1. Field of the Invention
The present invention relates to coil components incorporated in, for example, electronic circuits, and more particularly, to a multilayer coil component used in a high-frequency circuit.
2. Description of the Related Art
A typical coil component incorporated in an electronic circuit of, for example, a cellular phone is shown in
As shown in
Improvements in miniaturization and high inductance in coil components are in great demand in compliance with compactness of mobile communication devices, such as cellular phones. However, with the coil component 100 having the multi-turn spiral pattern 101 within a single layer, a sufficient number of turns for achieving high inductance cannot be obtained due to space limitations.
Consequently, a technology for obtaining a small-size high-inductance coil component by forming multilayer spiral patterns has been proposed, as shown in
A coil component 200 shown in
In detail, the first spiral pattern 201 is provided on the insulating layer 102, and the second spiral pattern 202 is provided on the insulating layer 103. Central portions of the spiral patterns 201, 202 are connected to each other through the via hole 105.
In this case, although the multilayer spiral pattern coil provides a sufficient number of turns and high inductance, the coil component 200 has higher stray capacitance as comparison to the coil component 100 shown in
For example, as shown in
In contrast, a multilayer coil component 300 that prevents an increase in stray capacitance has been proposed, as shown in
The coil component 300 includes a pattern group 301 disposed on the insulating layer 102, and the insulating layer 103 stacked on the pattern group 301. The pattern group 301 includes rectangular annular patterns 311 to 316 that have overlapping opposite end segments and that are arranged substantially concentrically on the insulating layer 102. The coil component 300 also includes a pattern group 302 having rectangular annular patterns 321 to 326 that are arranged substantially concentrically on the insulating layer 103. The annular patterns 321 to 326 have non-overlapping end segments that are separated by a predetermined distance. First ends of the annular patterns 321 to 326 are connected to first ends of the annular patterns 311 to 316 through corresponding via holes 105a to 105j provided in the insulating layer 103.
Accordingly, for example, a line extending from an outermost peripheral point P1 of the pattern group 301 to a point P2 of the pattern group 302 corresponding to the point P1 is equal to a sum of a path extending between the point P1 and an end 311a of the annular pattern 311 and a path extending between an end 321a of the annular pattern 321 and the point P2, such that the line is extremely short. Therefore, a potential difference between the point P1 and the point P2 is small, whereby stray capacitance C300 produced between the point P1 and the point P2 is low.
However, although the stray capacitance can be reduced in the coil component 300 shown in
In other words, since the opposite end segments of the annular patterns 311 to 316 are arrayed in an overlapping manner, each annular pattern requires an area for disposing the corresponding opposite end segments in the arrayed direction of the opposite end segments (i.e. in a front direction closer to the viewer of
To overcome the problems described above, preferred embodiments of the present invention provide a coil component in which both low stray capacitance and high inductance are achieved.
A preferred embodiment of the present invention provides a coil component, which includes at least one coil block having a single coil body disposed within an insulating body, the single coil body including an inner coil portion and an outer coil portion, the inner coil portion being electrically connected to the outer coil portion and being surrounded by the outer coil portion. The outer coil portion includes a first pattern group and a second pattern group that are arranged facing each other. The first pattern group includes a plurality of annular patterns having different diameters and each having first and second opposite end segments, and also includes a first extending portion disposed outside of the plurality of annular patterns and having a first end segment that is exposed from the at least one coil block. The second pattern group includes a plurality of annular patterns having different diameters and each having first and second opposite end segments. The n-th annular pattern of the first pattern group from the outside thereof is helically connected to the n-th annular pattern of the second pattern group from the outside thereof via the first end segments. The second end segment of the n-th annular pattern of the first pattern group is connected to one of the end segments of the (n+1)-th annular pattern of the second pattern group such that the n-th and (n+1)-th annular patterns are helically connected to each other. The first extending portion has a second end segment that is connected to a free end segment of the outermost annular pattern of the second pattern group. The inner coil portion includes a first multi-turn spiral pattern and a second multi-turn spiral pattern. The first spiral pattern is disposed within the innermost annular pattern of the first pattern group and has an outer end segment that is connected to a free end segment of the innermost annular pattern of the second pattern group. The second spiral pattern is disposed within the innermost annular pattern of the second pattern group. The second spiral pattern has an inner end segment that is connected to an inner end segment of the first spiral pattern and also has a second extending portion having an outer end segment that is exposed from the at least one coil block.
