1. Field
This application relates to packaging for coiled filamentary material. More particularly, this application relates to a payout tube assembly for packaging of coiled filamentary material.
2. State of the Art
U.S. Pat. No. #2,634,922 to Taylor describes the winding of flexible wire, cable or filamentary material (hereinafter “wire”, which is to be broadly understood in the specification, abstract and claims) around a mandrel in a figure-eight pattern such that a package of material is obtained having a plurality of layers surrounding a central core space. By rotating the mandrel and by controllably moving a traverse that guides the wire laterally relative to mandrel, the layers of the figure-eight pattern are provided with aligned holes (cumulatively a “pay-out hole”) such that the inner end of the flexible material may be drawn out through the payout hole. When a package of wire is wound in this manner, the wire may be unwound through the payout hole without rotating the package, without imparting a rotation in the wire around its axis (i.e., twisting), and without kinking This provides a major advantage to the users of the wire. Coils that are wound in this manner and dispense from the inside-out without twists, tangles, snags or overruns are known in the art as REELEX—(a trademark of Reelex Packaging Solutions, Inc.) type coils. REELEX-type coils are wound to form a generally short hollow cylinder with a radial opening formed at one location in the middle of the cylinder. A payout tube may be located in the radial opening and the end of the wire making up the coil may be fed through the payout tube for ease in dispensing the wire. The payout tube and coil are packaged in a box and the entire package of the coiled cable has become known as a REELEX BOX.
Over the past fifty-plus years, improvements have been made to the original invention described in U.S. Pat. No. #2,634,922. Over the past fifty-plus years, an increasing number of different types of wires with different characteristics are being wound using the systems and methods described in U.S. Pat. No. #2,635,922 and the subsequent improvements. For example, the figure-eight type winding has been used for twisted-pair type cable (e.g., Category 5, Category 6 and the like), drop cable, fiber-optic cable, electrical building wire (THHN), etc.
For manually packaged REELEX BOXes, there are two basic cardboard box designs in use. One design has the coil loaded from the “square” or “square side” of the box, as shown in U.S. Pat. No. 8,944,358. That arrangement of the box is termed a “sideload” box. This coil and box arrangement is typically used with a plastic locking ring or “PLR” and a plastic payout tube to secure the payout tube to one panel in the box, such as the PLR shown in U.S. Pat. No. 5,810,272 (Wallace et al.). Typically, during assembly, the payout tube is inserted through the payout hole of the coil before the coil is introduced into the box and then the locking ring is pushed onto the payout tube from outside the box while the payout tube held steady from within the box. Thus, the PLR requires the operator to push the inside of the tube up against the PLR in order to secure it to the box.
The second basic cardboard box design for manually packaged REELEX BOXes has the coil loaded at one of the rectangular panels or “ends” of the box. That arrangement of the box is termed an “endload” or “topload” box. The topload box arrangement is typically used with a plastic or paperboard tube that has a flange, which is glued to a panel of the box, such as shown in U.S. Pat. No. 6,086,012. Owing to the glue connection of the flange of the tube to the panel of the box, a PLR is not used.
One advantage of the topload box is that the topload box construction is significantly stronger than the sideload box construction. Furthermore, the topload design allows for multiple panels to fold over each other where the coil is inserted, which means hand hold cutouts placed at these panels are particularly sturdy, as they pass through multiple panels of cardboard, as shown, for example, in U.S. Pat. No. 6,086,012. Also, recycling a topload using a paperboard payout tube is simpler than for a sideload box using a PLR, because only paperboard need be recycled instead of plastic and paperboard.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one embodiment, a payout tube assembly is provided and comprises a payout tube that is affixed to a payout panel. The payout panel defines a central opening through which a first end of the payout tube is received. In one embodiment, the payout panel defines a plurality of slits extending radially from the central opening and defining fingers in the panel. In manufacturing the payout tube assembly, an end of the payout tube is pushed into the central opening of the payout panel causing the fingers to engage the tube and generating a well into which glue is placed in order to affix the tube to the payout panel.
In one embodiment, in addition to the center hole, the payout panel defines a first set of arcuate slits and a second set of arcuate slits extending about the axis of the payout tube, with the first and second sets of arcuate slits being spaced radially and circumferentially from each other. In one aspect, the slits permit the payout tube a rotational range of motion with respect to the payout panel that will not cause the tube to separate from the panel. The range of motion is sufficient to compensate for any relative movement between a wound coil having a payout hole into which one end of the payout tube is inserted and a box container having an opening in which a second end of the payout tube is aligned and in which the coil is stored as discussed below.
