The present invention relates to a coil device used as, for example, an inductor or the like.
The coil device described in, for example, US 2011/0005064 A is known as a coil device used as an inductor or the like. The coil device described in US 2011/0005064 A has a coil, a terminal to which an end portion of the coil is connected, a first core where the coil is wound around a columnar portion, and a second core covering a part of the terminal together with the coil. In the coil device described in US 2011/0005064 A, a connecting portion of the terminal where connecting wire and mounting portions are connected is disposed in the second core, and thus the terminal can be firmly fixed to the second core via the connecting portion.
However, in the coil device described in US 2011/0005064 A, the connecting portion is disposed in the second core, and thus the volume of the second core decreases by the amount of the installation space of the connecting portion and satisfactory inductance characteristics cannot be ensured in some cases.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a coil device having satisfactory inductance characteristics.
In order to achieve the above object, a coil device according to the present invention includes:
In the coil device according to the present invention, the terminal is disposed on the upper surface of the base portion and the upper surface of the base portion is covered with the second core. Accordingly, a part of the terminal disposed on the base portion is covered with the first core (base portion) and the second core and the terminal is fixed to the respective cores via the part. Accordingly, in the coil device according to the present invention, there is no need to fix the terminal to the second core via the connecting portion between a connecting wire portion and a mounting portion unlike in the related art and the connecting portion can be disposed outside the second core. Accordingly, the volume of the second core can be sufficiently ensured and the coil device having satisfactory inductance characteristics can be realized. The effect of the present invention is particularly noticeable when the coil device is reduced in size or its current is increased. Accordingly, the coil device suitable for size reduction and an increase in current can be realized.
Preferably, a connecting wire portion of the terminal is disposed on the first core and the second core is disposed on the connecting wire portion. With such a configuration, the connecting wire portion can be disposed between the first core and the second core, and thus the connecting wire portion can be effectively protected from an external factor such as an external force and the occurrence of open inferiority can be prevented. In addition, by the connecting wire portion being disposed on the first core, a positional deviation of the connecting wire portion can be prevented when the second core is disposed on the connecting wire portion.
Preferably, the first core and the second core are joined on substantially the same plane. With such a configuration, a part of the terminal disposed in the second core can be pulled out to the outside of each of the cores along the joining surface of the first core and the second core and the shape of the terminal can be simplified.
Preferably, a connecting wire portion of the terminal and the coil are disposed on substantially the same plane of the base portion. With such a configuration, the terminal can be easily placed on the upper surface of the base portion together with the coil during the manufacturing and the manufacturing can be facilitated.
Preferably, the terminal is disposed on the base portion below a coil disposition surface of the base portion. With such a configuration, the disposition surface of the coil and the disposition surface of the terminal can be deviated from each other and the coil can be stably disposed above the base portion even if a part of the terminal and a part of the bottom surface of the coil are disposed so as to overlap on the upper surface of the base portion.
Preferably, a part of the terminal extends toward a opposite direction to the first core along a side surface of the second core. The second core covers the coil and so on, and thus the second core may be larger in side surface area than the first core in terms of its configuration. With the above configuration in this case, a part of the terminal is disposed over a wide range on the side surface of the second core and a solder fillet can be sufficiently formed at the part. Accordingly, the mounting strength of the coil device with respect to a substrate can be enhanced.
Preferably, a notch is formed in the terminal at least at a position where the terminal is exposed to outer sides of the first core and the second core. With such a configuration, the terminal can be easily folded along the side surface of the first core or the second core at the position where the terminal is exposed to the outside of the first core and the second core and the part beyond the folding position can be used as a solder fillet forming portion of the terminal.
Preferably, the terminal comprises a pair of first and second terminals respectively connected to end portions of the coil and a first connecting wire portion of the first terminal and a second connecting wire portion of the second terminal are disposed so as to be oriented in the same direction. With such a configuration, laser irradiation can be easily performed on the first and second connecting wire portions in a case where, for example, laser welding is performed on the first and second connecting wire portions and the manufacturing can be facilitated.
Preferably, the columnar portion is formed so as to be positionally deviated to an outer side with respect to a central portion of the base portion. With such a configuration, a space is formed in the central portion of the base portion and the terminal can be placed in the space. Accordingly, there is no need to expand the base portion to the outside in order to ensure a terminal placement space and the coil device can be reduced in size.
Preferably, the first core has an outer surface on a side opposite to a mounting surface. In this case, the mounting surface is formed on the second core. The second core covers the coil and so on as described above, and thus the second core may be larger in side surface area than the first core in terms of its configuration. However, by the second core being provided with the mounting surface, a solder fillet forming portion with a sufficient area can be formed on the second core and the mounting strength of the coil device with respect to a substrate can be enhanced.
Hereinafter, the present invention will be described based on the embodiments illustrated in the drawings.