Accordingly, when an electric current enters the first extending portion of the outer coil portion, the electric current flows into the outermost annular pattern (n=1) of the second pattern group. Subsequently, the electric current flows helically from this annular pattern in the second pattern group to the outermost annular pattern (n=1) of the first pattern group, and then flows helically from this annular pattern to an inner annular pattern (n=2) in the second pattern group. In a similar manner, the electric current helically flows through the annular patterns in the first pattern group and the annular patterns in the second pattern group in an alternating fashion until finally reaching the innermost annular pattern of the second pattern group. The electric current then enters the first spiral pattern of the inner coil portion, which is disposed within the outer coil portion and whose outer end segment is connected to the innermost annular pattern. The electric current flows inward through the first spiral pattern in a rotating fashion so as to enter the second spiral pattern whose inner end segment is connected to the inner end segment of the first spiral pattern. Subsequently, the electric current flows through the second spiral pattern outward in a rotating fashion so as to be output from the second extending portion. In other words, according to this coil component, the electric current flows helically through the outer coil portion and rotationally through the inner coil portion, whereby a magnetic field is generated in response to the rotating electric current. Thus, the coil component functions as an inductor.
Meanwhile, in a coil component having patterns that are disposed facing each other, stray capacitance generated between the patterns maybe of concern. In particular, stray capacitance generated between outer peripheral patterns that have large line lengths has a significant effect on a high frequency property of a coil component. In the coil component according to preferred embodiments of the present invention, however, because the outermost annular pattern (n=1) in the first pattern group of the outer coil portion is helically connected to the opposing outermost annular pattern (n=1) of the second pattern group, a line extending from the outermost annular pattern of the first pattern group to the outermost annular pattern of the second pattern group is extremely short. Thus, a voltage drop caused in the course of reaching the outermost annular pattern of the second pattern group is reduced, whereby a potential difference between the outermost annular pattern of the first pattern group and the outermost annular pattern of the second pattern group is reduced. Such a reduction of potential difference is achieved not only between the outermost annular patterns but also between other opposing annular patterns. As a result, in addition to the reduction of stray capacitance generated between these outermost annular patterns, the stray capacitance generated between all annular patterns included in the first and second pattern groups is reduced, thereby preventing a decrease in the self-resonance frequency.
Furthermore, because the inner coil portion including the first and second spiral patterns that are connected in series is disposed within the outer coil portion, the inner coil portion contributes to a high inductance, which cannot be achieved solely with the outer coil portion.
Preferably, a line length of the outer coil portion is set to at least about ⅓ of a line length of the single coil body. Accordingly, optimal values for both low stray capacitance and high inductance are obtained.
Preferably, the at least one coil block has a multilayer structure including a first insulating layer on which the first pattern group and the first spiral pattern are disposed, and a second insulating layer stacked on the first pattern group and the first spiral pattern, the second insulating layer having the second pattern group and the second spiral pattern disposed thereon. The second insulating layer includes a plurality of via holes through which the end segments of the annular patterns in the first pattern group are connected to the corresponding end segments of the annular patterns in the second pattern group, through which the outer end segment of the first spiral pattern is connected to the free end segment of the innermost annular pattern of the second pattern group, and through which the inner end segment of the second spiral pattern is connected to the inner end segment of the first spiral pattern.
Preferably, the at least one coil block is formed by a photolithography technique.
Although there are various layering techniques for forming the coil block, a photolithography technique may preferably be used for forming the coil block so that the stray capacitance and the line length can be controlled with high precision.
Preferably, the at least one coil block is disposed on a substrate.
Preferably, the at least one coil block includes a first coil block and a second coil block, the second coil block being stacked on the first coil block such that the coil body of the second coil block is coaxial with the coil body of the first coil block.
Accordingly, by incorporating the coil component in a high-speed differential transmission line, the coil component functions as a common-mode choke coil. In other words, in a normal mode, a first differential signal travels through the coil body of the first coil block, and a second differential signal in a direction opposite to the first differential signal travels through the coil body of the second coil block. In a common mode, although high frequency noise travels through the first and second coil blocks in the same direction, the noise is attenuated by the high inductance coils in the first and second coil blocks.
Preferably, the first coil block is disposed on a magnetic substrate, and another magnetic substrate is disposed on the second coil block.
Accordingly, this produces higher inductance of the coil component.