In embodiments, both the payout tube and the payout panel are formed of at least one of paperboard and cardboard. In one embodiment, the payout panel is generally planar and rectangular and the payout tube is generally circular in cross-section.
In one embodiment, a packaging system is provided for packaging a wound coil of filamentary material. The system comprises a container in conjunction with an embodiment of a payout tube assembly such as an embodiment previously described. In one embodiment, the container comprises a cardboard box having a plurality of box (container) panels. The container is constructed to house a wound coil of filamentary material. At least one box panel defines an exit hole through which the filamentary material can be drawn out of the container. When the box and payout tube assembly of the packaging system are assembled together, the axis of the payout tube aligns with the exit hole of the box panel in order to facilitate unwinding of the filamentary material from a wound coil located inside the box.
In another embodiment, a package of coiled filamentary material is provided. The package includes a coil of filamentary material wound in a figure eight pattern and the packaging system described hereinabove into which the coil is loaded, where the payout tube of the payout tube assembly extends into a payout hole formed in the coil.
One embodiment of a package 100 of coiled filamentary material is illustrated in
The payout tube assembly 104 includes a payout tube 108 and a payout panel 110 affixed to the payout tube 108.
The payout panel 110 defines a central opening 118 in which the first end 112 of the payout tube 108 is received. A plurality of radially extending fingers 120 extend along a circular edge 123 of the payout panel 110 that borders the central opening 118. In the embodiment shown in
In one embodiment, the glue 124 may be biodegradable or compostable hot-melt glue. Using a compostable or biodegradable hot-melt glue to adhere the payout tube 108 to the payout panel 110, in lieu of a plastic PLR, allows the entire package system 101 to be completely compostable.
One advantage of the payout tube assembly 104 is that its construction facilitates loading the coil 106 into the box 102 during packaging because the payout tube 108 can be inserted into the coil 106 and an inner end of the filamentary material 128 of the coil 106 can be pushed through the payout tube 108 prior to inserting the payout tube assembly 104 and the coil 106 into the box 102. Once the coil 106 and the payout tube assembly 104 are assembled together outside the box 102, they are loaded as an assembly into the box 102, as shown in
As shown in
In an undeflected position of the payout tube 108, the payout tube 108 extends generally perpendicular to the planar surface of the payout panel 110. In a deflected position of the payout tube 108, such as is shown in
The system 101 shown in
The embodiments described above are advantageous over prior art packaging arrangements, such as the top load and side load box designs described above. For example, the connection between the payout tube 108 and the payout panel 110 is strain relieved by the gimbaled arrangement described above and the glued connection between the payout tube 108 and the payout panel 110. Therefore, even if the coil 106 moves with respect to the box 102 inside the box 102 and displaces the payout tube 108, the payout tube 108 will be able to move with the coil 106 without causing separation between the payout tube 108 and the payout panel 110, which can occur with prior art PLR designs discussed above.
Additionally, another advantage over the prior art designs is that the entire packaging system 101 may be composted completely rather than partially, as when there are plastic and cardboard components are used, such as with a cardboard box that employs a PLR. When the glue 124 between the payout tube 108 and payout panel 110 is selected from among biodegradable glues, the entire packaging system 101 can be composted.
Moreover, as noted above, the embodiments described facilitate assembly of the package 100 in comparison with the prior art designs described above. For example, for PLR designs, to secure the payout tube to the box, the operator handles the core tube from inside the box while the PLR is pushed on the tube from outside the box. On the other hand, the coil 106 and the payout tube 108 can be assembled together outside the box 102 and introduced together as an assembly into the box 102, such that additional handling of the payout tube is not needed from inside the box after the coil is loaded in the box.
Thus, it is desirable to provide a packaging system that is strong, easy to recycle, and less prone to damage due to relative movement between the package and the coil.
There have been described and illustrated herein embodiments of a payout tube assembly, a packaging system for packaging a wound coil of filamentary material, and a package of coiled filamentary material. While particular embodiments have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while a particular embodiment of a payout tube assembly has been described, it will be appreciated that the payout tube assembly may take other forms. Similarly, while a particular embodiment of a payout panel has been described, it will be appreciated that the payout panel may take other forms. Further, while particular embodiments of arcuate slits have been described for providing a movement arrangement for the payout tube, it will be appreciated that other arrangements may be utilized to provide relative movement between the payout tube and the payout panel. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed. In the claims, means-plus-function clauses, if any, are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.