The present invention is related to a coiler for a dunnage conversion machine and method for producing and coiling a strip of dunnage.
In the process of shipping one or more articles from one location to another, a packer typically places a type of dunnage material in a shipping container, such as a cardboard box, along with the article or articles to be shipped. The dunnage material prevents or minimizes movement of the articles that might be damaged during the shipping process. Some commonly used dunnage materials include plastic airbags and converted paper dunnage material.
To promote continuous operation, many dunnage conversion machines, whether producing airbags or paper dunnage material, output a strip of dunnage that may be cut or severed to provide sections of dunnage of desired lengths. When using the dunnage material to block or brace a relatively large or heavy item during shipping, the strip of dunnage may be rolled up in a coil configuration. The coil of dunnage may then be placed in the shipping container beside, above, or below the large/heavy item to be shipped. While coils of dunnage material can be produced by hand, such a procedure may consume a significant amount of time or space and manual coiling may lead to inconsistent properties in the coil. Consequently, automated coiling mechanisms have been developed to address one or more of these and other problems.
International Patent Application Publication No. WO 99/21702 describes a system for coiling a strip of dunnage produced by a cushioning conversion machine. A sheet stock material provided from a roll is converted into a strip of relatively lower density cushioning material, which is then wound about rotating forks into a coiled configuration.
Depending on the size, shape, and weight of the item to be shipped, a user may want to adjust the density or size of the coiled strip of dunnage. While automated coiling mechanisms are known, a need remains for a dunnage system and method that allows for the customization of the density or size of the coil while providing an automated system for producing a consistent coil.
The present invention provides a coiler having an automated coiler fork that allows for the movement of the fork pins to adjust the density and size of the coil. Specifically, the fork pins can move inwardly following receipt therebetween of a leading end of a strip of dunnage to form a smaller coil or a tighter coil than that provided by a coiler with fixed coiler fork pins.
Thus, an exemplary coiler includes a pair of moveable pins. The coiler also may have at least one pin mount, and may include a cam for guiding movement of a pin. The pair of moveable pins extends in a common direction and is rotatable about a common axis to wind a strip of dunnage into a coil. The at least one pin mount supports one of the moveable pins for movement between a strip receiving position and a coiling position radially-inwardly disposed relative to the strip receiving position. The cam guides the pin mount and the moveable pin for movement. Alternatively, the pin mount may rotate about an axis offset from the pin.
The coiler may further include a guide plate that cooperates with the cam and the pin mount to control the movement of the moveable pin. The guide plate may include a slot through which the pin extends to guide movement of the moveable pin.
The pin mount may be connected to the guide plate at a fixed pivot point.
The guide plate may be coupled to a motor for rotation.
The common axis may be parallel to the direction in which the moveable pins extend.
The cam may include a curved bearing surface against which the pin mount rides as the cam rotates relative to the pin mount. The curved bearing surface may include a grooved spiral surface. The grooved spiral surface may have ramped ends that stop the pin mounts from moving, thereby placing the moveable pins in the coiling position.
The coiler may be provided in combination with a dunnage conversion machine that converts a stock material into the strip of dunnage to be coiled, the dunnage conversion machine dispensing the strip of dunnage from an outlet. The combination also may include a supply of stock material for conversion into a relatively less dense dunnage product. The stock material may include one or more of a sheet of paper and a sheet of kraft paper.
A guide surface may be provided, positioned between the outlet of the dunnage conversion machine and the coiler to guide the strip of dunnage to the coiler.
The present invention also provides a method of coiling a strip of dunnage. The method includes the steps of (a) providing such a coiler as described herein, (b) receiving the strip of dunnage between the pair of moveable pins, (c) moving the pair of moveable pins from the strip receiving position to the coiling position by rotating the guide plate, and (d) winding the strip of dunnage into a coil by rotating the moveable pins.
The providing step (a) may include (i) supplying a sheet sock material, preferably paper, to a dunnage conversion machine, (ii) converting the sheet stock material into a relatively lower density strip of dunnage, and (iii) dispensing the strip of dunnage from the dunnage conversion machine.
The moving step (c) may begin after a leading end of the strip of dunnage passes between the pair of moveable pins.
The method may include the step of removing the coil in its coiled state from the pair of moveable pins after the winding step (d) is complete.
The method may include the step of guiding each of the pair of moveable pins from the coiling position back to the strip receiving position.
