This disclosure relates generally to drilling, and more particularly to a coil tubing injector to insert coil tubing drill pipe into well bores.
Coiled tubing pipe is a continuous length of pipe, often 10,000 feet or longer. It is used in the oil drilling industry because it can be inserted into and removed from a well bore without making and breaking connections which is the more common method.
The coil tubing is gripped by two opposing chain assemblies which provide vertical forces to push the pipe into a well overcoming fluid pressures. The push force can be as high as 50,000 pounds. When the long length of coil tubing is in the well, the upward pull force can be as high as 100,000 pounds, especially if the pipe becomes stuck in the well. The gripping friction forces between the chain and the coil tubing must be sufficient to prevent the coil tubing from slipping with respect to the chains. The usual method of providing the gripping or traction force is with hydraulic cylinders. The hydraulic cylinders provide a mechanism to adjust the gripping force and allow the chains to move apart for coil tubing insertion. The force on a single chain can be higher than 400,000 pounds.
U.S. Pat. No. 9,091,129 describes a common method of configuring the chains, and cylinder assemblies.
A known apparatus for coil tubing injectors 100 is shown in
Referring to
In this embodiment, the gear teeth are located on individual beams 917 of a beam assembly. In other embodiments, the gear teeth may be located on a gear assembly including a set of gears. The set of gears may be operably coupled to at least one of the load beams 120 in a similar arrangement as the individual beams 917 are operably coupled to at least one of the load beams. The set of gears may be attached to any part of the injectors frame, also.
The control system may be implemented using application specific hardware (now known or later developed) or general purpose hardware (now known or later developed). Embodiments implemented using general purpose hardware may include hardware and associated software. For example, in some embodiments, a control system may one or more processors and software executable on those processors to carry out the operations described. We use the term software herein in its commonly understood sense to refer to programs or routines (subroutines, objects, plug-ins, etc.), as well as data, usable by a machine or processor. As is well known, computer programs generally comprise instructions that are stored in machine-readable or computer-readable storage media. Some embodiments of the present invention may include executable programs or instructions that are stored in machine-readable or computer-readable storage media, such as a digital memory. We do not imply that a “computer” in the conventional sense is required in any particular embodiment. For example, various processors, embedded or otherwise, may be used in equipment such as the components described herein.
Memory for storing software again is well known. In some embodiments, memory associated with a given processor may be stored in the same physical device as the processor (“on-board” memory); for example, RAM or FLASH memory disposed within an integrated circuit microprocessor or the like. In other examples, the memory comprises an independent device, such as an external disk drive, storage array, or portable FLASH key fob. In such cases, the memory becomes “associated” with the digital processor when the two are operatively coupled together, or in communication with each other, for example by an I/O port, network connection, etc. such that the processor can read a file stored on the memory. Associated memory may be “read only” by design (ROM) or by virtue of permission settings, or not. Other examples include but are not limited to WORM, EPROM, EEPROM, FLASH, etc. Those technologies often are implemented in solid state semiconductor devices. Other memories may comprise moving parts, such as a conventional rotating disk drive. All such memories are “machine readable” or “computer-readable” and may be used to store executable instructions for implementing the functions described herein.
A “software product” refers to a memory device in which a series of executable instructions are stored in a machine-readable form so that a suitable machine or processor, with appropriate access to the software product, can execute the instructions to carry out a process implemented by the instructions. Software products are sometimes used to distribute software. Any type of machine-readable memory, including without limitation those summarized above, may be used to make a software product. That said, it is also known that software can be distributed via electronic transmission (“download”), in which case there typically will be a corresponding software product at the transmitting end of the transmission, or the receiving end, or both.
Although illustrated embodiments show a cylinder-rod assembly located on either side of a center line of the injector, it should be appreciated that any of the principles described herein may be applied to an injector including a single cylinder-rod assembly. In such an embodiment, a cylinder rod of the single cylinder-rod assembly may be located on the center line of the injector. In this arrangement of an injector, the injector may not include any crossmembers (the cylinder-rod assembly may be operatively coupled to the load beams using a bracket, fastener, or the like, or combinations thereof).
Also, crossmember(s) are not required in embodiments with more than one cylinder-rod assembly. The cylinder-rod assemblies may be operably coupled to at least one load beam of load beams of the injector using a bracket, fastener, or the like, or combinations thereof.
Various embodiments of an improved injector may include at least one additional beam, at least one link, a set of gears, or some other mechanism to maintain parallel orientation of the load beams relative to each other during operation of the at least one cylinder rod. The at least one additional beam, at least one link, a set of gears, or other mechanism may be operably connected to at least one load beams of load beams of the injector (e.g., using crossmembers or some other coupling mechanism such as a bracket, a fastener, or the like, or combinations thereof). The at least one link may be a rigid link, a flexible link (e.g., a cable), or a semi-flexible link.
References above have been made in detail to preferred embodiment. Examples of the preferred embodiments were illustrated in the referenced drawings. While preferred embodiments where described, it should be understood that this is not intended to limit the invention to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention may be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 63/185,769, filed May 7, 2021, entitled: Coil Tubing Injector, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4585061 | Lyons, Jr. | Apr 1986 | A |
4655291 | Cox | Apr 1987 | A |
5309990 | Lance | May 1994 | A |
5553668 | Council | Sep 1996 | A |
6173769 | Goode | Jan 2001 | B1 |
6209634 | Avakov | Apr 2001 | B1 |
6216780 | Goode et al. | Apr 2001 | B1 |
9091129 | Lancaster | Jul 2015 | B2 |
20030209346 | Austbo | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20220356770 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
63185769 | May 2021 | US |