As illustrated in
Although the dimensions of the inductor 1 are not particularly limited, its width in the X-axis direction is preferably 2 to 20 mm, its width in the Y-axis direction is preferably 2 to 20 mm, and its width in the Z-axis direction is preferably 1 to 10 mm.
As illustrated in
The first core 5 is made of a synthetic resin in which ferrite particles or metal magnetic material particles are dispersed. However, the material constituting the first core 5 is not limited thereto and the first core 5 may be made of a synthetic resin that does not contain the particles. Examples of the ferrite particles include Ni—Zn-based ferrite and Mn—Zn-based ferrite. Although the metal magnetic material particles are not particularly limited, examples thereof include Fe—Ni alloy powder, Fe—Si alloy powder, Fe—Si—Cr alloy powder, Fe—Co alloy powder, Fe—Si—Al alloy powder, and amorphous iron.
Although the synthetic resin contained in the first core 5 is not particularly limited, preferable examples thereof include epoxy resin, phenol resin, polyester resin, polyurethane resin, polyimide resin, and silicone resin.
The base portion 50 has a substantially rectangular parallelepiped shape (substantially flat shape). First to fourth recessed portions 51a to 51d, first to fourth projecting portions 52a to 52d, and a protruding portion 54 are formed on the surface (upper surface) of the base portion 50. The recessed portions 51a to 51d are respectively formed at the four corners of the base portion 50 and have a substantially rectangular shape when viewed from the Z-axis direction.
The recessed portions 51a to 51d have a predetermined depth, and the depth is substantially equal to the thickness (plate thickness) of the terminals 4a and 4b illustrated in
As illustrated in
The protruding portion 54 is formed in the end portion of the third projecting portion 52c in the Y-axis direction. The protruding portion 54 protrudes by a predetermined height in the Z-axis direction from the upper surface of the third projecting portion 52c. The width of the protruding portion 54 in the X-axis direction is substantially equal to the width of the third projecting portion 52c in the X-axis direction. The protruding portion 54 has a substantially rectangular shape when viewed from the Z-axis direction, and a tapered surface is formed on the upper surface thereof.
As will be described later, the terminal 4a is disposed in the first recessed portion 51a and the second recessed portion 51b so as to straddle the second projecting portion 52b (see
The columnar portion 53 is integrally formed in the substantially central portion of the base portion 50 and extends in the Z-axis direction. The columnar portion 53 is formed so as to be positionally deviated slightly to the outside (negative direction side in the Y-axis direction) with respect to the central portion of the base portion 50. The coil (air core coil) 2 illustrated in
As illustrated in
Although examples of the material constituting the wire 3 include good conductors of metals such as copper, a copper alloy, silver, and nickel, the material is not particularly limited insofar as it is a conductor material. The surface of the wire 3 is provided with an insulating coating. Although the resin constituting the insulating coating is not particularly limited, an epoxy modified acrylic resin or the like is used.
One end of the wire 3 (a wire end 3a) constitutes one end portion of the coil 2, and the other end of the wire 3 (a wire end 3b) constitutes the other end portion of the coil 2. The wire end 3a is linearly pulled out along the Y-axis direction from the lower end of the coil 2 (winding part of the coil 2). The wire end 3b is pulled out along the Y-axis direction from the upper end of the coil 2 (winding part of the coil 2) and is pulled out downward along the Z-axis direction. In other words, the wire end 3b is pulled out while bending from the Y-axis direction to the Z-axis direction and from the Z-axis direction to the Y-axis direction. Both the wire ends 3a and 3b are pulled out in the same direction (Y-axis direction) without being twisted.
As illustrated in
As illustrated in
The mounting portion 46 is fixed to the bottom surface of the second core 6 illustrated in
The connecting portion 47 is integrally connected to the mounting portion 46 and extends in a direction substantially perpendicular to the mounting portion 46. The connecting portion 47 is the part where the mounting portion 46 and the placement portions 41 and 42 are connected and is fixed to the outside surface of the second core 6 illustrated in
The first placement portion 41 and the second placement portion 42 are integrally connected to the end portion of the connecting portion 47 in the Z-axis direction and extend in a direction substantially perpendicular to the connecting portion 47 (the same direction as the extension direction of the mounting portion 46: X-axis direction). The placement portions 41 and 42 have a surface substantially parallel to the upper surface of the first core 5 (base portion 50) and face the mounting portion 46 in the Z-axis direction. The placement portions 41 and 42 are placed on the upper surface of the base portion 50 (see
More specifically, as illustrated in
As illustrated in
When the terminals 4a and 4b are disposed on the upper surface of the base portion 50 as illustrated in
As illustrated in
The connecting wire portion 45 has a fixed piece 45a and a folded piece 45b. The fixed piece 45a faces the folded piece 45b in the Z-axis direction and is integrally formed in the end portion on one side of the first placement portion 41 in the Y-axis direction. The fixed piece 45a has a shape in which the first placement portion 41 is extended to one end side in the Y-axis direction. The fixed piece 45a is placed on the upper surface of the base portion 50 as in the case of the first placement portion 41 (see
The folded piece 45b is integrally formed in the end portion on the other side of the fixed piece 45a in the X-axis direction and is formed so as to be foldable with the end portion serving as a folding point (fulcrum). The folded piece 45b that is yet to be folded is formed so as to stand upright in the Z-axis direction. As illustrated, the folded piece 45b that is folded is formed so as to extend to one side in the X-axis direction. The folded piece 45b of the terminal 4a and the folded piece 45b of the terminal 4b extend in a direction in which the folded pieces 45b approach each other. The folded piece 45b is disposed together with the fixed piece 45a so as to face the upper surface of the base portion 50.