Preferably, the first pattern group and the first spiral pattern define a pattern unit in the coil body of each of the first and second coil blocks, and the second pattern group and the second spiral pattern define another pattern unit in the coil body of each of the first and second coil blocks, the second coil block being stacked on the first coil block such that one of the pattern units with a higher density in the second coil block is arranged so as to face one of the pattern units with a higher density in the first coil block.
Accordingly, this strengthens an electromagnetic coupling between the coil body of the first coil block and the coil body of the second coil block.
As described above, the coil component according to prefered embodiments of the present invention achieves lower stray capacitance, and prevents a decrease of the self-resonance frequency, whereby a favorable high frequency property is obtained. Furthermore, the inner coil portion produces a high inductance, which cannot be achieved solely with the outer coil portion. Therefore, the outer coil portion and the inner coil portion can be set to optimal line lengths, thereby advantageously achieving both low stray capacitance and high inductance.
In particular, since the line lenght of the outer coil portion may be set to at least about ⅓ of the line length of the single coil body, low stray capacitance and high inductance is optimally achieved.
Furthermore, since the coil block may be formed by a photolithography technique, the stray capacitance and the line length can be controlled with high precision, whereby low stray capacitance and high inductance can be achieved with even greater precision.
Furthermore, a coil component is provided that achieves low stray capacitance and high inductance and that functions as a common-mode choke coil.
In particular, a coil component that functions as an optimal common-mode choke coil for a high-speed differential transmission line of DVI standard or HDMI standard is provided.
In particular, since the electromagnetic coupling between the coil body of the first coil block and the coil body of the second coil block can be strengthened, if the coil component is used as, for example, a common-mode choke coil, the normal-mode impedance thereof can be reduced, whereby an insertion loss of a differential signal in a normal mode can be reduced. Accordingly, preferred embodiments of the present invention advantageously provides a common-mode choke coil that effectively removes only common-mode noise while preventing attenuation of a differential signal.
Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
Preferred embodiments of the present invention will now be described with reference to the drawings.
The coil component according to the first preferred embodiment functions as a common-mode choke coil that is applicable to a high-speed differential transmission line of DVI standard or HDMI standard. Referring to
The first coil block 2 is provided on the magnetic substrate 4-1 and includes a single coil body 2-1 having an outer coil portion 6 and an inner coil portion 7, and an insulating body 2-2 that encompasses the coil body 2-1.
The coil body 2-1 is configured such that the inner coil portion 7 is electrically connected to the outer coil portion 6 while being surrounded by the outer coil portion 6. The outer coil portion 6 and the inner coil portion 7 include a plurality of patterns that are connected to each other.
As will be described later, the insulating body 2-2 (see
In detail, referring to shaded sections in
As shown in
Referring to
The first and second pattern groups 6-1, 6-2 face each other across the insulating layer 22 and are electrically connected to each other through via holes 22a to 22f provided in the insulating layer 22. In detail, the end segment 60b of the first extending portion 60 is connected to the free end segment 63a of the outermost annular pattern 63 through the via hole 22a. The end segment 63b of the annular pattern 63 is connected to the end segment 61a of the annular pattern 61 through the via hole 22b. The end segment 61b of the annular pattern 61 is connected to the end segment 64a of the annular pattern 64 through the via hole 22c. The end segment 64b of the annular pattern 64 is connected to the end segment 62a of the annular pattern 62 through the via hole 22d. The end segment 62b of the annular pattern 62 is connected to the end segment 65a of the annular pattern 65 through the via hole 22e.
With this connection structure, for example, the second outermost annular pattern 62 in the first pattern group 6-1 and the second outermost annular pattern 64 in the second pattern group 6-2 are connected helically to each other via the end segments 62a, 64b. Moreover, the other end segment 62b of the second annular pattern 62 and the end segment 65a of the third annular pattern 65 in the second pattern group 6-2 are connected, whereby the second annular pattern 62 and the third annular pattern 65 are helically connected to each other. Similarly, the remaining n-th annular patterns of the first and second pattern groups 6-1, 6-2 are connected helically to each other, and the n-th and (n+1)-th annular patterns of the first and second pattern groups 6-1, 6-2 are also connected helically to each other in the same manner as above. Thus, the entire outer coil portion 6 having the first and second pattern groups 6-1, 6-2 defines an alternating helix in the vertical direction (i.e. front-back direction of the page).
