment is used as a power inductor, the coil portions 310 and 320 may stabilize the power of an electronic device by storing an electric field as a magnetic field to maintain an output voltage.
Referring to
The coil portions 310 and 320 may include a coil pattern having a flat spiral shape. The first and second coil portions 310 and 320, respectively disposed on both surface opposing each other in the support substrate 200, may be electrically connected to each other through a via electrode 900 formed in the support substrate 200.
The coil portions 310 and 320 and the via electrode 900 may include a metal having improved electrical conductivity and may be formed of, for example, silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt), or alloys thereof.
The lead-out portions 410 and 420 extend from the coil portions 310 and 320 to be exposed to the first and second surfaces 101 and 102 of the body 100, respectively. Referring to
The insulating layer 500 is disposed on the third surface 103 and the fourth surface 104 of the body 100. The insulating layer 500 includes an insulating resin 510 and a filler 520. As an example, an insulating layer 500 may be formed of an Ajinomoto Build-up Film (ABF) having a thickness lower than a thickness of the support substrate 200, but a material of the insulating layer 500 is not limited thereto.
As an example, the insulating resin 510 may be a thermosetting insulating resin such as an epoxy resin, a thermoplastic insulating resin such as polyimide, or a photosensitive insulating resin, but a material of the insulating resin 510 is not limited thereto.
As an example, the filler 520 may be one or more selected from the group consisting of silica (SiO2), alumina (Al2O3), silicon carbide (SiC), barium sulphate (BaSO4), talc, mud, mica powder, aluminum hydroxide (AlOH3), magnesium hydroxide (Mg(OH)2), calcium carbonate (CaCO3), magnesium carbonate (MgCO3), magnesium oxide (MgO), boron nitride (BN), aluminum borate (AlBO3), barium titanate (BaTiO3) and calcium zirconate (CaZrO3), but is not limited thereto. In addition, the filler 520 may include an organic filler including a polymer material, but is not limited thereto.
In the insulating layer 500, a plurality of slits 530 are disposed to be spaced apart from each other to expose a portion of the surface of the body 100. Referring to
The oxide insulating layer 600 is formed on the first surface 101 and the second surface 102 of the body 100 and the fifth surface 105 and the sixth surface 106 of the body 100. Specifically, the oxide insulating layer 600 may be formed by oxidizing metal magnetic powder particles 110 and 120 exposed to the first surface 101, the second surface 102, the fifth surface 105, and the sixth surface 106 of the body 100. For example, when the metal magnetic powder particles 100 and 200 include iron (Fe), the oxide insulating layer 600 may be formed on the first surface 101, the second surface 102, the fifth surface 105, and the sixth surface 106 of the body 100 by acidizing the surface of the body 100 with an acid solution selectively reacting with only iron (Fe). As described above, since the body 100 includes the magnetic metal powder particles 110 and 120 and the resin, the magnetic metal powder particles 110 and 120 may be discontinuously exposed to the surface of the body 100. Accordingly, oxide insulating layers, formed on surfaces of the magnetic metal powder particles 110 and 120, may be discontinuously formed on the surface of the body 100. In this embodiment, after the dicing process is completed, the oxide insulating layer 600 is formed by reacting the surface of the body 100, on which the insulating layer 500 is laminated, with an acidic solution. As a result, the oxide insulating layer 600 may also be formed on an internal surface of the slit 530.
Since the oxide insulating layer 600 is formed by oxidizing the metal magnetic powder particles 110 and 120, the oxide insulating layer 600 may include a metal component of the metal magnetic powder particles 110 and 120. As an example, the oxide insulating layer 600 includes at least one selected from the group consisting of iron (Fe), niobium (Nb), silicon (Si), chromium (Cr), or alloys thereof.
The oxide insulating layer 600 is exposed to the surface of the body 100 as well as the magnetic metal powder particles 110 and 120, but may also be formed on the surfaces of the magnetic metal powder particles 110 and 120 disposed within a predetermined depth from the surface of the body 100. This is because the above-mentioned acid solution permeates the body 100 to a predetermined depth from the surface of the body 100 due to a relatively porous structure of the resin of the body 100. The predetermined depth from the surface of the body 100 may refer to 1.5 to 2 times the particle diameter of the first magnetic metal powder particles 110, but is not limited thereto.
