Capacitors with high volumetric energy density, high operating temperature, low equivalent series resistance (ESR), and long lifetime are critical components for pulse-power, automotive, and industrial electronics. The physical characteristics of the dielectric material in the capacitor are the primary determining factors for the performance of a capacitor. Accordingly, improvements in one or more of the physical properties of the dielectric material in a capacitor can result in corresponding performance improvements in the capacitor component, usually resulting in performance and lifetime enhancements of the electronics system or product in which it is embedded. Since improvements in capacitor dielectric can directly influence product size, product reliability, and product efficiency, there is a high value associated with such improvements.
Certain improvements in capacitor dielectric materials can be considered as enabling to a particular technology application. For example, capacitors with high permittivity, high dielectric strength, low ESR, and low dielectric dissipation factor will allow high frequency or pulse-power applications to be reduced to a practical size. High temperature operation will greatly simplify next-generation electric vehicles. Improved dielectrics will enable the specific power and reliability of switching power supplies, power conditioners, and filters to be increased. Improved energy density will decrease the area presently devoted to capacitor devices on printed circuit boards, reducing the weight and size of power conditioning systems, power supplies and down-hole tools for use in oil or gas wells.
To reduce the size of a capacitor while retaining all other physical and electrical characteristics, either an increase in the capacitor dielectric constant or dielectric breakdown strength is necessary. Both are fulfilled with the development of new thin, flexible dielectrics having high voltage breakdown strength, a high dielectric constant and a low ESR loss. Some applications additionally require a stable dielectric constant with no reduction in lifetime at temperatures exceeding 150[deg.] C.
High voltage non-polar capacitors are conventionally made using a metalized polymer film that is wound into a cylindrical shape. In conventional wound capacitors, the dielectric material is typically a polymer film. Common polymer dielectric materials include polycarbonate, polyethylene terephthalate (PET, also known as polyester), polypropylene, polystyrene, and polysulfone. Polymer dielectric-based foil capacitors are generally fabricated by placing alternating sheets of polymer and metal foil in a stack and rolling the stack into a tubular shape or depositing a metal film on one side of the polymer then rolling two stacked metalized polymer films into a tubular shape. Electrical wires are connected to each metal foil. The dielectric material exists in the form of self-supporting layers that are thick enough to sustain the necessary operating voltage (typically at least 3-6 micrometers). Unfortunately, the large thickness of the polymer sheets reduces the energy storage density. Usually the dielectric constant of these capacitors changes and the lifetime is shortened at temperatures in excess of 100-150° C. due to deficiencies in the polymer material. Alternately, two polymer films coated with a thin layer of metal (usually 17-100 nanometers thick) are wound into a tubular shape to form a capacitor. The thin metal film has the advantage of clearing any short that may form if the polymer dielectric breaks down during operation. This may extend the life of the capacitor and minimize the chances of catastrophic failure of the capacitor. Conventional film capacitors do not have high energy density because the relative permittivity (also known as dielectric constant κ) of the film is relatively low, e.g., less than about 5.
Amorphous SiO2, HfO2, other metal oxides and stacks of amorphous oxides and nitrides, e.g. SiO2/Si3N4, are disclosed in prior art as dielectric materials of capacitors. A flexible substrate comprised of an insulating polymer film coated with thin metal layers on both sides of the film and a process to deposit the amorphous oxides and oxide/nitride layers on the film to produce a material that can be rolled into cylindrical shapes is also disclosed in prior art.
In the prior art the metallized film capacitors are known. These capacitors include two tightly wound sheets, wrapped around a core. Each sheet includes a dielectric layer and a metallized layer. The metallized layer does not extend to the opposing ends of the sheet leaving a non-metallized margin on opposing sides of each sheet. The ends of the roll formed from the two tightly wound sheets are sprayed with a conductive metal to form a conducting termination for the capacitor. Capacitors made in this way can be used for a variety of purposes depending upon factors such as the type of sheet material as well as the thickness and dielectric constant of the sheet. Typical materials for the sheet are, for example, oriented polypropylene or poly-(ethylene)-terephtalate. The conductive metal termination is typically applied in a vacuum metallizer and is generally comprised of aluminum, zinc or alloys thereof.
The present disclosure provides a coiled capacitor which may solve a problem of the further increase of volumetric and mass density of reserved energy associated with some energy storage devices, and at the same time reduce cost of materials.
Aspects of the present disclosure include use of materials engineered to obtain 1) high permittivity, 2) high dielectric strength (also known as breakdown field EBD) allowing high voltage, and 3) low amount of carrier substrate.
In an aspect, the present invention provides a coiled capacitor comprising a coil formed by a flexible multilayered tape, and a first terminating electrode (a first contact layer) and a second terminating electrode (a second contact layer) which are located on butts of the coil. The flexible multilayered tape contains the following sequence of layers: first metal layer, a layer of a plastic, second metal layer, a layer of energy storage material. The first metal layer forms an ohmic contact with the first terminating electrode (the first contact layer) and the second metal layer (the second contact layer) forms an ohmic contact with the second terminating electrode.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
While various aspects of the present disclosure are shown and described herein, it will be obvious to those skilled in the art that such aspects are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the aspects described herein may be employed.
