This application relates to an apparatus and method for compacting springs and, more particularly, to an apparatus and method for compacting and preparing the metal components of mattresses for recycling.
Modern mattresses are made from various combinations of materials including: synthetic and natural fabrics, feathers, foam, plastics, wood, and arrangements of metal springs. The disposal and recycling of mattresses is a complicated process that involves both separating the various mattress materials from each other and also preparing each of the resulting materials in a bundle that meets the specific acceptance requirements of the various recyclers. For example, the metal springs of mattresses form an interconnected array of metal that occupies a relatively large area at a low density. Metal foundries, however, accept metal in relatively small volume, high-density units, for example one cubic foot units or blocks of approximately 60 to 100 pounds. Efficient systems and methods for compacting resilient springs to such densities have thus far not been developed in the field. Accordingly, there exists a need to efficiently process low-density mattress springs into high-density units accepted by typical foundries.
The present invention addresses this need by providing systems and methods for efficiently compacting the springs of mattresses and box springs. The present invention compresses the springs in at least two, preferably three different directions. One compression is achieved through actuation of a crush chamber door. At least two of the three directions of compression being perpendicular to an axis through the springs. After the final compression is performed, the compressed springs are discharged from the crush chamber in a direction parallel to the direction of the final compression.
These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The coil spring compactor of the present invention is operable to simultaneously compact a plurality of springs from mattresses and/or box springs into a compressed unit that is of a density accepted by commercial metal foundries. For example, in a preferred embodiment, the compactor of the present invention compacts four mattress springs into a 12 inch wide by 6 inch high by 18 inch long mass of approximately 60 to 100 pounds, preferably 75 pounds.
As shown in
As shown in
As shown in
The chamber door 18 may be actuated, or opened and closed, by employing one or more chamber door hydraulic cylinders 26. The chamber door hydraulic cylinders 26 may be anchored to the exterior sides of the crush chamber 12 and chamber door 18, as shown in
The remaining two sides of the crush chamber 12 are the two small, vertical sides located opposite each other and form the first end surface 30 and the second end surface 32. As shown in
It will be appreciated by those of skill in the art that interior surfaces of the crush chamber 12 will be subjected to significant resistance and subsequent wear during operation. In order to improve the longevity of the interior surfaces, in certain embodiments of the present invention, the interior surfaces of the crush chamber 12 employ, for example, abrasive resistant steel plates. In certain other embodiments, the interior surfaces of the crush chamber 12 are designed such that the individual components may be rotated, reversed, or interchanged with other interior surface components such that specific portions of the surfaces subject to disproportional wear may be moved to areas of less wear are without altering the operability of the coil spring compactor 10. For example, the wear plates forming the first end surface 30 and the second end surface 32 may be substantially identical and therefore interchangeable. If, for example, the first end surface 30 is worn more extensively than the second end surface 32, the two surfaces can be interchanged so as to maximize the use of both surfaces. Furthermore, the individual surfaces may be designed such that the surface, for example the chamber door counter surface 26, can be rotated 180 degrees and remounted with the same surface forming the interior surface or may be reversed such that the interior and exterior surfaces are reversed. In order to facilitate these features the interior surfaces of the crush chamber 12 may have symmetrical shapes, such as rectangular shapes, and symmetrical mounting means, for example equally spaced threaded holes.
With reference to
In a step 108, a second compression of the springs initiates with displacement of the vertical compression plates 14 in a downward direction by the vertical compression hydraulic cylinders 15. A downward displacement of the vertical compression plates 14 results in a decrease in the height of the crush chamber 12 and a second compression of the springs in a direction approximately perpendicular to an axis formed through the springs. Upon displacement of the vertical compression plates 14 to a desired height above the vertical compression counter surface 16, for example a height of 6 inches above the vertical compression counter surface 16, vertical compression ceases.
While maintaining the vertical compression plates 14 at the desired height above the vertical compression counter surface 16, in a step 110, the horizontal compression plate 36 is transposed horizontally through the bottom portion of the crush chamber 12 so as to compress the springs in a third direction. It will be understood that the third compression compresses the springs in a direction approximately perpendicular to an axis formed through the springs and in a direction approximately perpendicular to the direction of the second compression. Horizontal compression ceases once a desired hydraulic pressure in the horizontal compression hydraulic cylinder 38 is achieved.
