The present disclosure relates generally to joint systems. More particularly, the present disclosure relates to joint systems configured for concrete and other building or structural systems requiring thermal, wind and/or seismic expansion joints to accommodate building or other structural movements. The present disclosure also applies to many other joints, which do not experience large movements, but still are required to resist water ingress, and provide thermal and other characteristics. These joints include, for example, masonry control joints, façade joints, window perimeter joints, precast concrete joints, metal panel joints, and others.
Most commercial and industrial buildings contain expansion joints, control joints, and other gaps either by design or not. Expansion joints primarily allow for thermal expansion and contraction, and additionally it is desirable to allow for wind generated movements and seismically generated movements of the building structure. Control joints are used to allow for concrete shrinkage during curing, eliminating tensile forces across the joint thus preventing cracking of the concrete. Window perimeter joints exist to accommodate and allow for inaccuracies in building construction, and to prevent any forces from transferring to the windows themselves. References to building joints below should be understood to be any of a variety of these structures.
In the case of exterior joints, the joint system should, to some degree, resist the effects of the external environment conditions. As such, most external expansion joints systems are designed to resist the effects of water. In vertical joints this will typically be in the form of rain, and wind driven rain. In horizontal joints, this will typically be in the form of rain, standing water, snow, ice, and in some circumstances all of these at the same time.
Water resistant or water tight joints can exist in different forms, but generally are constructed from materials designed to resist water penetration and the physical cycling caused by the building's thermal, wind, and seismic movement.
Devices have been used to attempt to create water tight expansion joints. One such system, known as “caulk and backer rod” requires on-site assembly by a skilled applicator to create a finished functional expansion joint system. These systems can suffer from numerous deficiencies, related both to the installation method and the technology itself. Installation problems include difficulty in inserting the backer rod, and difficulty setting the appropriate depth of the backer rod. Technological problems include closed cell compression set of the backer rod, potentially poor or no adhesion between backer rod and top coated caulk, caulk in tension, caulk curing in ambient or less than ideal conditions, and caulk curing while movement is occurring in place. Additionally, these problems are typically exacerbated if the movement joints are nominally larger than about 1 inch, or movements are larger than about +/−10-15%.
Such afore-described factors can lead to less than desirable results, such as short life span, low movement capability, and ultimately water ingress and attendant issues thereof. The onsite assembly nature of caulk and backer rod systems can cause installation labor costs to be high, offsetting much of the perceived cost benefits of the cheaper components.
U.S. Pat. No. 5,130,176 by Baerveldt, describes a system which addresses some of these problems. The sealant system Baerveldt describes can eliminate the need for onsite assembly, and improve productivity. Baerveldt's device is particularly effective in joints larger than about 1.5 inches, and can, e.g., be used in joint as large as about 12 inches in width. However, while it is effective in joints smaller than about 1.5 inches, the cost of the device as compared to the caulk and backer rod system can be disproportionate and it is typically not used in these scenarios despite the technological advantages it offers.
A trend in the building industry is towards fewer, and larger expansions joints. This is occurring, in part, because expansion joints are typically sited as points of failure for water penetration. Additionally, it is due to building codes mandating that larger seismic movements be taken into consideration during design. However, there still remains a need in the industry for smaller sized joints, which also can be difficult to address.
Thus, there remains a need for further structures and expansion joint systems for preventing water ingress, providing thermal and other desirable characteristics, while also accommodating structural movements. There also is a need for such structures effective in joint sizes less than or equal to about 1.5 inches in width.
Accordingly, provided herein according to embodiments are structures and methods that prevent water ingress, provide thermal and other desirable characteristics, while accommodating structural movements, among providing other advangages. Embodiments disclosed herein overcome the technological problems of previous building joints designs, such as caulk and backer rod, and improve upon the teachings of Baerveldt, while remaining cost competitive in smaller joint sizes. Embodiments disclosed herein also are particularly suitable for use in smaller joint sizes, such as joints having a width less than or equal to about 2 inches, including less than or equal to about 1.5 inches, as well as less than or equal to about 1 inch.
According to an aspect, disclosed herein is a product comprising a coiled precompressed impregnated self expanding core material coated with an integral elastomer pre-formed into an arched shape transverse to the direction of compression. The core material is made of a suitable material, such as foam, and is generally rectilinear in shape, while the elastomer coating forms an arch. The core material is supplied precompressed and is self expanding upon release of the packaging. The core material is compressed transverse to the elastomer arch acting to reduce the radius of the arch.
