The current disclosure is directed generally to coilable thin-walled longerons that can be implemented within space-based coilable structures, and methods for their manufacture and coiling.
Space-based solar structures describe physical structures capable of solar energy collection while deployed in a space environment. Such a space environment includes the orbit of extraterrestrial bodies, the surface of extraterrestrial bodies, and non-orbital travel through space. Space-based solar structures are designed to collect solar energy and convert it into electric energy for a variety of uses, including powering the structure itself, and wirelessly transmitting energy to a separate space-based or terrestrial-based structure. Space-based solar structures can include a variety of structures ranging from a single satellite to an array of satellites.
Large arrays of solar structures are necessary in order to produce commercially viable amounts of energy for Earth, as well as sufficient amounts of energy for deep-space and extraterrestrial body exploration. However, these solar structures cost tens of thousands of dollars per kilogram of material to launch into space. Given these factors, the commercial viability of space-based solar structures is dependent upon their volume and weight.
This commercial viability limitation has driven development in space-based systems that are compactable and light weight. However, current space-based support members can only minimize their weight to a certain threshold before their structural integrity becomes compromised.
Many embodiments of the application are generally directed to coilable thin-walled longerons that can be implemented within space-based coilable structures, and methods for their manufacture and coiling.
Various embodiments are directed to a coilable flange longeron comprising:
In another embodiment, the material of at least one of the plurality of elongated flange bodies is selected from the group consisting of carbon fiber, glass fiber, thermosetting plastics, and combinations thereof.
In a further embodiment, at least one of the plurality of elongated flange bodies comprises a multi-layer composite laminate, and the multi-layer composite laminate comprises at least one unique material layer.
In still another embodiment, each of the plurality of elongated flange bodies comprises a four-layer composite laminate, the innermost and outermost layers comprise 45° ply glass fiber plain weaves, and the middle layers comprise a unidirectional carbon fiber tape.
In a still further embodiment, each of the plurality of elongated flange bodies comprises a three-layer composite laminate, the innermost and outermost layers comprise 45° ply glass fiber plain weaves, and the middle layer comprises a unidirectional carbon fiber tape.
In yet another embodiment, the coilable flange longeron further comprises:
In a yet further embodiment, the coilable flange longeron further comprises:
In another additional embodiment, the coilable flange longeron further comprises:
In a further additional embodiment, the coilable flange longeron further comprises:
In another embodiment again, the at least one web region permanently conjoins at least two of the plurality of elongated flange bodies using a temperature-cured resin.
In a further embodiment again, the temperature-cured resin is selected from the group consisting of Patz PMT-F4 epoxy resin, Patz F6 epoxy resin, Patz F7 epoxy resin, NTPT TP-135, TP 402T, TP 180-380CE, and cyanate ester resins.
In still yet another embodiment, the coiled configuration is coiled around a cylinder with a radius of 0.5 inches to 3 inches.
In a still yet further embodiment, the curvature varies between the first and second edges.
Still other additional embodiments are directed to a process for coiling a structure, the process comprising:
In a still further additional embodiment, the process coils a coilable structure comprising:
In still another embodiment again, the continuous tensioning force pulling the uncoiled end of the structure away from the coiled end of the structure is less than 40 N.
In a still further embodiment again, the coiling cylinder has a radius of 0.5 inches to 3 inches, and the spatial separation between the flattening and coiling cylinders is 15 mm to 100 mm.
In yet another additional embodiment, the curvature varies between the first and second edges.
Yet further additional embodiments are directed to a coilable space structure comprising:
In yet another embodiment again, the at least two longerons have at least a top and a bottom supporting surface and having a longitudinal element disposed therebetween, and the structure further comprises at least two functional elements one disposed atop the top supporting surface and a second disposed atop the bottom supporting surface.
In a yet further embodiment again, the at least two elongated longerons are flange longerons, each flange longeron comprising:
In another additional embodiment again, a plurality of functional elements are each disposed between at least two flange longerons.
In a further additional embodiment again, a plurality of battens are interconnected between and disposed transverse to the at least two flange longerons.
In still yet another additional embodiment, the curvature of the elongated flange bodies varies between the first and second edges thereof.
Still yet further additional embodiments are directed to a compactible space module comprising:
In yet another additional embodiment again, a plurality of functional elements are each disposed between at least two longerons.
In a yet further additional embodiment again, the at least two elongated longerons are flange longerons, each flange longeron comprising:
In still yet another embodiment again, a plurality of battens are interconnected between and disposed transverse to at least two longerons.
In a still yet further embodiment again, the curvature of the elongated flange bodies varies between the first and second edges thereof.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosure. A further understanding of the nature and advantages of the present disclosure may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.
The description will be more fully understood with reference to the following figures, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention, wherein:
Turning now to the drawings and data, coilable thin-walled longerons that can be implemented within space-based coilable structures and methods for their manufacture and coiling in accordance with embodiments of the invention are provided.
In some embodiments, the coilable thin-walled longeron is a flange longeron. The flange longeron contains at least two major regions: a web and a plurality of flanges. The web region comprises portions of flanges that are bonded to one another. In various embodiments, the plurality of flanges separate from one another on the same end of the web region. In other embodiments, the plurality of flanges are similar in thickness and shape.
In various embodiments, the longeron can be coiled around a cylinder, or an array of cylinders, to form a compact structure suitable for packaging and transporting. In some such embodiments, the coiling process involves flattening the plurality of flanges with a series of clamps, wrapping the flattened longeron around a rigid cylindrical hub, and applying tension to the longeron in a direction distal to the rigid cylindrical hub. In said embodiments, the coiled longeron can be uncoiled (i.e., deployed) into its pre-coiled shape.
Coilable thin-walled longerons in accordance with many embodiments of the invention may be implemented within space-based coilable structures. In a number of embodiments, space-based coilable structures are comprised of at least one longeron that is capable of rolling and collapsing upon itself. In these embodiments, the longerons may support functional elements of the space-based coilable structure. In several such embodiments, the longerons may support functional elements on more than one surface. A space-based coilable structure according to various embodiments may incorporate an array of longerons connected to each other by non-structural booms and transverse battens. The booms, according to embodiments, provide either no or only limited structural support for the overall structure, but may provide guidance to the longerons and transverse battens during deployment. The longerons and transverse battens, according to embodiments, provide most or all of the structural support for the functional elements of the solar structure. In various embodiments, the functional elements may be comprised of an array of solar panels, an array of antennas, integrated circuits, or a combination thereof. Many embodiments of space-based coilable structures may be packaged by a combination of folding and coiling.
Current state-of-the-art coilable space structures typically employ an architecture that incorporates coilable structural booms. (See U.S. Pat. No. 7,895,795). Booms within space-based coilable structures are typically beam-like structural elements designed to carry bending and column loads that are used to support other functional elements held in tension. For these structural booms, bending stiffness characterizes configurations and increases with increasing structural depth (cross section diameter), material thickness, and material stiffness.
Coilable booms, such as the Storable Tubular Extendable Member (STEM) and the Collapsible Tube Mast (CTM) have been used extensively in spacecraft structures due to their efficient packaging and simple deployment. A more recent design, the Triangular Rollable And Collapsible (TRAC) structure was developed by the Air Force Research Laboratory. (See, e.g., U.S. Pat. No. 7,895,795). It was integrated in multiple spacecraft designs, and on two different solar sail missions. Research has shown that going from thick metallic TRAC booms to ultra-thin composite TRAC booms can significantly reduce the packaged volume, extending the range of applications. However, greatly decreasing the thickness has brought up new issues specific to ultra-thin shells.
For example, it has been shown that tensioning a coilable boom during coiling helps to reduce instabilities and prevent blossoming, both having a negative impact on the packaging efficiency and deployment. This allows the boom to be wrapped around a wide range of hub radii, enabling packaging of long structures, where the coiling radius significantly changes throughout the process. However, it has also been observed that during coiling, the transition region from the fully deployed configuration to the fully coiled configuration displays a high stress concentration, leading to material failure. (See, e.g., Leclerc, C., et al, 4th AIAA Spacecraft Structures Conference, Grapevine, Tx., 2017, p. 0172, the disclosure of which is incorporated herein by reference.).
As a result, booms are typically designed to have a higher thickness and weight than other components of the space structure. For example, current coilable booms may comprise a thickness of approximately 400 μm when flattened. (See U.S. Pat. No. 7,895,795). This thickness inherently limits the packaging efficiency, and therefore, economic feasibility of these structures in space-based applications. Embodiments of the instant disclosure are directed to coilable space structures that replace the traditional structural architecture relying on coilable booms with a structural architecture relying on coilable thin-walled longerons (and transverse battens). This novel architecture bypasses the packaging efficiency and economic feasibility limitations of booms mentioned above.
The traditional definition of a longeron is a longitudinal load-bearing component, commonly used in aerospace applications, such as airframes and wings. A longeron in accordance with many embodiments of the invention employs a modified definition; namely, it is a longitudinal load-bearing component that is used in space-based applications to support functional elements in a coilable structure in place of the structural booms used in traditional designs. Such applications comprise orbiting extraterrestrial bodies, stationing on the surface of extraterrestrial bodies, and traveling through space on a non-orbital path.