The present disclosure provides a coiled capacitor. According to one aspect of the present disclosure, the coiled capacitor further comprises a dielectric core around which the flexible multilayered tape is coiled. The energy storage material may be characterized by a dielectric constant κ greater than about 100 and a breakdown field Ebd about greater than or equal to about 0.001 volts (V)/nanometer (nm). The dielectric constant κ may be greater than or equal to about 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, or 100,000. The breakdown field may be greater than about 0.01 V/nm, 0.05 V/nm, 0.1 V/nm, 0.2 V/nm, 0.3 V/nm, 0.4 V/nm, 0.5 V/nm, 1 V/nm, or 10 V/nm. By way of example, and not by way of limitation, the energy storage material may be characterized by a dielectric constant κ between about 100 and about 1,000,000 and a breakdown field Ebd between about 0.01 V/nm and about 2.0 V/nm. By way of example, and not by way of limitation, the energy storage material may comprise rylene fragments. According to another aspect of the present disclosure, the rylene fragments may be selected from the list comprising structures 1-21 as given in Table 1.
In one example of a coiled capacitor in accordance with aspects of the present disclosure, the energy storage material is selected from the list comprising doped oligoaniline and p-oligo-phenylene. In another example of a coiled capacitor, the doped oligoaniline is self-doped oligoaniline with SO3— groups or COO— groups on the phenyl rings of aniline. In still another embodiment of the coiled capacitor, the doped oligoaniline is mix-doped by organic structure-inorganic/organic acid mixed to oligoaniline in oxidized state, wherein the organic structure is selected from the list comprising alkyl, aryl and polymers thereof and the inorganic/organic acid is selected from the list comprising SO3H, COOH, HCl, H2SO4, H3PO4, HBF4, HPF6, benzoic acid and derivatives thereof. According to still another aspect of the present disclosure, the energy storage material may comprise a polymeric material soluble in organic solvents. In yet another embodiment of the present invention, the energy storage material comprises polymers soluble in organic solvents having a structure selected from the structures 22 to 27 as given in Table 2.
wherein each R1 and R2 is independently selected from alkyl, aryl, substituted alkyl, and substituted aryl. In another embodiment of the coiled capacitor, the energy storage material comprises a colloidal composite with a dispersion of electro-conductive anisometric particles in an insulator matrix. In still another example of a coiled capacitor, the electro-conductive anisometric particles comprise an electro-conductive oligomer. In yet another example of the coiled capacitor, the material of the insulator matrix is selected from the group consisting of poly (acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)], ethylene propylene polymers, which include ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM), and silicone rubber (PDMSO) such as dimethyldicloro siloxane, dimethylsilane diol, and polydimethyl siloxane, polystyrene sulfonic acid (PSS). In one embodiment of the coiled capacitor, the energy storage material comprises a surfactant selected from: dodecylbenzene sulfonate (DBSA), polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, polyoxyethylene glycol octylphenol ethers, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, and dobecyldimethylamine oxide.
In another embodiment of the coiled capacitor, the energy storage material comprises ceramic slurries, sputtered thin films, and molecularly ordered crystals. As used herein the term molecularly ordered crystals refers to films assembled by cascade crystallization or films made from solutions comprising lyotropic liquid crystals. Examples of molecularly ordered crystals include, but are not limited to, energy storage molecular materials that are described, e.g., in U.S. patent application Ser. No. 14/719,072, filed May 21, 2015, the entire contents of which are incorporated herein by reference. By way of example, and not by way of limitation, a method for making molecularly ordered crystals from a colloidal system with supramolecular complexes may include the following steps:
In still another example of the coiled capacitor, the plastic is selected from the list comprising polypropylene (PP), polyethylene terephthalate polyester (PET), polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), polycarbonate (PP), polystyrene (PS), and polytetrafluoroethylene (PTFE). In yet another embodiment of the coiled capacitor, the thickness of the plastic layer cannot be less than 2 μm. In still another embodiment of the coiled capacitor, the thickness of the plastic layer varies from 2.5 μm to 52 μm. In one example of the coiled capacitor, the plastic layer comprises polypropylene and the thickness of the plastic layer is equal to 12 μm. In another example of the coiled capacitor, the material of the first metal layer and second metal layer independently selected from the list comprising Pt, Cu, Al, Ag, Au, Ni, and Al:Ni, and the metal foam. In still another example of the coiled capacitor, the thickness of the first and second contact layers independently varies from 10 nm to 1000 nm. In one embodiment of the coiled capacitor, the sheet resistance of the first and second contact layers independently cannot be less than 0.1 Ohm/Square. In another example of the coiled capacitor, the sheet resistance of the first and second contact layers independently varies from 0.1 Ohm/Square to 2.5 Ohm/Square. In yet another example of the coiled capacitor, the metal of the metal foam is selected from the list comprising Al, Ni, Fe, Cu. In one example of the coiled capacitor, the melting temperature of the metal foam is in the range 400 C-700 C. In another example of the coiled capacitor, the metal content in the metal foam for electrode is in the range of 5% up to 30% by weight. In still another example of the coiled capacitor, the metal foam is of closed “bubble” type with maximum conductance per metal content. In yet another example of the coiled capacitor, the size of “bubbles” is in the range of 100 nm up to 100 000 nm. In one example of the coiled capacitor, the material of the first terminating electrode and second terminating electrode independently selected from the list comprising Pt, Cu, Al, Ag, and Au. In another embodiment of the coiled capacitor, the first metal layer is deposited on a portion of a first surface of the plastic layer and this first surface has a first margin portion which is free of deposited metal, and wherein the second metal layer is deposited on a portion of a second surface of the plastic layer and this second surface has a second margin portion which is free of deposited metal and is located on an opposite edge of the plastic layer from the first margin portion.
According to additional aspects of the present disclosure, the energy storage material may include supramolecules or stacks of molecules. Such supramolecules may be formed by self-assembling molecules that stack in rod like molecular structures. Examples of such structures include, but are not limited to, structures selected from the list comprising structures as given in Table 1 and also structures 28-62 as given in Table 3.