Accordingly to further aspects, methods of producing the afore-referenced product are included herein. Thus, in an embodiment, a method of making a water resistant precompressed joint system comprises coating a core material with a water resistant elastomer to form a coated sheet; cutting the coated sheet into a strip; forming the strip into an arched profile; and compressing the arch strip.
An advantage of embodiments of the present invention is that the core material and elastomer arch can expand and be compressed transversely.
Another advantage of embodiments of the present invention is that it is inexpensive, and may be easily installed by one individual. It is a further advantage of embodiments of the present invention that the resultant product can be supplied in a precompressed coil, wherein the coil, the shape and compression is retained.
Moreover, embodiments are weather resistant, conform to the substrates within which the product is installed and can remain permanently resilient. The product is delivered in a coiled pre-compressed state ready for installation into the building joint, and no on-site construction or assembly of the product is required, according to embodiments.
Referring now to the Figures, which are exemplary embodiments, and wherein like elements are numbered alike:
Embodiments of the present invention relate to a resilient water resistant joint system able to accommodate thermal, seismic, and other building or structural movements, if necessary, while maintaining its water resistance and other desirable characteristics. Although other methods and materials may be used in the constructions described herein, particularly suitable and preferred methods and materials are described herein. Unless stated otherwise, any technical or scientific terms used will have the meaning as understood by one of ordinary skill in the art to which the present invention pertains.
The expansion joint systems described herein according to embodiments are best understood by referring to the attached drawings. Referring to
The sheet is then slit into strips appropriate to the width of the expansion joint employed. The resulting strip is typically rectilinear in shape, and has at least one surface coated with an elastomer, such as elastomer 2. After slitting, the strip is manually or mechanically compressed transversely. At the same time, the elastomer 2 can be formed into an arch shape 3, as shown in
Referring now to
In a typical installation, the product can be installed into a joint on site by cutting the liner at a desired location, such as location 6, as shown in
Another embodiment of this design, as shown in
A further embodiment of this design includes the use of a pick-proof elastomer coating, such as, for example, Pecora Dynaflex SC.
Still further, in all embodiments described herein, an impregnation media whose primary characteristic is, e.g., that of a fire retardant can be included in the design for additional benefits. One type of fire retardant material that may be used is a water-based aluminum tri-hydrate (also known as aluminum tri-hydroxide (ATH)). However, the present invention is not limited in this regard, as other fire retardant materials may be used. Such materials include, but are not limited to, metal oxides and other metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds, such as ferrocene, molybdenum trioxide, nitrogen-based compounds, combinations of the foregoing materials, and other compounds capable of suppressing combustion and smoke formation.
As a non-limiting example, the amount of fire retardant material infused into the core, such as an open celled foam, is between 3.5:1 and 4:1 by weight in a ratio with the un-infused core itself. The resultant uncompressed core whether comprising a solid block or laminates, can has a density of about 130 kg/m3 to about 150 kg/m3, specifically 140 kg/m3, according to embodiments.
Additionally, in any/all embodiments, a fire barrier sealant (such as 3M CP25-WB) could be employed at any desired location in the design, such as within the core, as a coating, and so forth.
In operation, the arched elastomer, and the core's, e.g., foam's, expansion force creates a water tight seal with an appropriate substrate. In the case of a moving expansion joint, these forces allow the foam to follow the building's movements while maintaining contact with the substrates.
Embodiments disclosed herein, particularly the afore-referenced design, address shortcomings of previous designs, solve problems associated with caulk and backer rod designs, and improve upon the teachings of Baerveldt in a cost efficient manner especially for small joints. Moreover, often expensive and wasteful packaging materials can be replaced with an inexpensive plastic liner, and inexpensive cardboard core. The coiled form greatly reduces other packaging materials as well, such as boxes, and skids. The coiled form also makes on site handling and installation much more efficient and simpler.
Further advantages include the ability to provide, e.g., a precompressed sealant in tape form.
Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/729,040, filed on Nov. 21, 2012, the contents of which are incorporated herein by reference in its entirety and the benefits of which are fully claimed herein.
Number | Date | Country | |
---|---|---|---|
61729040 | Nov 2012 | US |