As illustrated in
As in the case of the placement portions 41 and 42, the connecting wire portion 45 is placed on the surface of the base portion 50. The connecting wire portion 45 is sandwiched between the first core 5 and the second core 6 illustrated in
As illustrated in
The second positioning portion 44 is formed in the end portion on the other side of the second placement portion 42 in the Y-axis direction. The second positioning portion 44 is folded with the edge of the second placement portion 42 in the end portion serving as a folding point (fulcrum) and extends in the Z-axis direction. The second positioning portion 44 of the terminal 4a and the second positioning portion 44 of the terminal 4b face the side surface of the second core 6 illustrated in
Each of the positioning portions 43 and 44 has a projection shape. Although the length of the positioning portions 43 and 44 in the Z-axis direction is not particularly limited, the length is approximately ¼ to ¾ of the longitudinal length of the folded piece 45b. The distance between the first positioning portion 43 of the terminal 4a and the first positioning portion 43 of the terminal 4b is smaller than the distance between the second positioning portion 44 of the terminal 4a and the second positioning portion 44 of the terminal 4b.
When the coil 2 and the terminals 4a and 4b are disposed on the upper surface of the base portion 50 as illustrated in
It should be noted that the folded piece 45b of the connecting wire portion 45 that is yet to be folded is raised in the Z-axis direction and the coil 2 (more specifically, the wire ends 3a and 3b of the wire 3 constituting the end portion of the coil 2) can be positioned in this state.
With the terminals 4a and 4b disposed on the upper surface of the base portion 50, the coil 2 is disposed (placed) so as to straddle the first placement portion 41 and the second placement portion 42 of the terminal 4a, the first placement portion 41 and the second placement portion 42 of the terminal 4b, and the first to fourth projecting portions 52a to 52d of the base portion 50.
In the present embodiment, the connecting wire portion 45 (more accurately, the fixed piece 45a) of the terminals 4a and 4b is disposed on the first core 5 (base portion 50) around the connecting wire portion 45 and the second core 6 illustrated in
Although there is a step between the disposition position of the connecting wire portion 45 (fixed piece 45a) and the disposition position of the coil 2 as described above, the height of the step is approximately equal to the plate thickness of the terminals 4a and 4b and is relatively small. Accordingly, in substance, the connecting wire portion 45 (fixed piece 45a) and the coil 2 are disposed on substantially the same plane of the base portion 50.
As illustrated in
When the second core 6 is combined with the first core 5, the second core 6 covers the coil 2 and a part of the terminals 4a and 4b (placement portions 41 and 42, positioning portions 43 and 44, and connecting wire portion 45).
Next, a method for manufacturing the inductor 1 will be described with reference to
Next, the terminals 4a and 4b are connected to the respective end portions of the coil 2 illustrated in
Next, as illustrated in
Laser welding is performed on the connecting wire portion 45 before or after the configuration of the temporary assembly (that is, in the state illustrated in
Next, the temporary assembly illustrated in
In the illustrated example, a step portion 60 is formed on the surface of the second core 6 so as to straddle the side and bottom surfaces thereof. The mounting portion 46 (
Next, as illustrated in
In the inductor 1 according to the present embodiment, the terminals 4a and 4b are disposed on the upper surface of the base portion 50 and the upper surface of the base portion 50 is covered with the second core 6. Accordingly, a part of the terminals 4a and 4b disposed on the base portion 50 (placement portions 41 and 42, connecting wire portion 45, etc.) is covered with the first core 5 (base portion 50) and the second core 6 and the terminals 4a and 4b are fixed to the respective cores 5 and 6 via the part. Accordingly, in the inductor 1 according to the present embodiment, there is no need to fix the terminals 4a and 4b to the second core 6 via the connecting portion 47 between the connecting wire portion 45 and the mounting portion 46 unlike in the related art and the connecting portion 47 can be disposed outside the second core 6. Accordingly, the volume of the second core 6 can be sufficiently ensured and the inductor 1 having satisfactory inductance characteristics can be realized. The effect of the present embodiment is particularly noticeable when the inductor 1 is reduced in size or its current is increased. Accordingly, the inductor 1 suitable for size reduction and an increase in current can be realized.