Before the external electrodes 710 and 720 are formed by electroplating, the oxide insulating layer 600 may be selectively formed on the surface of the body 100 to be prevented from being plated in a region other than a region in which the external electrodes 710 and 720 are formed. In addition, after the plating process, electrical short-circuits may be prevented from occurring between the coil component 1000 of this embodiment and other electronic components.
Referring to
In
Referring to
Table 1 shows rates of change in a surface area of a magnetic material, reduced by etching, when an Ajinomoto Build-up Film (ABF) was not disposed the surface of the body 100 and when an ABF was laminated on the third surface 103 and fourth surface 104 of the body 100. When the ABF was not disposed on the surface of the body 100, a surface area of an Etchable magnetic material was 8,960,000 μm2. When four surfaces, on which the ABF was not disposed, were acidized, a surface area of an etched magnetic material was 4,160,000 μm2. For example, when the ABF was laminated on two surfaces, the surface area of the magnetic material, reduced by the oxide insulating layer 600, was decreased by 46% as compared with the surface area when the ABF was not disposed.
In addition, the present applicant measured rates of a decrease in inductance Ls when the ABF was not disposed on a surface of the body 100 and when the ABF is laminated and acidized on the third and fourth surfaces 103 and 104 of the body 100. When the ABF was not disposed on the surface of the body 100, a rate of a decrease in the inductance Ls was 3.3% on average. When acidization was performed on four surfaces on which the ABF was not laminated, a rate of a decrease in the inductance 2.0% on average. For example, when the ABF was laminated on two surfaces, the rate of a decrease in the inductance Ls, decreased by the oxide insulating layer 600, was improved by 62% as compared with the rate of a decrease when the ABF was not disposed.
The auxiliary lead-out portions 810 and 820 are disposed on the other surface and one surface of the support substrate 200 to correspond to the lead-out portions 410 and 420, respectively. Referring to
At least one of the coil portions 310 and 320, the via electrode 900, the lead-out portions 410 and 420, and the auxiliary lead-out portions 810 and 820 may include at least one conductive layer.
As an example, when the first coil portion 310, the first lead-out portion 410, the first auxiliary lead-out portion 810, and the via electrode 900 may be formed on one surface side of the support substrate 200 by plating, each of the first coil portion 310, the first lead-out portion 410, the first auxiliary lead-out portion 810, and the via electrode 900 may include a seed layer such as an electroless plating layer and an electroplating layer. The electroplating layer may have a single-layer structure or a multilayer structure. The electroplating layer having a multilayer structure may be formed to have a conformal layer structure in which one electroplating layer is covered with another electroplating layer, and may be formed to have a structure in which one electroplating layer is laminated on only one surface of another electroplating layer. A seed layer of the first coil portions 310, a seed layer of the first lead-out portion 410, a seed layer of the first auxiliary lead-out portion 810, and a seed layer of the via electrode 900 may be integrally formed, such that boundaries therebetween may not be formed, but an embodiment thereof is not limited thereto. In the above-described example, an electroplating layers of the first coil portion 310, an electroplating layer of the first lead-out portion 410, electroplating layers of the first auxiliary lead-out portion 810, and an electroplating layer of the via electrode 900 are integrally formed, such that boundaries therebetween may not be formed, but an embodiment thereof is not limited thereto.
The coil portions 310 and 320, the lead-out portions 410 and 420, the auxiliary lead-out portions 810 and 820, and the via electrode 900 may be formed of a conductive material such as copper (Cu), aluminum (Al), silver (Ag), tin (Sn), gold (Au), nickel (Ni), lead (Pb), titanium (Ti), or alloys thereof, but a conductive material thereof is not limited thereto.
The external electrodes 710 and 720 are disposed on the surfaces of the body 100 to cover the lead-out portions 410 and 420.
Referring to
Each of the first external electrode 710 and the second external electrode 720 extends to the third surface 103 and the fourth surface 104 of the body 100, such that at least a portion of each of the external electrodes 710 and 720 is disposed on the insulating layer 500. As will be described later, the external electrodes 710 and 720 include a conductive resin layer formed by applying and curing a conductive paste including conductive powder particles such as silver (Ag), or the like, and a conductive resin layer. Such a conductive resin layer extends to the third surface 103 and the fourth surface 104 to be disposed on the insulating layer 500.