On the other hand, referring to
In detail, the first spiral pattern 7-1 has a spiral with slightly more than two turns and is disposed within the inner most annular pattern 62 of the first pattern group 6-1. The first spiral pattern 7-1 has an outer end segment 7-1a that is connected to the free end segment 65b of the innermost annular pattern 65 of the second pattern group 6-2 through the via hole 22f in the insulating layer 22. On the other hand, the second spiral pattern 7-2 has a spiral with substantially two turns and is disposed within the innermost annular pattern 65 of the second pattern group 6-2. The second spiral pattern 7-2 has an inner end segment 7-2a that is connected to an inner end segment 7-1b of the first spiral pattern 7-1 through a via hole 22g provided in the insulating layer 22. Moreover, the second spiral pattern 7-2 has a second extending portion 7-2b that extends to the left of a center axis L2 through the gap B of the second pattern group 6-2. An end segment 7-2c of the second extending portion 7-2b is disposed on an upper edge of the insulating layer 22 in the drawing and to the left of the center axis L2. Accordingly, the end segment 7-2c is exposed from the first coil block 2 at a position opposite to the end segment 60a of the first extending portion 60.
The insulating layer 23 is stacked on the second pattern group 6-2 and the second spiral pattern 7-2, thereby forming the single coil body 2-1 having the helical-shaped outer coil portion 6 and the spiral-shaped inner coil portion 7. Furthermore, the coil body 2-1 is encompassed by the insulating body 2-2 having the insulating layers 21 to 23, thereby forming the first coil block 2.
In the first preferred embodiment, a line length of the outer coil portion 6, or more specifically, a total line length of the first extending portion 60, the annular patterns 61, 62, and the annular patterns 63, 64, 65, is preferably within a range of about ½ to about ⅚ inclusive of a line length of the coil body 2-1, that is, a total length of the patterns 60 to 65 and the first and second spiral patterns 7-1, 7-2.
Referring to
Although the coil body 3-1 has substantially the same structure as the coil body 2-1, a first extending portion and a second extending portion thereof are disposed at different positions from those of the coil body 2-1.
Referring to
Specifically, referring to
The outer coil portion 6′ includes a first extending portion 60′ and annular patterns 61, 62 in the first pattern group 6-1′ that are helically connected to annular patterns 63, 64, 65 in the second pattern group 6-2′ through corresponding via holes 24a to 24f provided in the insulating layer 24. On the other hand, the inner coil portion 7′ includes the first spiral pattern 7-1′ and the second spiral pattern 7-2′ that are connected to each other in series through a via hole 24g.
Furthermore, the first extending portion 60′ extends to the right of a center axis L1′ of the insulating layer 23 and has an end segment 60′a that is exposed from the second coil block 3. On the other hand, a second extending portion 7-2′b extending through the gap B is bent to the right of a center axis L2′ of the insulating layer 24 and has an end segment 7-2′c which is exposed from the second coil block 3.
The insulating layer 25 is stacked on the second pattern group 6-2′ and the second spiral pattern 7-2′, thereby forming the second coil block 3.
In the second coil block 3, a line length of the outer coil portion 6′ is preferably within a range of about ½ to about ⅚ inclusive of a line length of the coil body 3-1.
Referring to
A manufacturing process of the coil component 1 will be described below with reference to
The coil component 1 according to the first preferred embodiment is a laminated wafer that is formed by alternately stacking the first pattern group 6-1 and the first spiral pattern 7-1, the second pattern group 6-2 and the second spiral pattern 7-2, the first pattern group 6-1′ and the first spiral pattern 7-1′, the second pattern group 6-2′ and the second spiral pattern 7-2′, and the insulating layers 21 to 25 onto the magnetic substrate 4-1, and then adhering the magnetic substrate 4-2 onto the uppermost layer. For each of the layers, the following materials are used.
The magnetic substrates 4-1, 4-2 are used as substrates. In order to allow a subsequent photolithography process to be performed without difficulty, the magnetic substrate 4-1 is preferably polished so that its surface roughness Ra is about 0.5 μm or less. Alternatively, although magnetic substrates are used in the first preferred embodiment, dielectric substrates or insulating substrates may be used depending on the intended use of the coil component.
As an insulating material for forming the insulating layers 21 to 25, a resin material such as polyimide resin, epoxy resin, and benzocyclobutene resin, a glass material such as SiO2, a glass-ceramic material, a dielectric material, or a combination of different materials may be used. Since a photolithography technique is used in the first preferred embodiment, photosensitive polyimide resin is used as a material for forming the insulating layers 21 to 25.