In addition, in the present embodiment, the connecting wire portion 45 of the terminals 4a and 4b is disposed on the first core 5 and the second core 6 is disposed on the connecting wire portion 45. Accordingly, the connecting wire portion 45 can be disposed between the first core 5 and the second core 6, the connecting wire portion 45 can be effectively protected from an external factor such as an external force, and the occurrence of open inferiority can be prevented. In addition, by the connecting wire portion 45 being disposed on the first core 5, a positional deviation of the connecting wire portion 45 can be prevented when the second core 6 is disposed on the connecting wire portion 45.
In addition, in the present embodiment, the first core 5 and the second core 6 are joined on substantially the same plane. Accordingly, a part of the terminals 4a and 4b disposed in the second core 6 (placement portions 41 and 42) can be pulled out as the connecting portion 47 to the outside of each of the cores 5 and 6 along the joining surface of the first core 5 and the second core 6 and the shapes of the terminals 4a and 4b can be simplified.
In addition, in the present embodiment, the connecting wire portion 45 of the terminals 4a and 4b and the coil 2 are disposed on substantially the same plane of the base portion 50. Accordingly, the terminals 4a and 4b can be easily placed on the upper surface of the base portion 50 together with the coil 2 during the manufacturing and the manufacturing can be facilitated.
In addition, in the present embodiment, the terminals 4a and 4b are disposed below the disposition surface of the coil 2 with respect to the base portion 50. Accordingly, the disposition surface of the coil 2 (upper surface of the placement portions 41 and 42) and the disposition surface (recessed portions 51a to 51d) of the terminals 4a and 4b (placement portions 41 and 42) can be deviated from each other and the coil 2 can be stably disposed above the base portion 50 even if a part of the terminals 4a and 4b (placement portions 41 and 42) and a part of the bottom surface of the coil 2 are disposed so as to overlap on the upper surface of the base portion 50 (recessed portions 51a to 51d).
In addition, in the present embodiment, the terminals 4a and 4b extend along the side surface of the second core 6 toward the side opposite to the first core 5. The second core 6 covers the coil 2 and so on, and thus the second core 6 is larger in side surface area than the first core 5 in terms of its configuration. Accordingly, with the above configuration, the connecting portion 47 of the terminals 4a and 4b is disposed over a wide range on the side surface of the second core 6 and a solder fillet can be sufficiently formed in the connecting portion 47. Accordingly, the mounting strength of the inductor 1 with respect to a substrate can be enhanced.
In addition, in the present embodiment, the notch portion 48 is formed in the terminals 4a and 4b and the notch portion 48 is formed at the position where at least the terminals 4a and 4b are exposed to the outside of the first core 5 and the second core 6. Accordingly, the terminals 4a and 4b (intersection of the placement portions 41 and 42 and the connecting portion 47) can be easily folded along the side surface of the second core 6 at the position where the terminals 4a and 4b are exposed to the outside of the first core 5 and the second core 6 and the part beyond the folding position (connecting portion 47) can be used as the solder fillet forming portion of the terminals 4a and 4b.
In addition, in the present embodiment, the pair of terminals 4a and 4b are respectively connected to the end portions of the coil 2 and the connecting wire portion 45 of the terminal 4a and the connecting wire portion 45 of the terminal 4b are disposed so as to face the same direction (Y-axis positive direction). Accordingly, laser irradiation can be easily performed on the connecting wire portions 45 and 45 in a case where, for example, laser welding is performed on the connecting wire portions 45 and 45 and the manufacturing can be facilitated.
In addition, in the present embodiment, the columnar portion 53 is formed so as to be positionally deviated to the outside with respect to the central portion of the base portion 50. Accordingly, a space is formed in the central portion of the base portion 50 and the connecting wire portion 45 of the terminals 4a and 4b and so on can be placed with a margin in the space. Accordingly, there is no need to expand the base portion 50 to the outside in order to ensure a space for placing the connecting wire portion 45 or the like and the inductor 1 can be reduced in size.
In addition, in the present embodiment, the first core 5 has an outer surface on the side opposite to the mounting surface. In other words, in the present embodiment, the mounting surface is formed on the second core 6. The second core 6 covers the coil 2 and so on as described above, and thus the second core 6 is larger in side surface area than the first core 5 in terms of its configuration. Accordingly, by the second core 6 being provided with the mounting surface, the solder fillet forming portion (connecting portion 47) with a sufficient area can be formed on the second core 6 and the mounting strength of the inductor 1 with respect to a substrate can be enhanced.