The external electrodes 710 and 720 may have a single-layer structure or a multilayer structure. Referring to
The conductive resin layer may include any one or more conductive metals, selected from the group consisting of copper (Cu), nickel (Ni), and silver (Ag), and a thermosetting resin. The thermosetting resin, included in the conductive resin layer, and the thermosetting resin, included in the body 100, may be the same thermosetting resin. For example, the body 100 and the conductive resin layer may include an epoxy resin. The thermosetting resins, included in the body 100 and the conductive resin layer, may be formed of the same thermosetting resin, for example, an epoxy resin, to improve adhesion strength between the body 100 and the external electrodes 710 and 720.
Modified Version of First Embodiment
A coil component 2000 according to this modified version is different in a distance between slits 530, spaced apart from each other, and the number of the slits 530, as compared with the coil component 1000 according to the first embodiment. Therefore, only the distance of the slits 530 and the number of the slits 530, different from those of the first embodiment, will be described. The descriptions of the first embodiment may be applied to the rest of the configuration of this modified version as it is.
Referring to
A coil component 3000 according to this embodiment is different in shapes and arrangements of a support substrate 200, lead-out portion 410 and 420, external electrodes 710 and 720, as compared with the coil component 1000 according to the first embodiment. Therefore, only the shapes and arrangements of the support substrate 200, the lead-out portion 410 and 420, the external electrodes 710 and 720, different from those of the first embodiment, will be described. The descriptions of the first embodiment may be applied to the rest of the configuration of this embodiment as it is.
In this embodiment, the body 100 has a first surface 101 and the second surface 102, opposing each other, and a third surface 103 and a fourth surface 104 opposing each other while connecting the first surface 101 and the second surface 102.
Referring to
The support portion 210 is one region, disposed between the first and second coil portions 310 and 320, of the support substrate 200 to support the coil portions 310 and 320.
The end portions 220 and 230 extend from the support portion 210. The end portions 220 and 230 are one regions of the support substrate 200 supporting the lead-out portions 410 and 420 and the auxiliary lead-out portions 810 and 820. Specifically, a first end portion 220 is disposed between the first lead-out portion 410 and the first auxiliary lead-out portion 810 to support the first lead-out portion 410 and the first auxiliary lead-out portion 810. The second end portion 230 is disposed between the second lead-out portion 420 and the second auxiliary lead-out portion 820 to support the second lead-out portion 420 and the second auxiliary lead-out portion 820.
Referring to
Referring to
Accordingly, as compared with the first embodiment, an area, in which the lead-out portions 410 and 420 are disposed inside the body 100, may be increased to further increase electrical connectivity to the external electrodes 710 and 720. As a result, connection reliability with the external electrodes 710 and 720 may be improved even without increasing a size of the coil component 3000.
Referring to
The first and second external electrodes 710 and 720 may have a width narrower than a width of the body 100. As the external electrode 710 is disposed on portions of the first surface 101 and the fifth surface 105 of the body 100 and the external electrode 720 is disposed on portions of the second surface 102 and the fifth surface 105 of the body 100 and each of the external electrodes 710 and 720 has a width narrower than the width of the body 100, an influence of the external electrodes 710 and 720, impeding a flow of magnetic flux, may be reduced to improve inductor performance such as inductance L and quality factor Q.
Referring to
Modified Version of Second Embodiment
A coil component 4000 according to this modified version is different in a distance between slits 530, spaced apart from each other, and the number of the slits 530, as compared with the coil component 3000 according to the second embodiment. Therefore, only the distance of the slits 530 and the number of the slits 530, different from those of the second embodiment, will be described. The descriptions of the second embodiment may be applied to the rest of the configuration of this modified version as it is.
Referring to
As described above, according to the present disclosure, plating bleeding of an external electrode may be prevented to improve reliability of a coil component.
In addition, a decrease in a surface area of a magnetic material of a body may be effectively prevented.
While example embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0101780 | Aug 2019 | KR | national |