As a conductive material used for forming the first and second pattern groups 6-1, 6-2, 6-1′, 6-2′ and the first and second spiral patterns 7-1, 7-2, 7-1′, 7-2′, a highly conductive metallic material such as Ag, Pd, Cu, and Al, or an alloy of these metallic materials maybe used. In the first preferred embodiment, Ag is preferably used. The combination between an insulating material and a conductive material is preferably selected based on, for example, workability and adhesiveness.
Furthermore, thermosetting polyimide resin is used as the adhesive 40.
In the manufacturing process of the coil component 1, an insulating material is first applied over the magnetic substrate 4-1 and is photo-cured so as to form the insulating layer 21 (first insulating layer). Then, a film composed of a conductive material is formed over the insulating layer 21 by a thin-film formation technique, such as sputtering and vapor deposition, or by a thick-film formation technique, such as screen printing. Subsequently, a photolithography process including a series of steps, such as a resist coating step, an exposure step, a developing step, an etching step, and a resist removal step, is performed so as to form the first pattern group 6-1 and the first spiral pattern 7-1 on the insulating layer 21. Then, an insulating material is applied over the first pattern group 6-1 and the first spiral pattern 7-1 so as to form the insulating layer 22 (second insulating layer) provided with the via holes 22a to 22g by photolithography. Subsequently, a film composed of a conductive material is formed over the insulating layer 22, and then the second pattern group 6-2 and the second spiral pattern 7-2 are formed on the insulating layer 22 by photolithography. Thus, the second pattern group 6-2 and the second spiral pattern 7-2 of the upper layer and the first pattern group 6-1 and the first spiral pattern 7-1 of the lower layer are electrically connected through the via holes 22a to 22g. Accordingly, this forms the first coil block 2 having the coil body 2-1 encompassed by the insulating body 2-2.
In the same manner as described above, the insulating layers 23 to 25, the first and second pattern groups 6-1′, 6-2′, and the first and second spiral patterns 7-1′, 7-2′ are alternately stacked on top of one another, thereby forming the second coil block 3 having the coil body 3-1 encompassed by the insulating body 3-2. Subsequently, the magnetic substrate 4-2 having the adhesive 40 applied thereon is adhered to the insulating layer 25 of the second coil block 3. In this state, a heating-compressing process is performed in a vacuum or in an inert gas, and then a cooling process is performed. After the cooling process, the pressure is released, whereby the magnetic substrate 4-2 is securely joined to the second coil block 3.
Subsequently, a wafer obtained by the above-described process is subject to cutting, such as dicing, so as to be split into approximately 0.8 mm×0.6 mm sized chip bodies, for example. Then, the external electrodes 5-1 to 5-4 are formed on each chip body. In this case, each of the external electrodes 5-1 to 5-4 is preferably formed by first forming a first metallic film by applying a conductive paste including a material of, for example, AG, Ab-Pd, Cu, NiCr, or NiCu, orby sputtering or vapor depositing the material, and then forming a second metallic film composed of, for example, Ni, Sn, or Sn—Pb over the first metallic film by wet electrolytic plating.
Accordingly, since a photolithography technique is used in the manufacturing process of the coil component 1, the stray capacitance and the line length can be controlled with high precision, thereby enabling manufacturing of a high-precision coil component 1.
The operation and advantages of the coil component 1 according to the first preferred embodiment will now be described.
As shown in
In
On the other hand, in a common mode, since noise enters the coil bodies 2-1, 3-1 from the same direction, the magnetic field increases, thereby allowing the coil component 1 to have an increased impedance. Thus, the noise is attenuated by the coil component 1.
Referring back to
However, the coil component 1 according to the first preferred embodiment operates so as to reduce stray capacitance.
As shown in
In other words, as shown in
In the coil component 1 having the above-described structure, a fraction of the coil body 2-1 (3-1) occupied by the line length of the outer coil portion 6 (6′) is related to the self-resonance frequency of the coil component 1 or to the common-mode impedance.