Coilable thin-walled longerons in accordance with many embodiments of the invention may be implemented within space-based coilable structures as shown in exemplary
Several space-based coilable structures are known. A multi-step representation of the packaging process of a specific space-based coilable structure is illustrated in
Coilable space structures and coilable longerons in accordance with many embodiments of the invention comprise a thickness that is a fraction of current state-of-the-art space structures when flattened. This results in both reduced volume and weight, which increases packaging efficiency and the economic feasibilty of space-based applications.
Thin-walled coilable longerons are prone to kinking and fracture due to compressive and tensile stress during the coiling and deployment stages. Many embodiments of the instant disclosure are also directed to the process of coiling multi-functional coilable thin-walled longerons, which mitigates these specific failure modes. Mitigating kinks and fractures is particularly important in space-based applications, because damaged structures may be irreparable after they are launched into space.
Coilable Thin-Walled Flange Longeron Structure
A semi-coiled thin-walled flange longeron in accordance with an embodiment of the invention is illustrated in
A thin-walled flange longeron cross-section in accordance with an embodiment of the invention is illustrated in
A space-based coilable structure incorporating a set of coilable thin-walled flange longerons in accordance with an embodiment of the invention is illustrated in
Coilable Thin-Walled Longeron Cross-Sections
The cross-section of a coilable thin-walled longeron in accordance with many embodiments of the invention is designed to mitigate kinking and fracture during coiling and deployment by reducing high stress-concentration and increasing structural robustness.
The cross-section of a coilable thin-walled flange longeron in accordance with other embodiments of the invention is illustrated in
Variable curvature was introduced to eliminate sources of high stress concentration. Curvature discontinuity exists between flanges of constant curvature and the web region, the latter of which exhibits zero curvature. Many embodiments of the invention eliminate this discontinuity by employing a cross-section with a smoothly-varying curvature between the web region and each flange. This design has resulted in lower observed stress concentration when flattening and coiling the thin-walled longerons; the data is presented in the exemplary embodiments section below.
Cross-sections of additional coilable thin-walled longerons with variable curvature in accordance with embodiments of the invention are illustrated in
The thickness of a coilable thin-walled longeron in accordance with many embodiments of the invention is designed to minimize the volume of the space-based coilable structure and optimize its packaging efficiency. Micrograph images of a coilable thin-walled flange longeron in accordance with an embodiment of the invention are presented in
Coilable Longeron Materials
The materials of a coilable thin-walled longeron in accordance with many embodiments of the invention are selected to exhibit a combination of flexibility, high stiffness, and high toughness. Such materials are capable of withstanding stress concentrations during flattening and coiling without kinking or fracturing.
In various embodiments, the longeron is comprised of carbon fiber, glass fiber, thermosetting plastics (e.g., epoxy resins), or a combination thereof. In some embodiments, the longeron is comprised of a plurality of layers. These layers may provide added toughness and higher strain limits. A coilable thin-walled longeron with distinct material layers in accordance with an embodiment of the invention is illustrated in
In one such embodiment, each flange is a 3-layer composite laminate. The innermost and outermost layers are 45° ply glass fiber plain weaves made with JPS E-glass fabric, and the middle layer is unidirectional carbon fiber tape with NTPT ThinPreg 402 epoxy resin. In another 3-layer embodiment, the innermost and outermost 45° ply glass fiber plain weave layers are impregnated with NTPT ThinPreg 402 epoxy resin. In these embodiments, the glass fiber plain weave layers provide in-plane shear and transverse strength to the laminate, and the carbon fiber layer drives the mechanical properties of the deployed (i.e., uncoiled) structure. Although these specific laminates are put forth, any of a variety of laminates can be utilized in accordance with embodiments of the invention.
In another such embodiment, each flange is a 4-layer composite laminate. The innermost and outermost layers are 45° ply glass fiber plain weaves made with JPS E-glass fabric and Patz PMT-F4 epoxy resin, and the middle layers are unidirectional carbon fiber tape made of Torayca T800 carbon fibers with NTPT ThinPreg 402 epoxy resin. In another 4-layer embodiment, the middle layers are unidirectional carbon fiber tape made of MR70 carbon fibers with NTPT ThinPreg 402 epoxy resin. In these embodiments, the glass fiber plain weave layers provide in-plane shear and transverse strength to the laminate, and the carbon fiber layers drive the mechanical properties of the deployed (i.e., uncoiled) structure. Although these specific laminates are put forth, any of a variety of laminates can be utilized in accordance with embodiments of the invention.
In various embodiments, the web region is comprised of individual flanges bonded together with a temperature-cured resin. In many embodiments, the bonding layer comprises Patz PMT-F4 epoxy resin, Patz F6 epoxy resin, Patz F7 epoxy resin, NTPT TP-135, TP 402T, TP 180-380CE, cyanate ester resins, or a combination thereof. In other embodiments, the bonding layer comprises a composite material. Although these specific resins are put forth, any of a variety of resins can be utilized in accordance with embodiments of the invention.
Coilable Longeron Manufacturing Process
The manufacturing process of coilable thin-walled longerons in accordance with many embodiments of the invention includes thinning, shaping, and bonding steps. Each step is discussed in detail below.
As stated above, single flanges may exhibit a thickness on the order of 50 μm and the bonded web region may exhibit a thickness on the order of 100 μm. To attain this thin-walled attribute, thin-ply unidirectional carbon fiber and glass fiber plain weaves are layered either by a manual or automated process. In some such embodiments, the carbon fiber and glass fiber plain weave layers are impregnated with epoxy resin. Once the layering is complete, the flanges are temperature-cured in an autoclave.
As stated above, single flanges may exhibit parabolic, hyperbolic, polynomial, spline, and any further shape that eliminates curvature discontinuity between the flanges and the web region. To attain this shape, the laminates constituting the flanges are laid upon a mold with the desired shape. The mold may comprise aluminum, silicone, or composite materials. During the forming process, a vacuum bag ensures that the flanges conform to the mold shape.
As stated above, the web region is comprised of individual flanges bonded together with a temperature-cured resin. In some embodiments of the invention, the surfaces of each flange are plasma etched prior to bonding. In other embodiments of the invention, individual flanges are placed within a mold and a resin is applied to form the web region. Once the web region is formed, the longeron manufacturing process is complete.
Coilable Longeron Packaging and Deploying Process
In order for coilable thin-walled longerons in accordance with many embodiments of the invention to go from the fully deployed configuration to the fully coiled packaged configuration, the longerons need to undergo two shape changes: flattening and coiling. The packaging process of such embodiments is designed to reduce high-stress concentration on the longerons during these shape changes.
The packaging process of a coilable thin-walled flange longeron in accordance with many embodiments of the invention is illustrated in
The decoupled flattening and coiling steps within the packaging process of a coilable thin-walled flange longeron in accordance with many embodiments of the invention is illustrated in
In many embodiments of the invention, a coilable thin-walled longeron may be coiled around an array of cylinders. In these configurations, multiple longerons and multiple strips may be incorporated into one coiled structure. Examples of coiling around an array of cylinders in accordance with many embodiments of the invention is illustrated in
In order for the coilable thin-walled longeron in accordance with many embodiments of the invention to go from the fully coiled packaged configuration to the fully deployed configuration, the flanges need to undergo two shape changes: uncoiling and unflattening. The deployment process of such embodiments is designed to reduce high-stress concentration on the flanges during these shape changes. In some embodiments of the invention, the uncoiling and unflattening steps are decoupled to reduce stress on the longeron, similar to the packaging process.
Coilable Space Structures Implementing Longerons
Coilable thin-walled longerons in accordance with many embodiments of the invention may be implemented into coilable space structures. One such coilable space structure is illustrated in
The coilable space structure illustrated in
In one embodiment of the invention, the fully deployed space structure measures up to 60 m×60 m in size and is composed of ladder-type coilable strips of equal width. Each strip comprises two coilable thin-walled longerons in accordance with embodiments of the invention and supports many functional elements. Although this specific coilable space structure is put forth, any of a variety of coilable space structures can be utilized in accordance with embodiments of the invention.
Coilable strips incorporating coilable thin-walled longerons in accordance with many embodiments of the invention must be precisely constructed to mitigate substantial buckling of the strips. In one such embodiment, the coilable strip is constructed of two coilable thin-walled flange longerons and three transverse battens. The transverse battens are 3.0 mm wide and 0.6 mm thick rectangular carbon fiber rods, connected transversely to the coilable thin-walled longerons every 200 mm. A glass fiber bonding element connects the coilable thin-walled longerons and transverse battens.
Studies have been conducted to determine when and where buckling occurs in coilable strips when subjected to a buckling pressure. In these studies, buckling pressure is applied either to the coilable thin-walled flange longerons on one end of the coilable strip, or to the transverse batten on one end of the strip. When the coilable strips incorporate coilable flange longerons under 2.0 m in length and the coilable longerons are separated by less than 0.6 m, a localized buckle appears on one flange of the flange longeron. When the coilable strips incorporate coilable flange longerons under 2.0 m in length and the coilable longerons are separated by more than 0.6 m, the batten nearest to the applied pressure buckles.