In a step 112, the compressed mattress springs are then discharged from the crush chamber 12 by retracting, lifting, or otherwise displacing of the discharge door 34 so as to form an opening at one side of the lower crush chamber 12. The compressed mattress springs are discharged from the crush chamber 12 by additional horizontal displacement of the horizontal compression plate 36 towards the opening formed by the now retracted discharge door 34. The compressed springs can be discharged from the crush chamber 12 on to a cart, conveyor belt, truck or other means for facilitating the transportation of the compressed springs to a foundry.
In certain embodiments of the present invention, the compressed mattress springs may be bundled or otherwise confined such that the compressed springs better maintain their compressed state and/or to facilitate handling and transport of the compressed springs.
In certain embodiments of the present invention, compression of the mattress springs is facilitated through hydraulic displacement of certain interior surfaces of the crush chamber 12. In a preferred embodiment, the hydraulic displacement is achieved by employing a motor 40, for example, an electric motor of ten horsepower. However, it is noted that other suitable manners of achieving displacement of the surfaces of the crush chamber 12 and other suitable means for powering such displacement are well known in the art and may also be employed to achieve similar results.
In certain other embodiments of the present invention, the spring compactor 10 may be operated manually through the use of valve controls 42, shown in
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application is a divisional of and claims priority to U.S. patent application Ser. No. 12/724,320 filed Mar. 15, 2010 entitled Coil Spring Compactor, which claims priority to U.S. Provisional Application Ser. No. 61/266,143 filed Dec. 2, 2009, entitled Coil Spring Compactor and U.S. Provisional Application Ser. No. 61/160,252, filed Mar. 13, 2009, entitled Coil Spring Compactor, the contents of both of which are incorporated in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
1987762 | Symons | Jan 1935 | A |
2966816 | White | Jan 1961 | A |
3000295 | Fenton | Sep 1961 | A |
3082588 | Jay et al. | Mar 1963 | A |
3353478 | Hopkins | Nov 1967 | A |
3408927 | Willock | Nov 1968 | A |
4214519 | Stollenwerk et al. | Jul 1980 | A |
4450764 | Montgomery | May 1984 | A |
4487120 | Barstow | Dec 1984 | A |
4573403 | Van Doorn et al. | Mar 1986 | A |
5001975 | Finden | Mar 1991 | A |
5146848 | Dufour | Sep 1992 | A |
5201266 | Schmalz et al. | Apr 1993 | A |
5203261 | Davis | Apr 1993 | A |
5207994 | Suzuki et al. | May 1993 | A |
6360655 | Crespo Barrio | Mar 2002 | B1 |
7024992 | Johnson | Apr 2006 | B2 |
7077060 | Eriksen | Jul 2006 | B2 |
7210404 | Minamoto et al. | May 2007 | B2 |
7421946 | Pontus et al. | Sep 2008 | B1 |
20010036449 | Garst | Nov 2001 | A1 |
20080061121 | Railsback | Mar 2008 | A1 |
20110036449 | Taylor | Feb 2011 | A1 |
Entry |
---|
United States Patent and Trademark Office, Office Action mailed Mar. 14, 2014 in U.S. Appl. No. 12/724,320, 11 pages. |
United States Patent and Trademark Office, Final Office Action mailed Apr. 9, 2013 in U.S. Appl. No. 12/724,320, 10 pages. |
United States Patent and Trademark Office, Office Action mailed Aug. 20, 2012 in U.S. Appl. No. 12/724,320, 10 pages. |
WIPO, International Search Report dated Jul. 6, 2010 in International Patent Application No. PCT/US10/27348, 3 pages. |
http://www.mattressrecycling.biz/xpp—art.shtml, “Spring Compactor—Patent Pending,” Table of Contents of site containing individual pages of provisional patent application by Cecil Ray Taylor, Independence, Missouri; see all web pages linked on this page; accessed Oct. 6, 2010, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140290506 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61266143 | Dec 2009 | US | |
61160252 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12724320 | Mar 2010 | US |
Child | 14306129 | US |