An inductor 101 according to the second embodiment of the present invention differs only in the following points and the other configurations thereof are identical to those of the first embodiment described above. In the following description, the parts common to the first and second embodiments are denoted by the same reference numerals with detailed description thereof omitted.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The connecting wire portion 145 of the terminal 104a and the connecting wire portion 145 of the terminal 104b are disposed so as to face the same direction (Y-axis direction). The connecting wire portion 145 has a fixed piece 145a and a folded piece 145b.
The fixed piece 145a faces the folded piece 145b in the Y-axis direction and is integrally formed in the end portion on one side of the first placement portion 41 in the Y-axis direction. The fixed piece 145a is folded upward with the end portion on one side of the first placement portion 41 in the Y-axis direction serving as a folding point (fulcrum).
The length of the fixed piece 145a of the terminal 104a in the Z-axis direction is longer than the length of the fixed piece 145a of the terminal 104b in the Z-axis direction and is longer than the length of the folded piece 145b of the terminal 104a in the Z-axis direction. The length of the fixed piece 145a of the terminal 104b in the Z-axis direction is substantially equal to the length of the folded piece 145b of the terminal 104b in the Z-axis direction.
The folded piece 145b is integrally formed in the end portion on one side of the fixed piece 145a in the Z-axis direction and is folded downward with the end portion serving as a folding point (fulcrum). Both the fixed piece 145a and the folded piece 145b are formed so as to extend in the Z-axis direction and are disposed in the direction perpendicular to the upper surface of the base portion 150.
As illustrated in
The connecting wire portion 145 of the terminal 104b sandwiches and holds the wire end 3b of the wire 3 with the fixed piece 145a and the folded piece 145b. The wire end 3b of the wire 3 is pulled out from the lower end of the coil 102, and thus the connecting wire portion 145 of the terminal 104b holds the wire end 3b in a state of being placed on the upper surface of the base portion 150.
The holding surface at a time when the long-side surface of the wire ends 3a and 3b of the wire 3 is held by the connecting wire portion 145 is disposed so as to be substantially parallel to the side surface of the second core 6 illustrated in
The holding surface of the connecting wire portion 145 is disposed so as to be substantially parallel to the winding axis of the coil 102. The sandwiching direction at a time when the wire ends 3a and 3b of the wire 3 are sandwiched between the fixed piece 145a and the folded piece 145b is substantially perpendicular to the winding axis of the coil 102.
The holding surface (abutting surface) of the wire ends 3a and 3b in the fixed piece 145a, the holding surface (abutting surface) of the wire ends 3a and 3b in the folded piece 145b, and the long-side surface of the wire ends 3a and 3b are disposed so as to be parallel and face the side surface of the second core 6 (side surface vertically intersecting with the Y axis).
The present embodiment is similar in effect to the first embodiment. In addition, in the present embodiment, the holding surface at a time when the long-side surface of the wire ends 3a and 3b of the wire 3 is held by the connecting wire portion 145 extends in parallel to the winding axis of the coil 102 and the directions of the long-side surface and the holding surface of the connecting wire portion 145 are aligned, even without the wire ends 3a and 3b being twisted, when the wire ends 3a and 3b are pulled out from the winding part of the coil 102. Accordingly, the end portion of the coil 102 can be held on the holding surface without being twisted, unevenness in the inductance characteristics of the inductor 1 can be prevented, and the highly reliable inductor 1 can be realized.
In addition, in the present embodiment, the holding surface of the connecting wire portion 145 faces the side surface of the second core 6 (side surface vertically intersecting with the Y axis). Accordingly, laser irradiation can be easily performed on the connecting wire portion 145 in a case where, for example, laser welding is performed on the connecting wire portion 145 and the manufacturing can be facilitated.
An inductor 201 according to the third embodiment of the present invention differs only in the following points and the other configurations thereof are identical to those of the second embodiment described above. In the following description, the parts common to the second and third embodiments are denoted by the same reference numerals with detailed description thereof omitted.
As illustrated in
As illustrated in
When the inductor 1 is manufactured, terminal base portions 91a and 91b of the terminals 9a and 9b illustrated in
Preferably, the depth of the step portion 500 along the Z-axis direction is substantially equal to the thickness of the terminal base portions 91a and 91b such that the surface (upper surface) of the terminal base portions 91a and 91b and the surface of the step upper portion 501 are flush with each other when the terminal base portions 91a and 91b are disposed in the step portions 500.