According to the self-resonance frequency curve S1 in
Therefore, in view of a transmission line in which the coil component 1 is to be incorporated, it is necessary to determine an appropriate fraction occupied by the outer coil portion 6 (6′) so that both high self-resonance frequency (low stray capacitance) of the coil component 1 and high impedance (high inductance) in a common mode can be achieved. Since the coil component 1 according to the first preferred embodiment is intended to be incorporated into a high-speed differential transmission line of DVI standard or HDMI standard, a self-resonance frequency of about 580 MHz to about 720 MHz and a common-mode impedance of at least about 60 Ω are desirably attained. Consequently, a fraction occupied by the line length of the outer coil portion 6 (6′) is preferably set within a range of about ½ to about ⅚ inclusive of the line length of the coil body 2-1 (3-1).
In this respect, the inventors of the present invention measured a frequency characteristic of the coil component 1 in which the fraction occupied by the outer coil portion 6 (6′) is set within the above-described range and a frequency characteristic of a coil component of a conventional type.
For the measurement of the frequency characteristic, the coil component 1 of the first preferred embodiment having a size of approximately 0.8 mm×0.6 mm was used, and a fraction occupied by the outer coil portion 6 (6′) was set to about 7/10. As a result, a frequency curve F1 having a peak at a frequency of about 650 MHz was obtained, as shown in
In contrast, a frequency characteristic of a coil component in which each coil body 2-1 (3-1) is entirely formed of a spiral pattern, as in the conventional coil component 200 (see
A second preferred embodiment of the present invention will now be described.
In the second preferred embodiment, with respect to densities of pattern units including the first pattern groups 6-1 (6-1′) and the first spiral patterns 7-1 (7-1′) and densities of pattern units including the second pattern groups 6-2 (6-2′) and the second spiral patterns 7-2 (7-2′) in the coil bodies 2-1 (3-1), the second coil block 3 is stacked on the first coil block 2 such that the pattern unit with the higher density in one coil body is disposed facing the pattern unit with the higher density in the other coil body.
For example, referring to
In detail, referring to
In other words, as shown in
Accordingly, as shown in
As a result, when the coil component 1′ in the second preferred embodiment is used as a common-mode choke coil, the normal-mode impedance of the coil component 1′ is reduced. Consequently, an insertion loss of a differential signal in a normal mode is reduced, thereby effectively removing only common-mode noise while preventing attenuation of the differential signal.
In contrast, the coil component 1 in the first preferred embodiment has the structure as shown in
Other configurations, operations, and advantages of the second preferred embodiment are substantially the same as those in the first preferred embodiment, and therefore will not be described here.
The technical scope of the present invention is not limited to the above-described preferred embodiments, and modifications are permissible within the scope and spirit of the present invention.
For example, although a fraction occupied by the line length of the outer coil portion 6 (6′) of the coil component 1 is preferably within a range of about ½ to about ⅚ inclusive of the line length of the coil body 2-1 (3-1) in the above-described preferred embodiments, the fraction is not limited within this range. In other words, in a typical high-speed differential transmission line, such as a USB (universal serial bus), it is satisfactory as long as noise primarily within a range of about 200 MHz to about 500 MHz can be effectively attenuated. This can be sufficiently achieved by setting the fraction occupied by the line length of the outer coil portion 6 (6′) of the coil component 1 to at least about ⅓ of the line length of the coil body 2-1 (3-1).
Furthermore, although the first and second coil blocks 2, 3 preferably define the coil component 1 in order to allow the coil component 1 to function as a common-mode choke coil in the above-described preferred embodiments, the present invention may alternatively include a coil component having a single coil block, as in a ferrite bead.
Furthermore, although the magnetic substrates 4-1, 4-2 are included in the above-described preferred embodiments, this does not mean that a coil component not having these substrates or a coil component having only a single substrate is excluded from the scope of the present invention.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-340140 | Nov 2004 | JP | national |
2005-175112 | Jun 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3785046 | Jennings | Jan 1974 | A |
4313151 | Vranken | Jan 1982 | A |
5363081 | Bando et al. | Nov 1994 | A |
6404317 | Mizoguchi et al. | Jun 2002 | B1 |
7253713 | Tomonari et al. | Aug 2007 | B2 |
Number | Date | Country |
---|---|---|
55-96605 | Jul 1980 | JP |
05-291044 | Nov 1993 | JP |
09-129458 | May 1997 | JP |
10-004015 | Jan 1998 | JP |
2002-151330 | May 2002 | JP |
2003-217933 | Jul 2003 | JP |
2004-095860 | Mar 2004 | JP |
2004-311828 | Nov 2004 | JP |
2004-339016 | Dec 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070205856 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2005/018950 | Oct 2005 | US |
Child | 11743271 | US |