To form the energy storage material from such supramolecular structures, organic molecules may be modified using supramolecular chemistry and self-assembled in liquid to form lyotropic liquid crystals. The liquid containing the lyotropic liquid crystals is them coated onto a substrate and the liquid crystals align during coating. Liquid crystals then crystallize to form the energy storage material as the liquid dries.
In order that the invention may be more readily understood, reference is made to the following examples, which are intended to be illustrative of the invention, but are not intended to be limiting the scope.
The example schematically describes a sequence of technological operations for manufacturing of a coiled capacitor in accordance with an aspect of the present disclosure. This example represents one of possible methods of manufacturing of the disclosed coiled capacitor.
Metal strips are formed onto opposite surfaces of the plastic layer so that margin portions which are free of deposited metal have been generated on each surface of the plastic layer and these margin portions are located on an opposite edge of the plastic layer. The following stage is formation of the layer of the energy storage material on one of metalized surfaces of the plastic layer shown in
This example schematically describes another sequence of technological operations for manufacturing of the coiled capacitor.
The following stage is formation of the layer of the energy storage material (20) on one of metalized surfaces of the plastic layer shown in
While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature described herein, whether preferred or not, may be combined with any other feature described herein, whether preferred or not. In the claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. As used herein, in a listing of elements in the alternative, the word “or” is used in the logical inclusive sense, e.g., “X or Y” covers X alone, Y alone, or both X and Y together, except where expressly stated otherwise. Two or more elements listed as alternatives may be combined together. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.”
This application is a Divisional application of U.S. patent application Ser. No. 15/943,342, filed on Apr. 2, 2018, which is a continuation of U.S. patent application Ser. No. 14/752,600 filed Jun. 26, 2015, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3407394 | Hartke | Oct 1968 | A |
4694377 | MacDougall et al. | Sep 1987 | A |
4702562 | Scheuble et al. | Oct 1987 | A |
4894186 | Gordon et al. | Jan 1990 | A |
5141837 | Nguyen et al. | Aug 1992 | A |
5187639 | Ogawa et al. | Feb 1993 | A |
5248774 | Dietz et al. | Sep 1993 | A |
5312896 | Bhardwaj et al. | May 1994 | A |
5384521 | Coe | Jan 1995 | A |
5395556 | Drost et al. | Mar 1995 | A |
5466807 | Dietz et al. | Nov 1995 | A |
5514799 | Varanasi et al. | May 1996 | A |
5581437 | Sebilotte et al. | Dec 1996 | A |
5583359 | Ng et al. | Dec 1996 | A |
5679763 | Jen et al. | Oct 1997 | A |
5739296 | Gvon et al. | Apr 1998 | A |
5742471 | Barbee et al. | Apr 1998 | A |
5840906 | Zoltewicz et al. | Nov 1998 | A |
5880951 | Visco et al. | Mar 1999 | A |
6025094 | Visco et al. | Feb 2000 | A |
6049428 | Khan et al. | Apr 2000 | A |
6174394 | Gvon et al. | Jan 2001 | B1 |
6282081 | Takabayashi et al. | Aug 2001 | B1 |
6294593 | Jeng et al. | Sep 2001 | B1 |
6341056 | Allman et al. | Jan 2002 | B1 |
6391104 | Schulz | May 2002 | B1 |
6426861 | Munshi | Jul 2002 | B1 |
6501093 | Marks | Dec 2002 | B1 |
6583284 | Sidorenko et al. | Jun 2003 | B1 |
6617830 | Nozu et al. | Sep 2003 | B2 |
6798642 | Decker et al. | Sep 2004 | B2 |
7025900 | Sidorenko et al. | Apr 2006 | B2 |
7026019 | Dutova et al. | Apr 2006 | B2 |
7033406 | Weir et al. | Apr 2006 | B2 |
7045177 | Dutova et al. | May 2006 | B2 |
7160485 | Nazarov et al. | May 2007 | B2 |
7211824 | Lazarev | May 2007 | B2 |
7460352 | Jamison et al. | Dec 2008 | B2 |
7466536 | Weir et al. | Dec 2008 | B1 |
7498689 | Mitani et al. | Mar 2009 | B2 |
7579709 | Goetz et al. | Aug 2009 | B2 |
7625497 | Iverson et al. | Dec 2009 | B2 |
7750505 | Ichikawa | Jul 2010 | B2 |
7795431 | Pschirer et al. | Sep 2010 | B2 |
7808771 | Nguyen et al. | Oct 2010 | B2 |
7837902 | Hsu et al. | Nov 2010 | B2 |
7888505 | Doutova et al. | Feb 2011 | B2 |
7893265 | Facchetti et al. | Feb 2011 | B2 |
7910736 | Koenemann et al. | Mar 2011 | B2 |
7947199 | Wessling | May 2011 | B2 |
8143853 | Jestin et al. | Mar 2012 | B2 |
8222074 | Lazarev | Jul 2012 | B2 |
8231809 | Pschirer et al. | Jul 2012 | B2 |
8236998 | Nagata et al. | Aug 2012 | B2 |
8344142 | Marder et al. | Jan 2013 | B2 |
8372527 | Morishita et al. | Feb 2013 | B2 |
8404844 | Kastler et al. | Mar 2013 | B2 |
8527126 | Yamamoto et al. | Sep 2013 | B2 |
8552179 | Lazarev | Oct 2013 | B2 |
8818601 | V et al. | Aug 2014 | B1 |
8895118 | Geivandov et al. | Nov 2014 | B2 |
8929054 | Felten et al. | Jan 2015 | B2 |
8938160 | Wang | Jan 2015 | B2 |