Connecting portions 93a and 93b of the terminals 9a and 9b illustrated in
As illustrated in
The main body portion 66 has a bottomed cylindrical shape, and the appearance shape of the main body portion 66 is a substantially rectangular parallelepiped shape. The thickness of the main body portion 66 in the Z-axis direction is larger than the thickness of the base portion 250 illustrated in
The accommodating hole 61 is formed substantially at the center of the main body portion 66 and extends from one surface (upper surface) of the main body portion 66 in the Z-axis direction toward the other surface (bottom portion 65). The shape of the opening portion of the accommodating hole 61 is a substantially round shape and substantially matches the outer peripheral shape of the coil 202 illustrated in
The second recessed portion 64 is formed in each side surface of the main body portion 66 in the X-axis direction. The connecting portions 93a and 93b of the terminals 9a and 9b illustrated in
It should be noted that each second recessed portion 64 extends to the surface (outer surface) of the bottom portion 65 in addition to each side surface of the main body portion 66 in the X-axis direction (not illustrated). In the surface of the bottom portion 65, the second recessed portion 64 extends from the end portion of the bottom portion 65 in the X-axis direction toward the center of the bottom portion 65.
The terminal accommodating groove 62a is formed in the corner portion formed at the position where the surface of the main body portion 66 on the Y-axis positive direction side and the surface of the main body portion 66 on the X-axis positive direction side intersect. The terminal accommodating groove 62b is formed in the corner portion formed at the position where the surface of the main body portion 66 on the Y-axis positive direction side and the surface of the main body portion 66 on the X-axis negative direction side intersect.
The terminal accommodating grooves 62a and 62b extend from one surface (upper surface) of the main body portion 66 in the Z-axis direction toward the other surface (bottom portion 65). The shape of the opening portion of the terminal accommodating grooves 62a and 62b is a substantially rectangular shape. With the second core 206 combined with the first core 205 illustrated in
The connecting grooves 63a and 63b extend from one surface (upper surface) of the main body portion 66 in the Z-axis direction toward the other surface (bottom portion 65). In addition, the connecting grooves 63a and 63b extend along the Y-axis direction and connect the accommodating hole 61 and the terminal accommodating grooves 62a and 62b. The connecting groove 63a is connected to the end portion of the accommodating hole 61 on the X-axis positive direction side, and the connecting groove 63b is connected to the end portion of the accommodating hole 61 on the X-axis negative direction side.
As illustrated in
As illustrated in
The terminal base portions 91a and 91b have a tabular shape extending in directions substantially orthogonal to the winding axis direction of the coil 202 (that is, the X-axis and Y-axis directions). The terminal base portions 91a and 91b are disposed in the core 8 illustrated in
In a state where the second core 206 illustrated in
As illustrated in
As illustrated in
In a state where the coil 202 is placed in the terminal base portions 91a and 91b, the outer peripheral surface of the coil 202 is disposed inside a virtual line VL1, which connects a lateral edge portion 91a2 of the terminal base portion 91a and a lateral edge portion 91b2 of the terminal base portion 91b in the X-axis direction, in the Y-axis direction. By placing the coil 202 in the terminal base portions 91a and 91b such that the outer peripheral surface of the coil 202 is not disposed outside the virtual line VL1 in the Y-axis direction, the outer peripheral surface of the coil 202 can be disposed at a position sufficiently separated from the side surface of the core 8 on the Y-axis negative direction side, the thickness of the core 8 can be sufficiently ensured between the outer peripheral surface of the coil 202 (end portion of the coil 202 on the Y-axis negative direction side) and the side surface of the core 8 on the Y-axis negative direction side, and cracking of the side surface of the core 8 on the Y-axis negative direction side can be prevented.
As illustrated in
The pull-out portions 3a and 3b of the wire 3 are connected to the connecting wire portions 92a and 92b. As illustrated in
As illustrated in
As illustrated in
As illustrated in
The tabular portion 920 has a tabular shape parallel to the XZ plane and extends along the Z-axis direction in a state of being substantially orthogonal to the terminal base portion 91a. The tabular portion 920 is provided only in the connecting wire portion 92a and is not provided in the connecting wire portion 92b.
As illustrated in
As illustrated in
Accordingly, the pull-out portion 3a that is linearly pulled out can be connected to the connecting wire portion 92a without being bent in accommodating the pull-out portion 3a in the accommodating recessed portion 921a even in a case where, for example, the first pull-out position 202c (
In addition, the pull-out portion 3a can be reliably accommodated in the accommodating recessed portion 921a without tilting the coil 202 by making the depth of the accommodating recessed portion 921a relatively deep in advance such that the gap (margin) G1 is formed between the pull-out portion 3a and the accommodating bottom portion 921a1 of the accommodating recessed portion 921a. In addition, the pull-out portion 3a can be reliably accommodated in the accommodating recessed portion 921a even in a case where the first pull-out position 202c (
It should be noted that a gap G2 is formed between the end portion of the pull-out portion 3a on the side opposite to the pull-out bottom portion 3a1 and the top portion of the connecting wire portion 92a in the Z-axis direction. Although the length of the gap G2 in the Z-axis direction is larger than the length of the gap G1 in the Z-axis direction, the length of the gap G2 in the Z-axis direction may be smaller than the length of the gap G1 in the Z-axis direction.