When the coilable strips incorporate coilable flange longerons over 2.0 m in length, the buckling mode is not localized within one region of the strip. The flange longerons exhibit both torsional buckling and flange buckling, and the wavelength of the buckling shape corresponds with the transverse batten spacing. A graphical representation of buckling simulations for several coilable strip lengths is illustrated in
The following discussion sets forth embodiments where coilable thin-walled longerons may find particular application. It will be understood that these embodiments are provided only for exemplary purposes and are not meant to be limiting.
A coilable longeron packaging process testing apparatus in accordance with embodiments of the invention is illustrated in
Coilable thin-walled longerons made of theoretical isotropic materials were put through coiling simulations in various configurations to determine the maximum stresses on the longeron. The material properties for the isotropic longeron were chosen to match the bending stiffness of the orthotropic laminate selected for the following exemplary embodiment. Specifically, the isotropic flange thickness was obtained using the equation:
where the left-hand side is the plate flexural rigidity of the isotropic material, and D11 is the first element of the composite material bending matrix obtained using the Classical Laminate Theory. Assuming E=69 GPa and v=0.33, the isotropic material flange thickness t was calculated to be 60 μm.
Graphical results for the stress simulations below were analyzed in three dimensions and two dimensions, as shown in representative
Three different configurations were analyzed for stress. The first was a longeron with two flanges of constant curvature and a one-step flattening and coiling process (denoted as “Reference”). The second was a longeron with two flanges of variable curvature and a one-step flattening and coiling process. The third was a longeron with two flanges of constant curvature and a two-step flattening and coiling process.
In all three configurations, the highest stress concentration was a compressive stress that occurred on the proximal-most flange relative to the rigid cylindrical hub. The maximum stress, percent reduction of stress from the Reference, and corresponding figure for each configuration are presented in Table 1.
Coilable thin-walled longerons made of orthotropic materials were put through coiling simulations in various configurations to determine the maximum stresses on the longeron. The orthotropic material used was a 4-layer composite laminate. The innermost and outermost layers were 45° ply glass fiber plain weaves made with JPS E-glass fabric and Patz PMT-F4 epoxy resin, and the middle layers are unidirectional carbon fiber tape made of Torayca T800 carbon fibers with NTPT ThinPreg 402 epoxy resin.
Graphical results for the stress simulations below were analyzed identically to the previous exemplary embodiment. For simplicity, the labeled two dimensional graphs are used to present the stress simulation data.
Similar to the previous exemplary embodiment, three different configurations were analyzed for stress. The first was a longeron with two flanges of constant curvature and a one-step flattening and coiling process (denoted as “Reference”). The second was a longeron with two flanges of variable curvature and a one-step flattening and coiling process. The third was a longeron with two flanges of constant curvature and a two-step flattening and coiling process.
In all three configurations, the highest stress concentration was a compressive stress that occurred on the proximal-most flange relative to the rigid cylindrical hub. The maximum stress, percent reduction of stress from the Reference, and corresponding figure for each configuration are presented in Table 2.
Arrays of coilable thin-walled longerons can support the functional elements within space-based coilable structures. Such structures include space-based satellite strips. A space-based satellite strip in accordance with embodiments of the invention is illustrated in
Several space-based satellite strips incorporating coilable thin-walled longerons in accordance with many embodiments of the invention is illustrated in
The space-based satellite module illustrated in
Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 62/699,184, filed Jul. 17, 2018, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2599944 | Salisbury et al. | Jun 1952 | A |
3152260 | Cummings | Oct 1964 | A |
3419433 | Slifer, Jr. | Dec 1968 | A |
3427200 | Lapin et al. | Feb 1969 | A |
3433677 | Robinson et al. | Mar 1969 | A |
3437527 | Webb | Apr 1969 | A |
3457427 | Tarneja et al. | Jul 1969 | A |
3489915 | Engelhardt et al. | Jan 1970 | A |
3530009 | Linkous et al. | Sep 1970 | A |
3532299 | Williamson et al. | Oct 1970 | A |
3562020 | Blevins | Feb 1971 | A |
3611652 | Rabenhorst et al. | Oct 1971 | A |
3616528 | Goldsmith et al. | Nov 1971 | A |
3627585 | Dollery et al. | Dec 1971 | A |
3636539 | Gaddy | Jan 1972 | A |
3698958 | Williamson et al. | Oct 1972 | A |
3730457 | Williams et al. | May 1973 | A |
3735943 | Fayet | May 1973 | A |
3758051 | Williams | Sep 1973 | A |
3781647 | Glaser | Dec 1973 | A |
3785590 | Wentworth | Jan 1974 | A |
3793082 | Roger | Feb 1974 | A |
3805622 | Kinard | Apr 1974 | A |
3809337 | Andrews et al. | May 1974 | A |
3817477 | Luther et al. | Jun 1974 | A |
3848821 | Scheel | Nov 1974 | A |
3863870 | Andrews et al. | Feb 1975 | A |
3952324 | Wolff et al. | Apr 1976 | A |
3989994 | Brown | Nov 1976 | A |
4078747 | Minovitch | Mar 1978 | A |
4116258 | Slysh et al. | Sep 1978 | A |
4133501 | Pentlicki | Jan 1979 | A |
4151872 | Slysh et al. | May 1979 | A |
4153474 | Rex | May 1979 | A |
4155524 | Marello et al. | May 1979 | A |
4234856 | Jung et al. | Nov 1980 | A |
4282394 | Lackey et al. | Aug 1981 | A |
4328389 | Stern et al. | May 1982 | A |
4415759 | Copeland et al. | Nov 1983 | A |
4416052 | Stern | Nov 1983 | A |
4419532 | Severns | Dec 1983 | A |
4687880 | Morris | Aug 1987 | A |
4735488 | Rancourt et al. | Apr 1988 | A |
4780726 | Archer et al. | Oct 1988 | A |
4784700 | Stern et al. | Nov 1988 | A |
4789989 | Stern et al. | Dec 1988 | A |
4947825 | Moriarty | Aug 1990 | A |
4953190 | Kukoleck et al. | Aug 1990 | A |
5013128 | Stern et al. | May 1991 | A |
5114101 | Stern et al. | May 1992 | A |
5131955 | Stern et al. | Jul 1992 | A |
5154777 | Blackmon et al. | Oct 1992 | A |
5177396 | Gielen et al. | Jan 1993 | A |
5180441 | Cornwall et al. | Jan 1993 | A |
5226107 | Stern et al. | Jul 1993 | A |
5280441 | Wada et al. | Jan 1994 | A |
5309925 | Policastro | May 1994 | A |
5310141 | Homer et al. | May 1994 | A |
5337980 | Homer et al. | Aug 1994 | A |
5344496 | Stern et al. | Sep 1994 | A |
5404868 | Sankrithi | Apr 1995 | A |
5428483 | Sato et al. | Jun 1995 | A |
5487791 | Everman et al. | Jan 1996 | A |
5496414 | Harvey et al. | Mar 1996 | A |
5502451 | Rainville et al. | Mar 1996 | A |
5512913 | Staney | Apr 1996 | A |
5520747 | Marks | May 1996 | A |
5569332 | Glatfelter et al. | Oct 1996 | A |
5623119 | Yater et al. | Apr 1997 | A |
5653222 | Newman | Aug 1997 | A |
5666127 | Kochiyama et al. | Sep 1997 | A |
5785280 | Baghdasarian | Jul 1998 | A |
5885367 | Brown et al. | Mar 1999 | A |
5909299 | Sheldon, Jr. et al. | Jun 1999 | A |
5909860 | Lee et al. | Jun 1999 | A |
5969695 | Bassily et al. | Oct 1999 | A |
5984484 | Kruer | Nov 1999 | A |
6017002 | Burke et al. | Jan 2000 | A |
6031178 | Kester | Feb 2000 | A |
6043425 | Assad | Mar 2000 | A |
6050526 | Stribling | Apr 2000 | A |
6060790 | Craig, Jr. | May 2000 | A |
6091017 | Stern | Jul 2000 | A |
6118067 | Lashley et al. | Sep 2000 | A |
6150995 | Gilger | Nov 2000 | A |