9056676 | Wang | Jun 2015 | B1 |
9293260 | Schmid et al. | Mar 2016 | B2 |
9589727 | Lazarev | Mar 2017 | B2 |
9733406 | Doutova et al. | Aug 2017 | B2 |
9941051 | Robinson | Apr 2018 | B2 |
10672561 | Robinson | Jun 2020 | B2 |
20020027220 | Wang et al. | Mar 2002 | A1 |
20020048140 | Gallay et al. | Apr 2002 | A1 |
20030026063 | Munshi | Feb 2003 | A1 |
20030102502 | Togashi | Jun 2003 | A1 |
20030103319 | Kumar et al. | Jun 2003 | A1 |
20030142461 | Decker et al. | Jul 2003 | A1 |
20030219647 | Wariishi | Nov 2003 | A1 |
20030232153 | Kazarov et al. | Dec 2003 | A1 |
20040173873 | Kumar et al. | Sep 2004 | A1 |
20040222413 | Hsu et al. | Nov 2004 | A1 |
20050118083 | Tabuchi | Jun 2005 | A1 |
20050146671 | Khavrounyak et al. | Jul 2005 | A1 |
20060120014 | Nakamura et al. | Jun 2006 | A1 |
20060120020 | Dowgiallo | Jun 2006 | A1 |
20070001258 | Aihara | Jan 2007 | A1 |
20070108940 | Sainomoto et al. | May 2007 | A1 |
20070159767 | Jamison et al. | Jul 2007 | A1 |
20080002329 | Pohm et al. | Jan 2008 | A1 |
20080150484 | Kimball et al. | Jun 2008 | A1 |
20080266750 | Wu et al. | Oct 2008 | A1 |
20080283283 | Abe et al. | Nov 2008 | A1 |
20090034073 | Lazarev | Feb 2009 | A1 |
20090040685 | Hierner et al. | Feb 2009 | A1 |
20090184355 | Brederlow et al. | Jul 2009 | A1 |
20090191394 | Lazarev et al. | Jul 2009 | A1 |
20100038629 | Lazarev | Feb 2010 | A1 |
20100085521 | Kasianova et al. | Apr 2010 | A1 |
20100178728 | Zheng et al. | Jul 2010 | A1 |
20100183919 | Holme et al. | Jul 2010 | A1 |
20100190015 | Kasianova | Jul 2010 | A1 |
20100193777 | Takahashi et al. | Aug 2010 | A1 |
20100214719 | Kim et al. | Aug 2010 | A1 |
20100233491 | Nokel et al. | Sep 2010 | A1 |
20100255381 | Holme et al. | Oct 2010 | A1 |
20100269731 | Jespersen et al. | Oct 2010 | A1 |
20100279122 | Nokel et al. | Nov 2010 | A1 |
20100300960 | Allers et al. | Dec 2010 | A1 |
20100309606 | Alters et al. | Dec 2010 | A1 |
20100309696 | Guillot et al. | Dec 2010 | A1 |
20100315043 | Chau | Dec 2010 | A1 |
20110006393 | Cui | Jan 2011 | A1 |
20110042649 | Duvall et al. | Feb 2011 | A1 |
20110064892 | Nokel et al. | Mar 2011 | A1 |
20110079733 | Langhals et al. | Apr 2011 | A1 |
20110079773 | Wasieliewski et al. | Apr 2011 | A1 |
20110110015 | Zhang et al. | May 2011 | A1 |
20110228442 | Zhang et al. | Sep 2011 | A1 |
20120008251 | Yu et al. | Jan 2012 | A1 |
20120033342 | Ito et al. | Feb 2012 | A1 |
20120053288 | Morishita et al. | Mar 2012 | A1 |
20120056600 | Nevin | Mar 2012 | A1 |
20120113380 | Geivandov et al. | May 2012 | A1 |
20120122274 | Lazarev | May 2012 | A1 |
20120244330 | Sun et al. | Sep 2012 | A1 |
20120268862 | Song et al. | Oct 2012 | A1 |
20120274145 | Taddeo | Nov 2012 | A1 |
20120302489 | Rodrigues et al. | Nov 2012 | A1 |
20130056720 | Kim et al. | Mar 2013 | A1 |
20130187475 | Vendik et al. | Jul 2013 | A1 |
20130194716 | Holme et al. | Aug 2013 | A1 |
20130215535 | Bellomo | Aug 2013 | A1 |
20130314839 | Terashima et al. | Nov 2013 | A1 |
20130342967 | Lai et al. | Dec 2013 | A1 |
20140035100 | Cho | Feb 2014 | A1 |
20140036410 | Okamatsu et al. | Feb 2014 | A1 |
20140098458 | Almadhoun et al. | Apr 2014 | A1 |
20140158340 | Dixler et al. | Jun 2014 | A1 |
20140169104 | Kan et al. | Jun 2014 | A1 |
20140185260 | Chen et al. | Jul 2014 | A1 |
20140268490 | Tsai et al. | Sep 2014 | A1 |
20140347787 | Fathi et al. | Nov 2014 | A1 |
20150008735 | Mizoguchi | Jan 2015 | A1 |
20150158392 | Zhao | Jun 2015 | A1 |
20150162131 | Felten et al. | Jun 2015 | A1 |
20150249401 | Eriksen et al. | Sep 2015 | A1 |
20150302990 | Ghosh et al. | Oct 2015 | A1 |
20160020026 | Lazarev | Jan 2016 | A1 |
20160020027 | Lazarev | Jan 2016 | A1 |
20160254092 | Lazarev et al. | Sep 2016 | A1 |
20160314901 | Lazarev | Oct 2016 | A1 |
20160340368 | Lazarev | Nov 2016 | A1 |
20160379757 | Robinson et al. | Dec 2016 | A1 |
20170117097 | Furuta et al. | Apr 2017 | A1 |
20170233528 | Sharp et al. | Aug 2017 | A1 |
20170236648 | Lazarev et al. | Aug 2017 | A1 |
20170237271 | Kelly-Morgan et al. | Aug 2017 | A1 |
20170237274 | Lazarev et al. | Aug 2017 | A1 |
20170287637 | Lazarev et al. | Oct 2017 | A1 |
20170287638 | Lazarev et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2074848 | Feb 1998 | CA |
100449661 | Jan 2009 | CN |
102426918 | Apr 2012 | CN |
103261370 | Aug 2013 | CN |
203118781 | Aug 2013 | CN |
203377785 | Jan 2014 | CN |
103755703 | Apr 2014 | CN |
103986224 | Aug 2014 | CN |
10203918 | Aug 2003 | DE |
102010012949 | Sep 2011 | DE |
102011101304 | Nov 2012 | DE |
102012016438 | Feb 2014 | DE |
0493716 | Jul 1992 | EP |
D493716 | Jul 1992 | EP |
0585999 | Mar 1994 | EP |
0602654 | Jun 1994 | EP |
0729056 | Aug 1996 | EP |
0791849 | Aug 1997 | EP |
1158320 | Nov 2001 | EP |
0986080 | Jan 2004 | EP |
0865142 | May 2008 | EP |
2062944 | May 2009 | EP |
2260035 | Dec 2010 | EP |
2415543 | Feb 2012 | EP |
2667392 | Nov 2013 | EP |
1486590 | Dec 2013 | EP |
2759480 | Jul 2014 | EP |
547853 | Sep 1942 | GB |
923148 | Apr 1963 | GB |