The pair of protruding portions 922a and 922a are formed with the accommodating recessed portion 921a interposed therebetween. The extension direction of the protruding portions 922a and 922a is the same as the extension direction of the tabular portion 920 and is the Z-axis direction. The length of the protruding portions 922a and 922a along the Z-axis direction corresponds to the length of the accommodating recessed portion 921a along the Z-axis direction.
As illustrated in
One end (upper end) of the accommodating recessed portion 921b in the Z-axis direction is open. The pull-out portion 3b of the wire 3 can be inserted into the accommodating recessed portion 921b by being inserted (or slid) from the open part. In a state where the pull-out portion 3b is accommodated in the accommodating recessed portion 921b, the pull-out bottom portion 3b1 of the pull-out portion 3b is placed on the upper surface of the terminal base portion 91b and the pull-out bottom portion 3b1 and the upper surface of the terminal base portion 91b are in contact with each other.
The pair of protruding portions 922b and 922b are formed with the accommodating recessed portion 921b interposed therebetween. The extension direction of the protruding portions 922b and 922b is the same as the extension direction of the protruding portions 922a and 922a and is the Z-axis direction.
As illustrated in
In the present embodiment, the pull-out portion 3a and the pull-out portion 3b are pulled out from the coil 202 in a state of being positionally deviated along the Z-axis direction. Accordingly, the connecting wire portions 92a and 92b are formed such that the accommodating recessed portion 921a and the accommodating recessed portion 921b are positionally deviated along the Z-axis direction in a form corresponding thereto. The positional deviation width between the accommodating recessed portion 921a and the accommodating recessed portion 921b along the Z-axis direction corresponds to the distance between the pull-out position 202c (
In addition, the positional deviation width between the accommodating recessed portion 921a and the accommodating recessed portion 921b along the Z-axis direction may correspond to the distance between the tip portion of the pair of protruding portions 922a and 922a and the tip portion of pair of protruding portions 922b and 922b. In addition, the positional deviation width between the accommodating recessed portion 921a and the accommodating recessed portion 921b along the Z-axis direction may correspond to the distance between the accommodating bottom portion 921a1 of the accommodating recessed portion 921a and the upper surface of the terminal base portion 91b. In addition, the positional deviation width between the accommodating recessed portion 921a and the accommodating recessed portion 921b along the Z-axis direction may correspond to the length of the tabular portion 920 of the connecting wire portion 92a along the Z-axis direction.
When the connecting wire portions 92a and 92b are viewed from the front (Y-axis positive direction side), the accommodating recessed portions 921a and 921b are disposed inside the position of the outer periphery of the coil 202 in the X-axis direction as illustrated in
Laser irradiation is performed on the connecting wire portions 92a and 92b with the pull-out portions 3a and 3b of the wire 3 accommodated in the accommodating recessed portions 921a and 921b. Then, the molten material (a joining portion or member) 10 made of a welding ball or the like is formed in the connecting wire portions 92a and 92b as illustrated in
As illustrated in
The connecting portions 93a and 93b have mounting auxiliary portions 930a and 930b and lateral pull-out portions 931a and 931b. The lateral pull-out portions 931a and 931b are connected to the outer edge portions 91a3 and 91b3 of the terminal base portions 91a and 91b. The lateral pull-out portions 931a and 931b have a surface parallel to the XY plane and extend outward in the X-axis direction to the positions of the side surfaces of the core 8 in the X-axis direction.
The mounting auxiliary portions 930a and 930b are connected to the end portions of the lateral pull-out portions 931a and 931b in the X-axis direction and extend upward. The mounting auxiliary portions 930a and 930b have a surface parallel to the YZ plane and extend along the side surfaces of the core 8 illustrated in
The mounting portions 94a and 94b are connected to the end portions of the mounting auxiliary portions 930a and 930b in the Z-axis direction and extend inward in the X-axis direction. The mounting portions 94a and 94b have a surface parallel to the XY plane and are formed along the mounting surface 8a of the core 8 illustrated in
When an inductor 21 in the present embodiment is manufactured, the second end portion 202b of the coil 202 illustrated in
More specifically, in a state where the coil 202 illustrated in
It should be noted that methods for manufacturing the inductor 21 are not limited thereto. For example, the order in which the coil 202 is placed in the terminal base portions 91a and 91b of the terminals 9a and 9b may be changed. More specifically, the second end portion 202b of the coil 202 may be placed on the upper surface of the terminal base portions 91a and 91b after the terminal base portions 91a and 91b of the terminals 9a and 9b illustrated in
As illustrated in
In addition, in the inductor 201 according to the present embodiment, the accommodating recessed portions 921a and 921b where the pull-out portions 3a and 3b are accommodated are formed in the connecting wire portions 92a and 92b as illustrated in
In the inductor 201 according to the present embodiment in particular, the accommodating recessed portion 921a and the accommodating recessed portion 921b are positionally deviated along the Z-axis direction. Accordingly, even if the first pull-out position 202c (
In addition, in the inductor 201 according to the present embodiment, the connecting wire portions 92a and 92b where the accommodating recessed portions 921a and 921b are formed are disposed in the core 8 and a flat wire constitutes the coil 202. Accordingly, the pull-out portions 3a and 3b can be easily connected to the terminals 9a and 9b as described above and the surface mounting-type inductor 201 capable of allowing a large current to flow can be easily manufactured.