6188012 | Ralph | Feb 2001 | B1 |
6194790 | Griffin et al. | Feb 2001 | B1 |
6195067 | Gilger | Feb 2001 | B1 |
6284967 | Hakan et al. | Sep 2001 | B1 |
6300558 | Takamoto et al. | Oct 2001 | B1 |
6343442 | Marks | Feb 2002 | B1 |
6366255 | Chiang | Apr 2002 | B1 |
6366256 | Ramanujam et al. | Apr 2002 | B1 |
6369545 | Williams et al. | Apr 2002 | B1 |
6394395 | Poturalski et al. | May 2002 | B1 |
6423895 | Murphy | Jul 2002 | B1 |
6429368 | Summers | Aug 2002 | B1 |
6528716 | Collette et al. | Mar 2003 | B2 |
6534705 | Berrios et al. | Mar 2003 | B2 |
6541916 | Decker | Apr 2003 | B2 |
6547190 | Thompson et al. | Apr 2003 | B1 |
6555740 | Roth et al. | Apr 2003 | B2 |
6557804 | Carroll | May 2003 | B1 |
6560942 | Warren et al. | May 2003 | B2 |
6565044 | Johnson et al. | May 2003 | B1 |
6577130 | Adamo et al. | Jun 2003 | B1 |
6587263 | Iacovangelo et al. | Jul 2003 | B1 |
6590150 | Kiefer | Jul 2003 | B1 |
6635507 | Boutros et al. | Oct 2003 | B1 |
6655638 | Deel | Dec 2003 | B2 |
6660927 | Zwanenburg | Dec 2003 | B2 |
6660928 | Patton et al. | Dec 2003 | B1 |
6689952 | Kawaguchi | Feb 2004 | B2 |
6690252 | Scoltock, Jr. et al. | Feb 2004 | B2 |
6713670 | Stern et al. | Mar 2004 | B2 |
6735838 | Triller et al. | May 2004 | B1 |
6735920 | Cadogan | May 2004 | B1 |
6768048 | Woll et al. | Jul 2004 | B2 |
6784359 | Clark et al. | Aug 2004 | B2 |
6799742 | Nakamura et al. | Oct 2004 | B2 |
6882072 | Wingett et al. | Apr 2005 | B2 |
6897730 | Dupuis et al. | May 2005 | B2 |
6903261 | Habraken et al. | Jun 2005 | B2 |
6904749 | Joshi et al. | Jun 2005 | B2 |
6909042 | Geyer et al. | Jun 2005 | B2 |
6936760 | Spirnak et al. | Aug 2005 | B2 |
6983914 | Stribling et al. | Jan 2006 | B2 |
7006039 | Miyamoto et al. | Feb 2006 | B2 |
7053294 | Tuttle et al. | May 2006 | B2 |
7077361 | Rabinowitz | Jul 2006 | B1 |
7138960 | Carroll et al. | Nov 2006 | B2 |
7163179 | Taylor | Jan 2007 | B1 |
7211722 | Murphy | May 2007 | B1 |
7271333 | Fabick et al. | Sep 2007 | B2 |
7301095 | Murphy et al. | Nov 2007 | B2 |
7303166 | Geery | Dec 2007 | B2 |
7319189 | Ruelle et al. | Jan 2008 | B2 |
7354033 | Murphey et al. | Apr 2008 | B1 |
7392011 | Jacomb-Hood | Jun 2008 | B1 |
7464895 | Palmer | Dec 2008 | B2 |
7474249 | Williams et al. | Jan 2009 | B1 |
7486431 | Rabinowitz | Feb 2009 | B2 |
7564149 | Siri et al. | Jul 2009 | B2 |
7564628 | Barth et al. | Jul 2009 | B2 |
7568479 | Rabinowitz | Aug 2009 | B2 |
7612284 | Rogers et al. | Nov 2009 | B2 |
7736007 | Rabinowitz | Jun 2010 | B2 |
7866836 | Rabinowitz | Jan 2011 | B2 |
7878667 | Rabinowitz | Feb 2011 | B2 |
7895795 | Murphey | Mar 2011 | B1 |
7960641 | Rabinowitz | Jun 2011 | B2 |
8071873 | Rabinowitz | Dec 2011 | B2 |
8146867 | Jordan et al. | Apr 2012 | B2 |
8215298 | Klotz | Jul 2012 | B2 |
8308111 | Lu et al. | Nov 2012 | B2 |
8356774 | Banik et al. | Jan 2013 | B1 |
8439511 | Stern et al. | May 2013 | B2 |
8616502 | Stribling et al. | Dec 2013 | B1 |
8636253 | Spence et al. | Jan 2014 | B1 |
8683755 | Spence et al. | Apr 2014 | B1 |
8872018 | Breen et al. | Oct 2014 | B1 |
9004410 | Steele | Apr 2015 | B1 |
9079673 | Steele et al. | Jul 2015 | B1 |
9120583 | Spence et al. | Sep 2015 | B1 |
9156568 | Spence et al. | Oct 2015 | B1 |
9248922 | Baghdasarian et al. | Feb 2016 | B1 |
9276148 | Jaffe et al. | Mar 2016 | B2 |
9346566 | Spence et al. | May 2016 | B2 |
9444394 | Thomas et al. | Sep 2016 | B1 |
9709349 | Raman et al. | Jul 2017 | B2 |
9856039 | Abrams et al. | Jan 2018 | B2 |
10071823 | Turse | Sep 2018 | B2 |
10144533 | Atwater et al. | Dec 2018 | B2 |
10340698 | Pellegrino et al. | Jul 2019 | B2 |
10696428 | Pellegrino et al. | Jun 2020 | B2 |
10992253 | Atwater et al. | Apr 2021 | B2 |
11142349 | Barnes | Oct 2021 | B2 |
20020007845 | Collette et al. | Jan 2002 | A1 |
20020029796 | Mikami et al. | Mar 2002 | A1 |
20020029797 | Mikami et al. | Mar 2002 | A1 |
20020032992 | Roth et al. | Mar 2002 | A1 |
20020116877 | Breitbach et al. | Aug 2002 | A1 |
20020134423 | Eller et al. | Sep 2002 | A1 |
20030098057 | Mizuno et al. | May 2003 | A1 |
20030098058 | Takada et al. | May 2003 | A1 |
20030192586 | Takada et al. | Oct 2003 | A1 |
20030196298 | Hinkley et al. | Oct 2003 | A1 |
20040011395 | Nicoletti et al. | Jan 2004 | A1 |
20040140930 | Harles | Jul 2004 | A1 |
20040187912 | Takamoto et al. | Sep 2004 | A1 |
20040231718 | Umeno et al. | Nov 2004 | A1 |
20050046977 | Shifman | Mar 2005 | A1 |
20050178921 | Stribling et al. | Aug 2005 | A1 |
20050241691 | Wakefield | Nov 2005 | A1 |
20050257823 | Zwanenburg | Nov 2005 | A1 |
20060038083 | Criswell | Feb 2006 | A1 |
20060109053 | Kim et al. | May 2006 | A1 |
20060157103 | Sheats et al. | Jul 2006 | A1 |
20060186274 | Wang et al. | Aug 2006 | A1 |
20060207189 | Pryor et al. | Sep 2006 | A1 |
20070029446 | Mosher et al. | Feb 2007 | A1 |
20070087704 | Gilberton | Apr 2007 | A1 |
20080000232 | Rogers et al. | Jan 2008 | A1 |
20080055177 | Dixon | Mar 2008 | A1 |
20080088409 | Okada | Apr 2008 | A1 |
20080149162 | Martinelli et al. | Jun 2008 | A1 |
20080173349 | Liu et al. | Jul 2008 | A1 |
20080185039 | Chan | Aug 2008 | A1 |
20080251113 | Horne et al. | Oct 2008 | A1 |
20080283109 | Mankins et al. | Nov 2008 | A1 |
20090126792 | Gruhlke et al. | May 2009 | A1 |
20090151769 | Corbin | Jun 2009 | A1 |
20090199893 | Bita et al. | Aug 2009 | A1 |
20090223554 | Sharps | Sep 2009 | A1 |
20090250094 | Robison et al. | Oct 2009 | A1 |
20090301544 | Minelli | Dec 2009 | A1 |
20090308451 | Oesterle et al. | Dec 2009 | A1 |
20100170560 | Sapienza et al. | Jul 2010 | A1 |
20100180946 | Gruhlke et al. | Jul 2010 | A1 |
20100224231 | Hoke | Sep 2010 | A1 |
20100263709 | Norman et al. | Oct 2010 | A1 |
20100269885 | Benitez et al. | Oct 2010 | A1 |
20100276547 | Rubenchik et al. | Nov 2010 | A1 |
20100289342 | Maness | Nov 2010 | A1 |
20100300507 | Heng et al. | Dec 2010 | A1 |
20100319774 | Schwartz | Dec 2010 | A1 |
20110041894 | Liao | Feb 2011 | A1 |
20110049992 | Sant'Anselmo et al. | Mar 2011 | A1 |
20110061718 | Fork et al. | Mar 2011 | A1 |
20110080135 | Bland | Apr 2011 | A1 |
20110100425 | Osamura et al. | May 2011 | A1 |
20110120524 | Wares et al. | May 2011 | A1 |
20110203574 | Harding | Aug 2011 | A1 |
20110210209 | Taylor et al. | Sep 2011 | A1 |
20110232718 | Nawab | Sep 2011 | A1 |
20110300664 | Chung et al. | Dec 2011 | A1 |
20110315192 | Swatek et al. | Dec 2011 | A1 |
20120019942 | Morgan et al. | Jan 2012 | A1 |
20120024362 | Gossman | Feb 2012 | A1 |
20120031393 | Linderman et al. | Feb 2012 | A1 |
20120125415 | Tischler | May 2012 | A1 |
20120138749 | Ellinghaus | Jun 2012 | A1 |
20120138997 | Tasaki et al. | Jun 2012 | A1 |
20120160299 | Reid et al. | Jun 2012 | A1 |
20120243252 | Kim | Sep 2012 | A1 |
20130009851 | Danesh | Jan 2013 | A1 |
20130032673 | Kobayashi | Feb 2013 | A1 |
20130093287 | Biso et al. | Apr 2013 | A1 |
20130099599 | Jaffe et al. | Apr 2013 | A1 |
20130133730 | Pan et al. | May 2013 | A1 |
20130220399 | Gruhlke et al. | Aug 2013 | A1 |
20130233974 | Maiboroda et al. | Sep 2013 | A1 |
20130319504 | Yang et al. | Dec 2013 | A1 |
20130319505 | Yang et al. | Dec 2013 | A1 |
20130332093 | Adest et al. | Dec 2013 | A1 |
20140041705 | Kang et al. | Feb 2014 | A1 |
20140083479 | Takayama et al. | Mar 2014 | A1 |
20140102686 | Yu et al. | Apr 2014 | A1 |
20140131023 | Raman et al. | May 2014 | A1 |
20140148197 | Shields | May 2014 | A1 |
20140158197 | Rubenstein et al. | Jun 2014 | A1 |
20140159636 | Yang et al. | Jun 2014 | A1 |
20140261621 | Gruhlke et al. | Sep 2014 | A1 |
20140261622 | Floyd et al. | Sep 2014 | A1 |
20140263844 | Cook, Jr. et al. | Sep 2014 | A1 |
20140263847 | Eskenazi et al. | Sep 2014 | A1 |
20140326833 | Spence et al. | Nov 2014 | A1 |
20140356613 | Weisenberger et al. | Dec 2014 | A1 |