2084585 | Nov 1983 | GB |
S61002314 | Jan 1986 | JP |
S6386731 | Apr 1988 | JP |
H03253014 | Nov 1991 | JP |
2786298 | Aug 1998 | JP |
2000100484 | Apr 2000 | JP |
2005045266 | Feb 2005 | JP |
2006011431 | Jan 2006 | JP |
2007013105 | Jan 2007 | JP |
2007287829 | Nov 2007 | JP |
2010106225 | May 2010 | JP |
2010160989 | Jul 2010 | JP |
2011029442 | Feb 2011 | JP |
2011061191 | Mar 2011 | JP |
2012041382 | Mar 2012 | JP |
2013247206 | Dec 2013 | JP |
2014139296 | Jul 2014 | JP |
2199450 | Feb 2003 | RU |
2512880 | Apr 2014 | RU |
1990009616 | Aug 1990 | WO |
0139305 | May 2001 | WO |
2002026774 | Apr 2002 | WO |
2002094942 | Apr 2003 | WO |
2007078916 | Jul 2007 | WO |
2008038047 | Apr 2008 | WO |
2009158553 | Dec 2009 | WO |
2011056903 | May 2011 | WO |
2012012672 | Jan 2012 | WO |
2012084536 | Jun 2012 | WO |
2012122312 | Sep 2012 | WO |
2012162500 | Nov 2012 | WO |
2013009772 | Jan 2013 | WO |
2013085467 | Jun 2013 | WO |
2014009686 | Jan 2014 | WO |
2015003725 | Jan 2015 | WO |
2015175522 | Nov 2015 | WO |
2015175558 | Nov 2015 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 15/053,943, dated Aug. 14, 2017. |
Notice of Allowance for U.S. Appl. No. 15/090,509, dated Jan. 24, 2018. |
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Oct. 24, 2016. |
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104499. |
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104500. |
Office Action dated Jan. 25, 2018 for Chinese patent application No. 20158005146.4. |
Office Action dated Oct. 19, 2017 for Taiwan patent Application No. 106104501. |
Optical Society of America, Kuzyk et al, “Theory of Molecular Nonlinear Optics”, pp. 5, 4-82, Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA, Mar. 26, 2013. |
Philosophical Transactions of the Royal Society, SIMON, “Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors” pp. 3457-3467; Drexel University, Philadelphia, PA 19104, 2010. |
Search Report and Written Opinion dated Feb. 7, 2018 for Singapore Patent Application No. 11201609435W. |
Taiwan Office Action for TW Application No. 106104501, dated Oct. 19, 2017. |
U.S. Appl. No. 14/719,072, to Pavel Ivan Lazarev, filed May 21, 2015. |
U.S. Appl. No. 14/752,600, to Matthew R. Robinson, et al., filed Jun. 26, 2015. |
U.S. Appl. No. 14/919,337, to Paul T. Furuta, et al., filed Oct. 21, 2015. |
U.S. Appl. No. 14/931,757, to Pavel Ivan Lazarev, et al., filed Nov. 3, 2015. |
U.S. Appl. No. 15/043,186, to Paul T. Furuta, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 15/043,209, to Paul T. Furuta, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 15/043,247, to Barry K Sharp, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 15/043,315, to Ian S.G. Kelly-Morgan, filed Feb. 12, 2014. |
U.S. Appl. No. 15/043,315, to Ivan S.G. Kelley-Morgan, filed Feb. 12, 2016. |
U.S. Appl. No. 15/053,943, to Pavel Ivan Lazarev, et al., filed Mar. 14, 2016. |
U.S. Appl. No. 15/090,509, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016. |
U.S. Appl. No. 62/121,328, to Pavel Ivan Lazarev et al., filed Feb. 26, 2015. |
U.S. Appl. No. 62/294,949, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 62/294,955, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 62/294,964, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016. |
U.S. Appl. No. 62/318,134, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016. |
Updated Notice of Allowance for U.S. Appl. No. 14/710,480, dated Jan. 17, 2018. |
Warmerdam, T. W. et al. “Discotic Liquid Crystals. Physical Parameters of some 2, 3, 7, 8, 12, 13-hexa(alkanoyloxy) truxenes: Observation of a Reentrant Isotropic Phase in a Pure Disk-like mesogen.” Liquid Crystals (1988), vol. 3, No. 3, pp. 1087-1104. |
International Search Report and Written Opinion dated Jun. 7, 2017 for International Application No. PCT/US2017/24589, to Pavel Ivan Lazarev, filed Jun. 7, 2017. |
International Search Report and Written Opinion dated Oct. 20, 2016 International Application No. PCT/US2016/039395, to Matthew R. Robinson, et al., filed Jun. 24, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016 for International Application No. PCT/US2016/033628, to Pavel Ivan Lazarev, filed Sep. 1, 2016. |
International Union of Pure and Applied Chemistry Polymer Divison Stejskal et al., “Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report)”, vol. 77, No. 5, pp. 815-826, Russian Academy of Sciences, St. Petersburg 199004, Russia; 2005. |
Isoda, Kyosuke et al. “Truxene-Based Columnar Liquid Crystals: Self-Assembled Structures and Electro-Active Properties.” Chemistry—An Asian Journal (2009), vol. 4, No. 10, pp. 1619-1625. |
JACS Articles, Kang et. al., “Ultralarge Hyperpolarizability Twisted π-Electron System Electra-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies”, pp. 3267-3286; Perugia, Italy Feb. 20, 2007. |
Johnson, Kieth E. “What's an Ionic Liquid?” The Electrochemical Society Interface, Published Spring 2007, pp. 38-41, Accessed Aug. 28, 2017. |