It should be noted that the present invention is not limited to the embodiments described above and can be variously modified within the scope of the present invention.
Although an application example regarding the inductor of the present invention has been illustrated in each of the embodiments described above, the present invention may be applied to a coil device other than the inductor.
Although the winding shape of the wire 3 is a round spiral shape in each of the embodiments described above, the shape may be, for example, an elliptical spiral shape, a square spiral shape, or the like.
Although a flat wire constitutes the wire 3 in the first embodiment described above, the wire 3 may be constituted by a round wire, a quadratic wire, or a litz wire. The same applies to the second embodiment.
In the first embodiment described above, the connecting wire portion 45 of the terminal 4a and the connecting wire portion 45 of the terminal 4b may be disposed diagonally with the coil 2 interposed therebetween. The same applies to the second embodiment.
In the first embodiment described above, the base portion 50 may have a flat upper surface with the recessed portions 51a to 51d, the projecting portions 52a to 52d, and the protruding portion 54 omitted from the base portion 50.
In the first embodiment described above, a part of the upper surface or the side surface of the first core 5 may be covered with the second core 6. The same applies to the second embodiment.
In the first embodiment described above, the connecting portion 47 of the terminals 4a and 4b may be folded toward the first core 5 side. The same applies to the second embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2020-121126 | Jul 2020 | JP | national |
2021-096871 | Jun 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8723629 | Liu | May 2014 | B1 |
10319514 | Takagi et al. | Jun 2019 | B2 |
11424070 | Someya | Aug 2022 | B2 |
11521787 | Someya | Dec 2022 | B2 |
20060290458 | Sano | Dec 2006 | A1 |
20100253456 | Yan et al. | Oct 2010 | A1 |
20110005064 | Klesyk et al. | Jan 2011 | A1 |
20130154780 | Yamada et al. | Jun 2013 | A1 |
20140002227 | Hsieh | Jan 2014 | A1 |
20160247626 | Kawarai | Aug 2016 | A1 |
20160351323 | Wakamori et al. | Dec 2016 | A1 |
20170221623 | Kawarai | Aug 2017 | A1 |
20170229232 | Takagi | Aug 2017 | A1 |
20180174740 | Muneuchi | Jun 2018 | A1 |
20190392977 | Kawarai | Dec 2019 | A1 |
20200194161 | Hu | Jun 2020 | A1 |
20200303115 | Satou | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1892932 | Jan 2007 | CN |
H02-118919 | Sep 1990 | JP |
-03-051807 | May 1991 | JP |
H08-255717 | Oct 1996 | JP |
H10-22137 | Jan 1998 | JP |
2001-155932 | Jun 2001 | JP |
2002-313631 | Oct 2002 | JP |
2006-128473 | May 2006 | JP |
2007-165779 | Jun 2007 | JP |
2008-041924 | Feb 2008 | JP |
2011-243703 | Dec 2011 | JP |
2013-125896 | Jun 2013 | JP |
2016-157751 | Sep 2016 | JP |
2018-133402 | Aug 2018 | JP |
2019-057722 | Apr 2019 | JP |
2020-013856 | Jan 2020 | JP |
Entry |
---|
U.S. Appl. No. 17/375,353, filed Jul. 14, 2021 in the name of Kazunori Arimitsu et al. |
U.S. Appl. No. 17/375,370, filed Jul. 14, 2021 in the name of Kazunori Arimitsu et al. |
U.S. Appl. No. 17/375,740, filed Jul. 14, 2021 in the name of Kazunori Arimitsu et al. |
May 9, 2024 U.S. Office Action issued in U.S. Appl. No. 17/375,740. |
Jun. 21, 2024 U.S. Office Action issued in U.S. Appl. No. 17/375,353. |
Sep. 16, 2024 Non-Final Rejection received in U.S. Appl. No. 17/375,370. |
Sep. 26, 2024 Notice of Allowance received in U.S. Appl. No. 17/375,353. |
Sep. 30, 2024 Notice of Allowance received in U.S. Appl. No. 17/375,740. |
Number | Date | Country | |
---|---|---|---|
20220020528 A1 | Jan 2022 | US |