The present invention generally relates to air conditioning apparatus and, in representatively illustrated embodiments thereof, more particularly relates to condensate drain pan structures used in conjunction with air conditioning cooling coils.
A coil used in air conditioning apparatus such as furnaces, air handling units, and heat pumps extracts moisture from the air which is being flowed externally across the coil (by a blower portion of the apparatus) and cooled by the coil for delivery to a conditioned space served by the apparatus. This moisture extraction creates condensation (water) on the exterior of the coil which drips from the coil into an associated drain pan structure within the air conditioning apparatus. Coil condensation dripping into the pan flows away therefrom by gravity via a condensate drain line suitably connected to the pan. While this general approach to coil condensate removal has long been utilized and is generally suitable for its intended purpose, it typically presents several well known problems, limitations and disadvantages.
For example, an air conditioning apparatus (such as a furnace, air handling unit or heat pump) incorporating a cooling coil therein may customarily be fabricated in either (1) a vertical configuration in which air is to be operationally flowed upwardly or downwardly through the cooling coil, or (2) a horizontal configuration in which air is to be operationally flowed horizontally in one of two opposite directions through the coil. To permit a given vertical air flow coil/drain pan subassembly to be utilized in a horizontal air flow application (in which the associated drain pan is vertically oriented) it is typically necessary to attach to the re-oriented drain pan a horizontal drip shield structure to catch the condensate falling from the coil. Attachment of the auxiliary drip shield structure to the drain pan tends to be a fairly tedious procedure requiring the use of separate fasteners, and the application of a suitable sealing material at the joint between the pan and the shield. Such fabricational complexity undesirably adds to the overall cost of the air conditioning apparatus.
Additionally, condensate drain pans of conventional constructions often present problems associated with the coil condensate which they receive. Such problems arise from the often unavoidable presence of standing water within the pans for long periods of time, and include sweating of the pans, fungus growth, and reduction in the quality of air delivered to the conditioned space.
As can readily be seen from the foregoing, a need exists for a coil drain pan structure which eliminates or at least substantially eliminates the above-mentioned problems, limitations and disadvantages of conventionally constructed coil drain pans. It is to this need that the present invention is directed.
In carrying out principles of the present invention, in accordance with representatively illustrated embodiments thereof, air conditioning apparatus is provided which is representatively in the form of an air conditioning unit having has operatively incorporated therein a cooling coil for lowering the temperature of supply air internally traversing the apparatus. The air conditioning apparatus may be utilized in either a vertical air flow or horizontal air flow orientation, and is provided with a specially designed condensate drain pan structure for receiving and draining away condensation dripping off the cooling coil during its operation. While the coil is representatively a cooling coil, the present invention is not limited to cooling coils, with the term “air conditioning” as used herein encompassing both heating and cooling applications.
According to one aspect of the invention, the coil drain pan is selectively positionable in horizontal and vertical air flow orientations and includes a drain structure having an outlet opening therein, and a plurality of interconnected troughs, in drainage flow communication with the outlet opening. The drain structure includes a wall area which projects downwardly beyond the interconnected troughs and is in fluid flow communication herewith, the outlet opening extending through a wall portion of the well area. The interconnected troughs representatively border a generally rectangular air flow opening and, when the drain pan is in its vertical air flow orientation, lie generally in a horizontal plane, are positioned above the outlet opening, and are sloped relative to one another in a manner such that essentially all condensation entering any of the troughs flows by gravity to and outwardly through the outlet opening, thereby substantially eliminating standing water in the drain pan structure.
To permit the drain pan to be utilized in its horizontal air flow orientation, with the trough portion lying generally in a vertical plane, a drip shield structure is removably connected to the trough portion of the drain pan to lie generally in a horizontal plane and receive condensate from the cooling coil and drain the received condensate into one of the drain pan troughs for discharge therefrom through the outlet opening. According to another feature of the invention, the drip shield structure is connectable to the drain pan trough portion without the use of separate fasteners, tools, or sealant material.
Illustratively, the drip shield structure is press-fittable onto a support wall extending outwardly from one of the drain pan troughs using resilient tabs formed on the support wall, and lanced-out locking barbs formed on an edge portion of the drip shield structure. The drip shield edge portion is pressed into spaces between the resilient tabs and the support wall to outwardly deflect the tabs and bring the barbs into locking engagement with inner side surface portions of the tabs.
Schematically depicted in
As used herein, the term “air conditioning” is intended to encompass both cooling and heating applications. Thus, while the air conditioning coil section 18 is illustratively a cooling coil section, it could alternatively be a heating coil section without departing from principles of the present invention. Also, the air flow in the units 10 and 14 could alternatively be downwardly directed, and the air flow in the units 12 and 16 could alternatively be rightwardly directed. Further, the coil section 18 could be mounted in other types of air conditioning units such as in a heat pump, or simply mounted in a duct, without departing from principles of the present invention.
The coil section 18, shown in a vertical air flow orientation in
Turning now to
With the drain pan 30 in its vertical air flow orientation shown in
Accordingly, with the drain pan 30 in its vertical air flow orientation cooling coil condensation received by any of the troughs 38,40,42,44 flows by gravity to the juncture of the troughs 38 and 42 which forms the low point of the interconnected troughs 38,40,42 and 44. Disposed at this low point of the interconnected troughs is a drain structure 60 comprising a well area 61 (see
With the drain pan 30 in its vertical air flow orientation, the main outlet opening 62, which communicates with the interior of the well 61, and the vertical overflow opening 64 is slightly higher than the main outlet opening 62. Thus, when the drain pan 30 is in its vertical air flow orientation, substantially all of the coil condensation entering the trough portion 34 flows by gravity into the downwardly projecting well 61 and is discharged by gravity through the main outlet opening 62, thereby substantially eliminating standing drain pan water and its attendant problems such as sweating, fungus growth and reduced indoor air quality. Should the main outlet opening 62 be restricted or blocked, the pan-received condensation is simply discharged through the back-up overflow opening 64. The downwardly projecting well 61 acts as a condensate collection area to hold only a small amount of condensate before it is discharged through opening 62, thus preventing or minimizing the growth of mold and mildew that can be exposed to the indoor airstream.
Referring now to
In accordance with a feature of the present invention, the drip plate structure 36 may be removably and operatively connected to the support wall 46 of the trough portion 34, without the use of separate fasteners or joint sealant material, by simply press-fitting the drip plate structure 36 onto the support wall 46 as will now be described with reference to
As best illustrated in
This laterally outwardly deflects the resilient tabs 48 and causes upper end points 70a on the barbs 70 (see
A drain corner area of an alternate embodiment 34a of the previously described drain pan trough portion 34 is perspectively illustrated in
The foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3102654 | Millman et al. | Sep 1963 | A |
4088466 | Humphrey et al. | May 1978 | A |
4129013 | Hine, Jr. | Dec 1978 | A |
5071027 | Sullivan | Dec 1991 | A |
5105630 | Kim | Apr 1992 | A |
5207074 | Cox et al. | May 1993 | A |
5511386 | Russ et al. | Apr 1996 | A |
5664430 | Karman | Sep 1997 | A |
5697227 | Bruce et al. | Dec 1997 | A |
5964370 | Rust, Jr. et al. | Oct 1999 | A |
5979171 | Mitchell et al. | Nov 1999 | A |
6112536 | Hansen | Sep 2000 | A |
6405552 | Hubert et al. | Jun 2002 | B1 |