Maddalena, Francesco “Why are Ionic Liquids, Liquids?” http://www.quora.com/why-are-ionic-liquids-liquids?, Published Jan 26, 2017, Accessed Aug. 28, 2017. |
Manukian, BK. 216. IR.-spektroskopische Untersuchungen in der Imidazol-Reihe. Helvetica Chimica Acta. 1965, vol. 48, page. |
Manukian, BK. 216. IR.-spektroskopische Untersuchungen in der Imidazol-Reihe. Helvetica Chimica Acta. 1965, vol. 18, p. 2001. |
Nagabrahmandachari et al. “Synthesis and Spectral Analysis of Tin Tetracarboxylates and Phosphinates” Indian Journal of Chemistry—Section A, 1995, vol. 34A, pp. 658-660. |
Ni, Hai-Lang et al. “Truxene Discotic Liquid Crystals with Two Different Ring Substituents: Synthesis, Metamorphosis and High Charged Carrier Mobility .” Liquid Crystals, vol. 40, No. 3, pp. 411-420. |
Non-Final Action for U.S. Appl. No. 15/043,186, dated Feb. 14, 2018. |
Non-Final Office Action dated Jun. 13, 2017 for U.S. Appl. No. 15/163,595. |
Non-Final Office Action for U.S. Appl. No. 14/719,072, dated Aug. 2, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/043,247, dated Jun. 22, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/043,315, dated Dec. 26, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/053,943, dated Apr. 19, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/090,509, dated Jun. 22, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/163,595, dated Jan. 17, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/194,224, dated Sep. 27, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/710,480, dated May 8, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/752,600, dated Jan. 23, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/919,337, dated Jan. 4, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/043,186, dated Jun. 2, 2017. |
Non-Final/Final Office Action for U.S. Appl. No. 15/043,247, dated Feb. 20, 2018. |
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Nov. 24, 2017. |
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Jan. 11, 2018. |
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Oct. 6, 2017. |
Notice of Allowance for U.S. Appl. No. 14/719,072, dated Nov. 16, 2017. |
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Jul. 27, 2017. |
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Jul. 19, 2017. |
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Mar. 5, 2018. |
Notice of Allowance for U.S. Appl. No. 14/919,337, Nov. 8, 2017. |
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Dec. 29, 2017. |
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Feb. 8, 2018. |
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Jul. 17, 2017. |
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Oct. 31, 2017. |
Center for Dielectric Studies, Janosik, et al., “Ultra-High Energy Density Capacitors Through Improved Glass Technology”, pp. 1-5 Center for Dielectric Studies Penn State University, dated 2004. |
Congressional Research Service, Paul W. Parfomak, “Energy Storage for Power Grids and Electric Transportation: A Technology Assessment”, pp. 87-94; Members and Committees of Congress; Mar. 27, 2012. |
Co-Pending U.S. Appl. No. 15/194,224, to Lazarev et al., filed Jun. 27, 2016. |
Co-Pending U.S. Appl. No. 15/368,171, to Lazarev et al., filed Dec. 2, 2016. |
Co-Pending U.S. Appl. No. 15/430,307, to Lazarev et al, filed Feb. 10, 2017. |
Co-Pending U.S. Appl. No. 15/449,587, to Lazarev et al., filed Mar. 3, 2017. |
Co-Pending U.S. Appl. No. 15/675,614, to Kelly-Morgan, filed Aug. 11, 2017. |
Co-Pending U.S. Appl. No. 15/710,587, to Li et al, filed Sep. 20, 2017. |
Co-Pending U.S. Appl. No. 15/469,126, to Lazarev et al, filed Mar. 24, 2017. |
D C Tiwari, et al: “Temperature dependent studies of electric and dielectric properties of polythiophene based nano composite”, Indian Journal of Pure & Applied Physicsvol. 50, Jan. 2012. pp. 49-56. |
Department of Chemistry and Biochemistry, Hardy, et al. “Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping Polystyrene with Oligoaniline”; pp. 799-807, Rensselaer Polytechnic Institute, Troy, New York 12180; Feb. 17, 2013. |
Extended European Search Report . 15792494.5, dated Dec. 11, 2017. |
Extended European Search Report for Application No. 15792405.1, dated Nov. 10, 2017. |
Final Office Action dated Feb. 14, 2018 for U.S. Appl. No. 15/043,186. |
Final Office Action for CSI-022-US dated May 2, 2017. |
Final Office Action for U.S. Appl. No. 15/043,247, dated Oct. 4, 2017. |
Final Office Action for U.S. Appl. No. 15/043,249, dated Feb. 6, 2018. |
Final Office Action for U.S. Appl. No. 15/194,224, dated Jan. 30, 2018. |
Final Office Action for U.S. Appl. No. 14/919,337, dated May 1, 2017. |
Handy, Scott T. “Ionic Liquids-Classes and Properties” Published Sep. 2011, Accessed Aug. 28, 2017, InTechweb.org. |
Henna Ruuska et al., “A Density Functional Study on Dielectric Properties of Acrylic Acid Crafted Polypropylene”, The Journal of Chemical Physics, vol. 134, p. 134904 (2011). |