20150022909 | O'Neill | Jan 2015 | A1 |
20150053253 | O'Neill | Feb 2015 | A1 |
20150130293 | Hajimiri et al. | May 2015 | A1 |
20150144740 | Turse et al. | May 2015 | A1 |
20150155413 | Pokharna et al. | Jun 2015 | A1 |
20150217876 | Halsband | Aug 2015 | A1 |
20160056321 | Atwater et al. | Feb 2016 | A1 |
20160065006 | Woods | Mar 2016 | A1 |
20160122041 | Abrams et al. | May 2016 | A1 |
20160164451 | Lenert et al. | Jun 2016 | A1 |
20160311558 | Turse et al. | Oct 2016 | A1 |
20160376037 | Pellegrino et al. | Dec 2016 | A1 |
20160380486 | Hajimiri et al. | Dec 2016 | A1 |
20160380580 | Atwater et al. | Dec 2016 | A1 |
20170021947 | Pellegrino et al. | Jan 2017 | A1 |
20170025992 | Atwater et al. | Jan 2017 | A1 |
20170047463 | Hajimiri et al. | Feb 2017 | A1 |
20170047886 | Atwater et al. | Feb 2017 | A1 |
20170047889 | Atwater et al. | Feb 2017 | A1 |
20170047987 | Pellegrino et al. | Feb 2017 | A1 |
20170063296 | Cruijssen et al. | Mar 2017 | A1 |
20180313083 | Murphey | Nov 2018 | A1 |
20180315877 | Kelzenberg et al. | Nov 2018 | A1 |
20200130868 | Pellegrino et al. | Apr 2020 | A1 |
20200130872 | Spencer et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2833826 | Nov 2012 | CA |
2833862 | May 2014 | CA |
104158471 | Nov 2014 | CN |
0541052 | May 1993 | EP |
0977273 | Feb 2000 | EP |
0996170 | Apr 2000 | EP |
1501132 | Jan 2005 | EP |
976655 | Sep 2005 | EP |
1852919 | Nov 2007 | EP |
1852919 | Feb 2009 | EP |
2318045 | May 2011 | EP |
3325347 | May 2018 | EP |
3334655 | Jun 2018 | EP |
3325347 | Jun 2021 | EP |
2956774 | Aug 2011 | FR |
2247564 | Mar 1992 | GB |
6298781 | May 1987 | JP |
S63254772 | Oct 1988 | JP |
H0369258 | Jul 1991 | JP |
H05107328 | Apr 1993 | JP |
H06253477 | Sep 1994 | JP |
082500 | Sep 1996 | JP |
2000114571 | Apr 2000 | JP |
2001088799 | Apr 2001 | JP |
2001309581 | Nov 2001 | JP |
2002362500 | Dec 2002 | JP |
2003164077 | Jun 2003 | JP |
2003164078 | Jun 2003 | JP |
2003191899 | Jul 2003 | JP |
2004090817 | Mar 2004 | JP |
2004196051 | Jul 2004 | JP |
2004253471 | Sep 2004 | JP |
2004296658 | Oct 2004 | JP |
2009184603 | Aug 2009 | JP |
2010259301 | Nov 2010 | JP |
6715317 | Jun 2020 | JP |
2004049538 | Jun 2004 | WO |
2008073905 | Jun 2008 | WO |
2010033632 | Mar 2010 | WO |
2011006506 | Jan 2011 | WO |
2011062785 | May 2011 | WO |
2011067772 | Jun 2011 | WO |
2011109275 | Sep 2011 | WO |
2011062785 | Nov 2011 | WO |
2015175839 | Nov 2015 | WO |
2015175839 | Nov 2015 | WO |
2015179213 | Nov 2015 | WO |
2015179214 | Nov 2015 | WO |
2015187221 | Dec 2015 | WO |
2015187739 | Dec 2015 | WO |
2017015508 | Jan 2017 | WO |
2017015605 | Jan 2017 | WO |
2017027615 | Feb 2017 | WO |
2017027617 | Feb 2017 | WO |
2017027629 | Feb 2017 | WO |
2017027633 | Feb 2017 | WO |
Entry |
---|
“DuPont Kapton: Polyimide Film”, kapton.dupont.com, Mar. 2012, H-38479-9, 7 pgs. |
“ESA. Composite material structures.”, printed Jun. 29, 2017 from http://www.esa.int/Our_Activities/Space_Engineering_Technology/Structures/Composite_Materials_structures, Oct. 20, 2014, 2 pgs. |
“Orbital ATK”, Coilable Boom Systems. Technical report, Oct. 18, 1989, 2 pgs. |
“Space solar power limitless clean energy from space”, National Space Society, printed Jun. 29, 2017 from http://www.nss.org/settlement/ssp/, May 2017, 11 pgs. |
Aguirre-Martinez et al., “Development of a Continuous Manufacturing Method for a Deployable Satellite Mast in Cfrp”, 15th Reinforced Plastics Congress 1986., (September), pp. 107-110, 1986. |
Aieta et al., “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces”, Nano Lett., Web publication date Aug. 2012, vol. 12, No. 9, pp. 4932-4936. |
Aieta et al., “Multiwavelength achromatic metasurfaces by dispersive phase compensation”, Science, Mar. 20, 2015, vol. 347, No. 6228, pp. 1342-1345, doi: 10.1126/science.aaa2494. |
Amacher et al., “Thin ply composites: Experimental characterization and modeling of size-effects”, Composites Science and Technology, Jul. 11, 2014, vol. 101, pp. 121-132. |
Andryieuski et al., “Rough metal and dielectric layers make an even better hyperbolic metamaterial absorber”, Optics Express, Jun. 11, 2014, vol. 22, No. 12, pp. 14975-14980. |
Aoki et al., “A Fully Integrated Quad-Band GSM/GPRS Power Amplifier”, IEEE Journal of Solid-State Circuits, vol. 43, Issue 12, Dec. 12, 2008, pp. 2747-2758. |
Arai, “Pitch-based carbon fiber with low modulus and high heat conduction”, Nippon Steel Technical Report No. 84, Jul. 11, 2001, pp. 12-17. |
Arbabi, et al., “Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules”, Optics, Jan. 22, 2016, vol. 3, Issue 6, pp. 628-633. |
Arbabi, et al., “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays”, Nature Communications, May 5, 2015, vol. 6, pp. 7069, doi:10.1038/ncomms8069. |
Arbabi et al., “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission”, Nature Nanotechnology, Aug. 31, 2015, 27 pgs., doi:10.1038/nnano.2015.186. |
Arya, “Packaging and Deployment of Large Planar Spacecraft Structures”, Thesis of Manan Arya, May 2, 2016, 131 pgs. |
Arya et al., “Ultralight Structures for Space Solar Power Satellites”, American Institute of Aeronautics and Astronautics, 2016, pp. 1-18. |
Arya et al., “Wrapping Thick Membranes with Slipping Folds”, American Institute of Aeronautics and Astronautics, date unknown, pp. 1-17. |
Bakr et al., “Impact of phase and amplitude errors on array performance”, UC Berkeley Technical Report No. UCB/EECS-2009-1. Retrieved from http://www.eecs.berkeley.com/Pubs/TechRpts/2009/EECS-2009-1.html, Jan. 1, 2009, 12 pgs. |
Banik et al., “Performance Validation of the Triangular Rollable and Collapsible Mast”, Proceedings of the 24th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 9, 2010, 8 pgs. |
Banik et al., “Verification of a Retractable Solar Sail in a Thermal-Vacuum Environment”, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Apr. 12-15, 2010, Orlando, Florida, doi: 10.2514/6.2010-2585. |
Bapanapalli et al., “The Effect of Tool-Part Interactions on the Geometry of Laminated Composites”, Washington State University, Jul. 10, 2016. |
Biddy et al., “LightSail-1 solar sail design and qualification”, Proceedings of the 41st Aerospace Mechanisms Symposium, May 16, 2012, pp. 451-463. |
Bohn et al., “Fully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased-Array Receiver in CMOS”, Radio Frequency Integrated Circuits Symposium (RFIC), Apr. 17-Jun. 17, 2008. IEEE, pp. 439-442. |
Borriello et al., “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides”, Physical Review B, Jun. 23, 2008, vol. 77, 235214, 9 pgs. |
Brongersma et al., “Light management for photovoltaics using high-index nanostructures”, Nature Materials, vol. 13, No. 25, May 2014, pp. 451-460. |
Cahill et al., “Nanoscale thermal transport. II. 2003-2012”, Applied Physics Review, Jan. 14, 2014, vol. 1, No. 1, pp. 011305-1-011305-45. |
Calladine et al., “The theory of thin shell structures 1888-1988”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 202, No. 3, Jan. 7, 1988, pp. 141-149. |
Callahan et al., “Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers”, Optics Express, vol. 21, Issue 25, DOI: 10.1364/OE.21.030315, 2013, pp. 30315-30326. |
Campbell et al., “A Pixel Readout Chip for Mrad in Standard 0.25um CMOS”, IEEE Transactions on Nuclear Science, vol. 46, issue: 3, Jun. 1999, pp. 156-160. |
Cao et al., “A 4.5MGy TID-Tolerant CMOS Bandgap Reference Circuit Using a Dynamic Base Leakage Compensation Technique”, IEEE Transactions on Nuclear Science, vol. 60, issue 4, Aug. 2013, pp. 2819-2824. |
Castle Jr., “Heat conduction in carbon materials”, 1st Biennial Conference of the American Carbon Society, pp. 13-19, Nov. 2, 1953. |
Chen et al., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, Journal of the American Chemical Society 136, Dec. 20, 2013, pp. 622-625. |