Hsing-Yang Tsai et al, “1,6- and 1,7-Regioisomers of Asymmetric and Symmetric Perylene Bisimides: Synthesis, Characterization and Optical Properties” Molecules, 2014, vol. 19, pp. 327-341. |
Hsing-Yang Tsai et al, “Synthesis and optical properties of novel asymmetric perylene bisimides”, Journal of Luminescence, Vole 149, pp. 103-111 (2014). |
Institute of Transportation Studies, Burke, et al. “Review of the Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles”, pp. 2-23 UC Davis ITS; Dec. 2014. |
International Search Report and Written Opinion dated Jul. 31, 2017 for International Patent Application PCT/US2017/024589. |
International Search Report and Written Opinion for International Application No. PCT/US2015/030356, dated Jul. 28, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/030415, dated Nov. 4, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/058890, dated Feb. 25, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/019641, dated Jul. 12, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/033628, dated Sep. 1, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/039395, dated Jul. 1, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/039395, dated Oct. 20, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/57765, dated Jan. 5, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/016862, dated Aug. 14, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/017146, dated May 11, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/017150, dated May 18, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/24150, dated Jun. 21, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/24371, dated Aug. 2, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/24600, dated Aug. 14, 2017. |
International Search Report and Written Opinion dated Feb. 23, 2018 for International Patent Application No. PCT/US17/64252. |
International Search Report and Written Opinion dated Feb. 25, 2016 for International Application No. PCT/US15/58890, to Pavel Ivan Lazarev, filed Nov. 3, 2015. |
International Search Report and Written Opinion dated Jul. 12, 2016 for International Application No. PCT/US2016/019641, to Pavel Ivan Lazarev, filed Feb. 25, 2016. |
Supplementary European Search Report issued in corresponding European patent application 16815439.1 dated Feb. 4, 2019. |
Optical Society of America, Kuzyk et al., Theory of Molecular Nonlinear Optics, pp. 5, 4-82, Department of Physics and Astronomy, Washngton State University, Pullman, Washington 99164-2814, USA, Mar. 26, 2013. |
Philosophical Transactions of the Royal Society, SIMON, Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors, pp. 3457-3467, Drexel University, Philladelphia, PA 19104, 2010. |
R.J. Baker and B.P. Johnson, Stacking power MOSFETs for use in high speed instrumentation, Department of Electrical Engineering, University of Nevada, Reno, Reno, Nevada 89557-0030, pp. 5799-5801, Aug. 3, 1992. |
Roger D. Hartman and Herbert A. Pohl, Hyper-electronic Polarization in Macromolecular Solids, Journal of Polymer Science: Part A-1, vol. 6, pp. 1135-1152, 1968. |
RSC Publishing, Akl et al., Molecular materials for switchable nonlinear optics in the solid state, based on ruthenium-nitrosyl complexes, pp. 3518-3527, Porto Alegre, Brazil, May 24, 2013. |
Trevethan, Thomas et al., Organic Molecules Reconstruct Nanostructures on Ionic Surfaces, Small (2011), vol. 7, No. 9, pp. 1264-1270. |
Warmerdam, T.W. et al., Discotic Liquid Crystals, Physical Parameters of some 2, 3, 7, 8, 12, 13-hexa(alkanoyloxy) truxenes: Observation of a Reentrant Isotropic Phase in a Pure Disk-like mesogen, Liquid Crystals (1988), vol. 3, No. 8, pp. 1087-1104. |
Yue Wang et al., Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262. |
International Search Report and Written Opinion dated Sep. 1, 2016 for International application No. PCT/US2016/033628 to Pavel Ivan Lazarev filed May 20, 2016. |
International Search Report and Written Opinion dated Jun. 7, 2017 for International application No. PCT/US2017/24589 to Pavel Ivan Lazarev filed on Mar. 28, 2017. |
International Search Report and Written Opinion dated Oct. 20, 2016 for International application No. PCT/US2016/039395 to Matthew R. Robinson et al., filed Jun. 24, 2016. |
International Union of Pure and Applied Chemistry Polymer Divison, Stejskal et al, Plyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report), vol. 77, No. 5, pp. 815-826, Russian Academy of Sciences, St. Petersburg 199004, Russia, 2005. |
Isoda, Kyosuke et al., Truxene-Based Columnar Liquid Crystals: Self-Assmbled Structures and Electro-Active Properties, Chemistry—An Asian Journal (2009), vol. 4, No. 10, pp. 1619-1625. |
JACS Articles, Kang et al., Ultralarfe Hyperpolarizability Twisted -Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies, pp. 3267-3286, PErugia, Italy, Feb. 20, 2007. |
Jaroslav Stejskal and Irina Sapurina, Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report), Pure and Applied Chemistry, vol. 77, No. 5, pp. 815-826 (2005). |