Cheng et al., “Optical metasurfaces for beam scanning in space”, Optics Letters, May 1, 2014, vol. 39, No. 9, pp. 2719-2722. |
Conings et al., “Intrinsic thermal instability of methylammonium lead trihalide perovskite”, Advanced Energy Materials, Jun. 2, 2015, DOI: 10.1002/aenm.201500477, 8 pgs. |
David, “Extraterrestrial mining could reap riches and spur exploration”, http://www.space.com/16273-extraterrestrial-mining-asteroids-moon.html, Jun. 25, 2012, 7 pgs. |
Delapierre et al., “Spin-Stabilized Membrane Antenna Structures”, American Institute of Aeronautics and Astronautics, date unknown, pp. 1-15. |
Du Toit et al., “Advances in the design of Jaumann absorbers”, in Antennas and Propagation Society International Symposium, 1990. AP-S. Merging Technologies for the 90's. Digest., May 7, 1990, vol. 3, pp. 1212-1215. |
Elfiky et al., “Study the effects of proton irradiation on GaAs/Ge solar cells”, 35th IEEE Photovoltaic Specialist Conference, Jul. 2010, pp. 002528-002532. |
Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years”, IEEE Trans. Antennas Propag., vol. 21, No. 4, Jul. 1973, pp. 484-490. |
Eperon et al., “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells”, Advanced Functional Materials 24, first published Sep. 9, 2013, pp. 151-157. |
Ersoy et al., “An experimental method to study the frictional processes during composites manufacturing”, Composites Part A: Applied Science and Manufacturing, Feb. 19, 2005, vol. 36, No. 11, pp. 1536-1544. |
Estvanko et al., “Numerical analysis of a tape spring hinge folded about two axes”, Earth and Space 2012 © Engineering, Science, Construction, and Operations in Challenging Environments, ASCE, Jul. 11, 2012, pp. 714-721. |
Fallahi et al., “Thin wideband radar absorbers”, Transactions on Antennas and Propagation, Nov. 30, 2010, vol. 58, No. 12, pp. 4051-4058. |
Fante et al., “Reflection properties of the Salisbury screen”, IEEE Transactions on Antennas and Propagation, Oct. 1988, vol. 36, No. 10, pp. 1443-1454. |
Fernandez, “Advanced Deployable Shell-Based Composite Booms For Small Satellite Structural Applications Including Solar Sails”, International Symposium on Solar Sailing, Jan. 17-20, 2017, Kyoto, Japan, 19 pgs. |
Fernlund, “Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts”, Composites—Part A: Applied Science and Manufacturing, 33(3):341-351, 2002. |
Geisz et al., “Infrared Reflective and Transparent Inverted Metamorphic Triple Junction Solar Cells”, AIP Conference Proceedings, vol. 1277, Issue 11, pp. 11-15, Nov. 14, 2010. |
Herbeck et al., “Development and test of deployable ultra-lightweight CFRP-booms for a Solar Sail”, European Space Agency, (Special Publication) ESA SP, 49(468):107-112, 2001. |
Rephaeli et al., “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit”, Optics. Express, Aug. 11, 2009, vol. 17, No. 17, pp. 15145-15159. |
Rephaeli et al., “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling”, Nano Letters, vol. 13, Mar. 5, 2013, pp. 1457-1461. |
Roybal et al., “Development of an Elastically Deployable Boom for Tensioned Planar Structures”, American Institute of Aeronautics and Astronautics, Apr. 23-26, 2007, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, doi: 10.2514/6.2007-1838. |
Rubenchik et al., “Solar Power Beaming: From Space to Earth”, U.S. Department of Energy Office of Scientific and Technical Information, Apr. 14, 2009, Technical Report LLNL-TR-412782, 16 pgs. DOI: 10.2172/952766. |
Santer et al., “Composite Tube Flexures at Nanosatellite Scale”, 4th AIAA Space-craft Structures Conference, Jan. 9-13, 2017, 12 pgs. |
Sasaki, “How Japan plans to build an orbital solar farm”, printed from https://energy.gov/articles/space-based-solar-power, published Apr. 24, 2014. |
Sasaki et al., “A new concept of solar power satellite: Tethered-SPS”, Acta Astronautica, 2006, vol. 60, pp. 153-165, doi:10.1016/j.actaastro.2006.07.010. |
Sato et al., “Modeling of degradation behavior of InGaP/GaAs/Ge triple-junction space solar cell exposed to charged particles”, Journal of Applied Physics, vol. 105, 2009, pp. 044504-1-044504-6. |
Scholl et al., “Quantum plasmon resonances of individual metallic nanoparticles”, Nature, Mar. 22, 2012, vol. 483, doi:10.1038/nature10904, pp. 421-428. |
Seffen et al., “Deployment dynamics of tape springs”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Mar. 9, 1999, vol. 455, pp. 1003-1048. |
Shaltout et al., “Time-varying metasurfaces and Lorentz non-reciprocity”, Optical Materials Express, Nov. 1, 2015, vol. 5, No. 11, pp. 2459-2467. |
Shin-Etsu, “Meeting the increasingly diverse and sophisticated needs of industry with the unique properties of silicone rubbers”, Characteristic properties of Silicone Rubber Compounds, 2013, 16 pgs. |
Sickinger et al., “Lightweight deployable booms: Design, manufacture, verification, and smart materials application”, 55th International Astronautical Congress, Vancouver, Canada, Oct. 4-8, 2004, pp. 1-11. |
Sihn et al., “Experimental studies of thin-ply laminated composites”, Composites Science and Technology, May 1, 2007, vol. 67, pp. 996-1008. |
Silva et al., “Performing Mathematical Operations with Metamaterials”, Science, Jan. 10, 2014, vol. 343, No. 6167, pp. 160-163. |
Silverman et al., “Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module”, presented at the 39th IEEE Photovoltaic Specialist Conference, Conference Jun. 16-21, 2013, Tampa, Florida, USA, 6 pgs. |
Snoeys et al., “Integrated Circuits for Particle Physics Experiments”, IEEE Journal Solid-State Circuits, vol. 35, issue 12, Dec. 2000, pp. 2018-2030. |
Stabile et al., “Coiling dynamic analysis of thin-walled composite deployable boom”, Composite Structures, Mar. 29, 2014, vol. 113, pp. 429-436. |
Steeves, “Multilayer Active Shell Mirrors”, Thesis of John Steeves, May 5, 2015, 164 pgs. |
Stohlman et al., “Thermal Deformation of Very Slender Triangular Rollable and Collapsible Booms”, 3rd AIAA Spacecraft Structures Conference, San Diego, California, 2016, pp. 2016-1469. |
Streyer et al., “Strong absorption and selective emission from engineered metals with dielectric coatings”, Optics Express , Apr. 8, 2013, vol. 21, No. 7, pp. 9113-9122. |
Stuart et al., “Absorption enhancement in silicon-on-insulator waveguides using metal island films,”, Appl. Phys. Lett., Oct. 14, 1996, vol. 69, No. 16, pp. 2327-2329. |
Stuart et al., “Island size effects in nanoparticle-enhanced photodetectors”, Appl. Phys. Lett., Dec. 28, 1998, vol. 73, No. 26, pp. 3815-3817. |
Svanberg et al., “An experimental investigation on mechanisms for manufacturing induced shape distortions in homogeneous and balanced laminates”, Composites—Part A: Applied Science and Manufacturing, Jun. 1, 2001, vol. 32, pp. 827-838. |
Torayca, “T800H Technical Data Sheet”, Technical report No. CFA-007, 2 pgs. |
Tsai et al., “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells”, Nature, Aug. 18, 2016, vol. 536, doi:10.1038/nature18306, 15 pgs. |
Vaccaro et al., “In-flight experiment for combined planar antennas and solar cells (SOLANT)”, IET Microwaves Antennas & Propaga, vol. 3, No. 8, Dec. 1, 2009 (Dec. 1, 2009), pp. 1279-1287. |
Walker et al., “An investigation of tape spring fold curvature”, Proceedings of the 6th International Conference on Dynamics and Control of Systems and Structures in Space, Citeseer, 2004, 10 pgs. |
Walters et al., “Spenvis implementation of end-of-life solar cell calculations using the displacement damage dose methodology”, in the Proceedings of the 19th Space Photovoltaic Research and Technology Conference, Feb. 1, 2007, 9 pgs. |
Wang et al., “A Broadband Self-Healing Phase Synthesis Scheme”, Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, Jun. 5-7, 2011, 4 pgs. |
Weinberg et al., “Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells”, NASA Technical Memorandum 89870, Washington, D.C., May 4-8, 1987, 14 pgs. |
Wells et al., “Metamaterials-based Salisbury screens with reduced angular sensitivity”, Appl. Phys. Lett., Oct. 21, 2014, vol. 105, pp. 161105-1-161105-4. |
White et al., “Cure Cycle Optimization for the Reduction of Processing-Induced Residual Stresses in Composite Materials”, Journal of Composite Materials, Dec. 1, 1993, vol. 27, No. 14, pp. 1352-1378. |
Whorton et al., “Nanosail-D: the first flight demonstration of solar sails for nanosatellites”, 22nd AIAA/USU Conference on Small Satellites, Aug. 11, 2008, pp. 1-6. |
Wood, “Space-based solar power”, printed Jul. 5, 2017 from https://energy.gov/articles/space-based-solar-power, Mar. 6, 2014, 7 pgs. |
Wu et al., “Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition”, Energy & Environmental Science 7, Jun. 24, 2014, pp. 2934-2938. |
Yamaguchi, “Radiation-resistant solar cells for space use”, Solar Energy Materials & Solar Cells, 2001, vol. 68, pp. 31-53. |
Yamaguchi et al., “Correlations for damage in diffused-junction InP solar cells induced by electron and proton irradiation”, Journal of Applied Physics, May 1, 1997, vol. 81, No. 9, 6013-6018. |
Yamaguchi et al., “Mechanism for the anomalous degradation of Si solar cells induced by high fluence 1 MeV electron irradiation”, Applied Physics Letters, May 27, 1996, vol. 68, No. 22, pp. 3141-3143. |
Yu et al., “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces”, Nano Letters, Nov. 3, 2012, vol. 12, No. 12, pp. 6328-6333. |
Yu et al., “Flat optics with designer metasurfaces”, Nature Materials, 2014, vol. 13, pp. 139-150. |
Zhang et al., “Infrared Refractive Index and Extinction Coefficient of Polyimide Films”, International Journal of Thermophysics, May 1, 1998, vol. 19, No. 3, pp. 905-916. |
Zhang et al., “Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3”, Chinese Physics Letters, Jun. 3, 2015, vol. 35, No. 3, 036104, 11 pgs. |
Zheng et al., “Metasurface holograms reaching 80% efficiency”, Nature Nanotechnology, published online Feb. 23, 2015, pp. 1-6. |
Zhu et al., “Radiative cooling of solar cells”, Optica, Jul. 22, 2014, vol. 1, pp. 32-38. |
Zhu et al., “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody”, PNAS, Oct. 6, 2015, vol. 112, pp. 12282-12287. |
ATI Industrial, Multi-Axis Force / Torque Sensor, ATI Industrial Automation, Jul. 23, 2014, pp. 1-44. |
DuPont Kapton, Mar. 2012, 26 pgs. |
Extended European Search Report for European Application No. 15795587.3, Search completed Feb. 5, 2018, dated Feb. 12, 2018, 7 pgs. |
Extended European Search Report for European Application No. 15803447.0, Search completed Oct. 17, 2017, dated Oct. 25, 2017, 10 pgs. |
Extended European Search Report for European Application No. 16828571.6, Search completed Mar. 18, 2019, dated Mar. 22, 2019, 17 pgs. |
Extended European Search Report for European Application No. 16835856.2, Search completed Feb. 22, 2019 dated Mar. 1, 2019, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/030895, issued Nov. 15, 2016, dated Nov. 24, 2016, 12 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/030900, issued Nov. 15, 2016, dated Nov. 24, 2016, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/030909, issued Nov. 15, 2016, dated Nov. 24, 2016, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/033841, issued Dec. 6, 2016, dated Dec. 15, 2016, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/043424, issued May 15, 2018, dated May 24, 2018, 12 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/043677, Report issued Jan. 23, 2018, dated Feb. 1, 2018, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/046389, Report issued Feb. 13, 2018, dated Feb. 22, 2018, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/046394, Report issued Feb. 13, 2018, dated Feb. 22, 2018, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/046415, Report issued Feb. 13, 2018, dated Feb. 22, 2018, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/046421, Report issued Feb. 13, 2018, dated Feb. 22, 2018, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/030895, completed Nov. 27, 2015, dated Nov. 30, 2015, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/030909, completed Nov. 27, 2015, dated Nov. 27, 2015, 13 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/043424, completed Nov. 15, 2016, dated Nov. 15, 2016, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/043677, completed Oct. 21, 2016, dated Oct. 21, 2016, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/046389, completed Nov. 22, 2016, dated Nov. 22, 2016, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/046394, completed Nov. 17, 2016, dated Nov. 17, 2016, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/046415, completed Nov. 17, 2016, dated Nov. 17, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2016/046421, completed Nov. 17, 2016, dated Nov. 17, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2015/030900, Completed Aug. 11, 2015, dated Aug. 13, 2015, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2015/033841, Completed Sep. 10, 2015, dated Sep. 11, 2015, 11 pgs. |
Smooth on, Mold Max® XLS® II, Jan. 15, 2016, 2 pgs. |
“AZ Technology | Materials, Paint and Coatings: AZ-93 White Thermal Control, Electrically Conductive Paint / Coating (AZ's Z-93P)”, Available http://www.aztechnology.com/materials-coatings-az-93.html, Accessed: Dec. 19, 2016, 2 pgs. |
“Corona Resistant Kapton CR Takes Electrical Insulation Design and Reliability to New Levels”, Kapton, DuPont Films, H-54506-1. |
“DuPont Kapton 100CRC: Technical Data Sheet”, kapton.dupont.com, Jul. 2014, K-28402. |
“DuPont Kapton 120FWN616B”, kapton.dupont.com, K-28459, Sep. 2014. |
“DuPont Kapton 150FCRC019”, kapton.dupont.com, K-28402, Jun. 2014. |
“DuPont Kapton 150FWN019: Magnet Wire Insulation”, www.kapton.dupont.com, H-78319-01, Mar. 2005. |
“DuPont Kapton 150FWR019: Insulation Substrate”, www.dupont.com/kapton, H-78312, Nov. 2001. |
“DuPont Kapton 150PRN411”, kapton.com, K-28731, Dec. 2014. |
“DuPont Kapton 200FWR919: Insulation Substrate”, www.dupont.com/kapton, H-78313, Nov. 2001. |
“DuPont Kapton 200RS100”, kapton.com, K-15354-2, Sep. 2014. |
“DuPont Kapton B: Technical Bulletin”, kapton.dupont.com, K-25099-1, Jul. 2013. |
“DuPont Kapton FCR: Advanced Magnet Wire Insulation”, Jun. 2005, H-99888. |
“DuPont Kapton FN: Polyimide Film”, kapton.com, K-15347-2, Jun. 2015. |
“DuPont Kapton FPC: Polyimide Film”, kapton.dupont.com, K-15361, Mar. 2006. |
“DuPont Kapton GS Polyimide Film: Technical Data Sheet”, kapton.dupont.com, K-26875-1, Jul. 2014. |
“DuPont Kapton HN:Polyimide Film”, kapton.dupont.com, K-15345-1, Apr. 2011. |
“DuPont Kapton HPP-ST: Polyimide Film”, kapton.dupont.com, K-15357, Mar. 2006. |
“DuPont Kapton MT: Technical Data Sheet”, kapton.dupont.com, H-38497-3, Apr. 2014. |
“DuPont Kapton PST: Polyimide Film”, kapton.dupont.com, K-10790, Nov. 2005. |
“DuPont Kapton PV9100 Series: Polyimide Films”, kapton.dupont.com, K-26028-1_A4, Oct. 2012. |
Hillebrandt et al., “The Boom Design of the De-Orbit Sail Satellite”, European Conference on Spacecraft Structures, Materials and Mechanical Testing, European Conference on Spacecraft Structures, Materials & Environmental Testing, Apr. 1-4, 2014, Braunschweig, Germany, 8 pgs. |
Huang et al., “Gate-tunable conducting oxide metasurfaces”, Nano Letters, vol. 16, No. 9., web publication date Aug. 26, 2016, pp. 5319-5325. |
Irwin et al., “Low-Mass Deployable Spacecraft Booms”, AIAA Space 2010 Conference & Exposition, pp. 1-11, Aug. 30, 2010. |
Jaffe et al., “Development of a Sandwich Module Prototype for Space Solar Power”, 2012 IEEE Aerospace Conference, Mar. 3-10, 2012, Big Sky, MT, USA, pp. 1-9 , DOI: 10.1109/AERO.2012.6187077. |