Johnson, Kieth E., What'S an Ionic Liquid?, The Electrochemical Society Interface, Published Spring 2007, pp. 28-41, Accessed Aug. 28, 2017. |
Kontrakt Technology Limited, Alla Sakharova, PhD, Cryscade Solar Limited: Intellectual Property Portfolio summary, pp. 1-3, Cryscade Solar Limited, Apr. 9, 2015. |
Li, Li-li et al., Synthesis and Mesomorphism of Ether-ester Mixed Tail C3-symmetrical Truxene discotic liquid crystals, Liquid Crystals (2010), vol. 37, No. 5, pp. 499-506. |
Liang, Mao et al., Synthesis and Photovoltaic Performance of Two Triarylamine Organic Dyes Based on Truxene, Yinyong Huaxue (2011), vol. 28, No. 12, pp. 1387-1392. |
Lu, Meng et al., Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for efficient Dye-sensitized solar cells, Journal of Physical Chemistry C (2011) vol. 115, No. 1, pp. 274-281. |
Maddalena, Francesco, Why are Ionic Liquids, Liquids?, http://www.quora.com/why-are-ionic-liquids-liquids?, Published Jan. 26, 2017. |
Manukian, BK. 216, IR.-spektroskopische Untersuchungen in der Imidazol-Reihe, Helvetica Chimica Acta, 1965, vol. 48, p. 2001. |
Microelectronics Research and Communications Institute, Founders et al., High-Voltage Switching Circuit for Nanometer Scale CMOS Technologies, pp. 1-4, University of Idaho, Moscow, ID 83843, USA, Apr. 30, 2007. |
Molecular Diversity Preservation International, Barber et al., Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage, pp. 1-32 29 University of South Carolina, Columbia, SC 29208, Oct. 2009. |
Nagabrahmandachari et al., Synthesis and Spectral Analysis of Tin Tetracarboxylates and Phosphinates, Indian Journal fo Chemistry—Section A, 1995, vol. 34A, pp. 658-660. |
Ni, Hai-Lang et al., Truxene Discotic Liquid Crystals with Two Different Ring Substituents: Synthesis, Metamorphosis and High Charges Carrier Mobility, Liquid Crystals, vol. 40, No. 3, pp. 411-420. |
Center for Dielectric Studies, Janosik et al., Ultra-High Energy Density Capacitors Through Improved Glass Technology, pp. 1-5, Center for Dielectric Studies Penn State University, 2004. |
Chao-Hsien Ho et al., High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization, Synthetic Metals, vol. 158, pp. 630-637, 2008. |
Congressional Research Service, Paul W. Parfornak, Energy Storage for Pwer Grids and Electric Transportation: A Technology Assessment, pp. 87-94, Members and Committees of Congress, Mar. 27, 2012. |
D.C. Tiwani et al, Temperature dependent studies of electric and dielectric properties of polythiophene based nano composite, Indian Journal of Pure and Applied Physics, vol. 50, pp. 49-56, Jan. 2012. |
Deily, Dielectric and Optical Characterization of Polar Polymeric Materials: Chromophore Entrained PMMA Thin Films, Thesis, 2008. |
Department of Chemistry and Biochemistry, Hardy et al., Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping polystyrene with Oligoaniline, pp. 799-807, Rensselaer Polytechnic Institure, Troy, New York 12180, Feb. 17, 2013. |
Department of Chemistry, Ho et al, High dielectric constant polyanilinelpoly(acrylic acid) composites prepared by in situ polymerization, pp. 630-637, National Taiwan University, Taipei, Taiwan ROC, Apr. 15, 2008. |
Deruiter, J., Resonance and Induction Tutorial, Auburn University—Principles of Drug Action 1 Course Material, Spring 2005, 19 pages. |
Handy, Scott T., Ionic Lquids—Classes and Properties, Published Sep. 2011, Intechweb.org. |
Henna Ruuska et al., A Density Functional Study on Dielectric Properties of Acrylic Acid Crafted Polypropylene, The Journal of Chemical Physics, Vo. 134, p. 134904, 2011. |
Hindawi Publishing Corporation, Chavez-Castillo et al., Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore, pp. 1-11, International Journal of Polymer Science, vol. 2015, Article ID 219361, Mar. 12, 2015. |
Hindawi Publishing Corporation, Gonzalez-Espasandin et al., Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion, pp. 1-13, Torrej'on de Ardoz, 28850 Madrid, Spain, Jan. 30, 2014. |
Hindawi Publishing Corporation, Khalil Ahmed et al., High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization, pp. 630-637, University of the Punjab, New Campus, Lahore 54590, Oct. 17, 2015. |
Hsing-Yang Tsai et al., 1,6-and1,7-Regioisomers of Asymmetric and Symmetric Perylene Bismides: Synthesis Characterization anf Optical Properties, Molecules, 2014, vol. 9, pp. 327-341. |
Hsing-Yang Tsai et al., Synthesis and optical properties of novel asymmetric perylene bismides, Journal of Luminescence, vol. 149, pp. 103-111, 2014. |
Institute of Transporation Studies, Burke et al., Review of the present and future applications of supercapacitors in electric and hybrid vehicles, pp. 2-23 UC Davis ITS; Dec. 2014. |
Office Action issued in corresponding Japanese application No. 2017-566394 dated Feb. 18, 2020. |
Number | Date | Country | |
---|---|---|---|
20200251281 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15943342 | Apr 2018 | US |
Child | 16854031 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14752600 | Jun 2015 | US |
Child | 15943342 | US |