Jaffe et al., “Energy Conversion and Transmission Modules for Space Solar Power”, Proceedings of the IEEE, Jun. 2013, vol. 101, No. 6, pp. 1424-1437, DOI: 10.1109/JPROC.2013.2252591. |
Jang et al., “Tunable large resonant absorption in a midinfrared graphene Salisbury screen”, Physical Review. B, Oct. 8, 2014, vol. 90, No. 16, pp. 165409-1-165409-5. |
Johnson et al., “NanoSail-D: A Solar Sail Demonstration Mission”, Acta Astronautica, 2011, Published Online Mar. 6, 2010, vol. 68 pp. 571-575, doi: 10.1016/j.actaastro.2010.02.008. |
Kaltenbrunner et al., “Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air”, Nature Materials, vol. 14, doi:10.1038/nmat4388, Aug. 24, 2015, pp. 1032-1039. |
Kelly, “On Kirchhoff's law and its generalized application to absorption and emission by cavities”, Journal of Research of the National Bureau of Standards—B. Mathematics and Mathematical Physics, Jul.-Sep. 1965, vol. 69B, No. 3, pp. 165-171. |
Kildishev et al., “Planar Photonics with Metasurfaces”, Science, Mar. 15, 2013, vol. 339, No. 6125, pp. 1232009-1-1232009-6. |
Knott et al., “Performance Degradation of Jaumann Absorbers Due to Curvature”, IEEE Transactions on Antennas and Propagation, Jan. 1980, vol. AP28, No. 1, pp. 137-139. |
Kryder et al., “Heat Assisted Magnetic Recording”, Proceeding of the IEEE, current version published Dec. 2, 2008, vol. 96, No. 11, pp. 1810-1835. |
Lacoe, R. C. “Improving Integrated Circuit Performance Through the Application of Hardness-by-Design Methodology”, IEEE Transactions on Nuclear Science, vol. 55, issue: 4, Aug. 2008, pp. 1903-1925. |
Lamoureux et al., “Dynamic kirigami structures for integrated solar tracking”, Nature Communications, DOI:10.1038/ncomms9092, Sep. 8, 2015, pp. 1-6. |
Leclerc et al., “Characterization of Ultra-Thin Composite Triangular Rollable and Collapsible Booms”, 4th AIAA Spacecraft Structures Conference, AIAA SciTech Forum, Jan. 2017, 15 pgs. |
Leclerc et al., “Stress Concentration and Material Failure During Coiling of Ultra-Thin TRAC Booms”, 2018 AIAA Spacecraft Structures Conference, Jan. 7, 2018, p. 0690, doi: 10.2514/6.2018-0690. |
Lee et al., “Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics”, Advanced Functional Materials, Apr. 2, 2014, vol. 24, pp. 4284-4291. |
Liang et al., “Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells”, Advanced Materials, Mar. 14, 2014, vol. 26, pp. 3748-3754. |
Liu et al., “Microstructure, thermal shock resistance and thermal emissivity of plasma sprayed LaMAl11 O19(M=Mg, Fe) coatings for metallic thermal protection systems”, Applied Surface Science, vol. 271, Feb. 6, 2013, pp. 52-59. |
Lohmeyer et al., “Correlation of GEO communication satellite anomalies and space weather phenomena: Improved satellite performance and risk mitigation”, paper presented at 30th AIAA International Communications Satellite Systems Conference (ICSSC), Ottawa, Canada, pp. 1-20, Jul. 13, 2012. |
Luukkonen et al., “A thin electromagnetic absorber for wide incidence angles and both polarizations”, IEEE Transactions on Antennas and Propagation, IEEE Transactions on Antennas and Propagation Jul. 28, 2009, pp. 3119-3125. |
Mankins, “A technical overview of the “SunTower” solar power satellite concept”, Acta Astronautica, 50(6):369-377, Mar. 1, 2002. |
Mankins, “SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array (A 2011-2012 NASA NIAC Phase 1 Project)”, Artemis Innovation Management Solutions LLC, Sep. 15, 2012, NIAC Phase 1 Final Report, 113 pgs. |
McNutt et al., “Near-Earth Asteroid Scout”, American Institute of Aeronautics and Astronautics, AIAA Space 2014 Conference and Exposition, Aug. 4-7, 2014, San Diego, CA, doi: 10.2514/6.2014-4435. |
Messenger et al., “Quantifying low energy proton damage in multijunction solar cell”, in the proceedings of the 19th Space photovoltaic research and technology conference, 2005, NASA/CP-2007-214494, pp. 8-17. |
Messenger et al., “Status of Implementation of Displacement Damage Dose Method for Space Solar Cell Degradation Analyses”, 2008 Dd EOL Calc via SPENVIS manuscript SRM2, Jan. 2008, 8 pgs., Jan. 2008. |
Miyazawa et al., “Evaluation of radiation tolerance of perovskite solar cell for use in space”, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, New Orleans, LA, USA, Dec. 17, 2015, pp. 1-4, published Jun. 1, 2015. |
Mizuno et al., “A black body absorber from vertically aligned single-walled carbon nanotubes”, Proc. Natl. Acad. Sci., Apr. 14, 2009, vol. 106, No. 15, pp. 6044-6047. |
Murphey et al., “TRAC Boom Structural Mechanics”, American Institute of Aeronautics and Astronautics, Jan. 9-13, 2017, Grapevine, TX, 4th AIAA Spacecraft Structures Conference, doi: 10.2514/6.2017-0171. |
Narimanov et al., “Reduced reflection from roughened hyperbolic metamaterial”, Optics Express, Jun. 17, 2013, vol. 21, No. 12, pp. 14956-14961. |
Narita et al., “Development of high accuracy phase control method for space solar power system”, Proc. IEEE International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, May 12-13, 2011, pp. 227-230. |
NASA TV, “Solar Power, Origami-Style”, printed Aug. 14, 2014 from http://www.nasa.gov/jpl/news/origami-style-power-20140814, 4 pgs. |
Ni et al., “Metasurface holograms for visible light”, Nature Communications, Nov. 15, 2013, vol. 4, pp. 1-6. |
Nishioka et al., “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration”, Solar Energy Materials and Solar Cells, vol. 85, Issue 3, Jan. 31, 2005, pp. 429-436. |
NTPT, “NTPT Thin prepreg 402”, Data sheet, Version 1.6, May 11, 2017, 5 pgs. |
O'Hara, “Mechanical properties of silicone rubber in a closed volume”, Technical Report, Army Armament Research and Development Center, Dec. 1983, 21 pgs. |
O'Brien et al., “The AE9/AP9 Radiation Specification Development”, Aerospace Corporation, Sep. 15, 2009, Report No. TOR-2009(3905)-8, 29 pgs. |
Pellegrino, “AAReST telescope architecture”, obtained from http://www.pellegrino.caltech.edu/aarest2/, printed Jul. 5, 2017, 4 pgs. |
Penjuri et al., “Simulation and Testing of Deployable CFRP Booms for Large Space Structures”, PhD thesis, Aug. 2011, 118 pgs. |
Petrovic et al., “Design Methodology for Fault Tolerant ASICs”, IEEE 15th International Symposium, Design and Diagnostics of Electronic Circuits & Systems (DDECS), Apr. 18-20, 2012, pp. 8-12. |
Pors et al., “Analog Computing Using Reflective Plasmonic Metasurfaces”, Nano Lett., Dec. 18, 2014, vol. 15, pp. 791-797. |
Preston et al., “From plasmon spectra of metallic to vibron spectra of dielectric nanoparticles”, Accounts of Chemical Research, Jan. 9, 2012, vol. 45, No. 9, pp. 1501-1510. |
Radford et al., “Measurement of Manufacturing Distortion in Flat Composite Laminates”, International Conference on Composite Materials, Jul. 1999, 9 pgs. |
Radford et al., “Separating Sources of Manufacturing Distortion in Laminated Composites”, Journal of Reinforced Plastics and Composites, first published May 1, 2000, vol. 19, No. 08/2000, pp. 621-641. |
Rakic et al., “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum”, Applied Optics, Aug. 1, 1995, vol. 34, No. 22, pp. 4755-4767. |
Rakic et al., “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices”, Applied Optics, Aug. 1, 1998, vol. 37, No. 22, pp. 5271-5283. |
Raman et al., “Passive radiative cooling below ambient air temperature under direct sunlight”, Nature, Nov. 27, 2014, vol. 515, pp. 540-544. |
Reha et al., “A Dual-Band Rectangular CPW Folded Slot Antenna for GNSS Applications”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Aug. 2014. pp. 11055-11061. |
Romeo et al., “Unique space telescope concepts using CFRP composite thin-shelled mirrors and structures”, 2007. |
Number | Date | Country | |
---|---|---|---|
20200024007 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62699184 | Jul 2018 | US |