The method may include the step of rotatably aligning the pair of moveable pins along a line transverse to a path of the strip of dunnage.
Finally, the method may include the step of controlling a speed of the coiler as a function of a speed of the strip of dunnage being fed to the coiler and a desired size of the coil.
The foregoing and other features are hereinafter fully described and particularly pointed out in the claims, the following description and annexed drawings setting forth in detail certain illustrative embodiments, these embodiments being indicative, however, of but a few of the various ways in which the principles of the invention may be employed.
Referring now to the drawings in detail, an initially to
An exemplary supply 32 of stock material 30 includes a mobile cart 40 with one or more pairs of laterally-spaced arms 42 capable of supporting one or more rolls 44 of sheet stock material 30. An exemplary sheet stock material 30 is kraft paper, and the kraft paper may be supplied wound onto a roll, as shown, or provided in a fan-folded stack. Paper is recyclable, reusable, and composed of a renewable resource, making it an environmentally responsible choice as a stock material
An exemplary dunnage conversion machine is shown in
The illustrated dunnage conversion machine 22 is mounted on a stand 58 that has wheels 60 for mobility. But any type of support for the dunnage conversion machine 22 may be provided, as may be necessary to support the conversion machine 22 and the coiling mechanism 24 at a sufficient elevation to produce a coil 38.
The coiling mechanism 24, also referred to as a coiler, lies downstream of the dunnage conversion machine 22 and in the illustrated embodiment is supported by a frame extension 62 mounted to the frame of the dunnage conversion machine 22 or to the stand 58. The coiler 24 includes a rotatable coiling fork 64 with a pair of substantially parallel and movable coiling pins 66 (also referred to as fork pins, or simply pins). The coiling fork 64 and movable pins 66 rotate about a central coiling axis. The rotation of the coiling fork 64 and fork pins 66 may be driven by a motor or other driving mechanism, and the motor may be mounted in the frame extension 62. A guide surface 68 extends from the outlet 36 of the dunnage conversion machine 22 toward the coiling mechanism 24 to guide a strip of dunnage from the outlet 36 to the coiling fork 64.
In a starting orientation, the coiling fork 64 and the moveable pins 66 are configured to receive a strip of dunnage guided thereto by the guide surface 68. The moveable pins 66 of the coiling fork 64 generally are positioned along an axis or other line that is transverse to the guide surface 68 and to the coiling axis, preferably perpendicular to the guide surface 68, to receive a leading end of the strip of dunnage between the pins 66. Each of the pair of moveable pins 66 are aligned along a line transverse to a path of the strip of dunnage. Once a leading end of a strip of dunnage passes between the movable pins 66 of the fork 64, the fork 64 can rotate to wind the strip of dunnage into a coil as the dunnage strip is produced. Further reference to an exemplary dunnage conversion machine and coiler can be had with reference to International Publication No. WO 99/21702, referred to above.
The strip of dunnage is produced from the dunnage conversion machine 22 or other supply to the coiling mechanism 24 at a constant rate, but the rotation rate of the coiling fork 64 can be varied as a function of the size of the coil to vary the density, consistency, and other properties of the coil.
The coiler shown in more detail in
The moveable pins 66 extend in a common direction generally perpendicular to the guide plate 80. The pair of moveable pins 66 are rotatable about the common coiling axis to wind a strip of dunnage into a coil. The coiling axis generally is parallel to the direction in which the pins 66 extend. The moveable pins 66 extend through respective slots 88 and are each coupled to a U-shaped pin mount 90 in approximately the middle of the U-shape. One end of each pin mount 90 is connected to the guide plate 80 in close proximity to an outer edge of the guide plate 80.
The cam 82 includes a protruding outer rim 92 within which the guide plate 80, pin mounts 90, and movable pins 66 are received. The cam 82 includes several curved control or bearing surfaces recessed from a front face of the outer rim 92. The pin mounts 90 follow the features of the surface of the cam 82. This interaction between the pin mounts 90 and the cam 82 causes the parallel pins 66 to be moved along the radially-extending curved slots 88 of the guide plate 80 from a strip receiving position to a coiling position radially inwardly disposed relative to the strip receiving position. The pins 66 and are spaced relatively closer together in the coiling position than in the strip receiving position. The control surfaces include a grooved spiral surface 94 that a portion of the pin mounts 90 rides against as the guide plate 80 rotates relative to the cam 82. The grooved spiral surface 94 is defined by a groove in the cam 82 with a varying depth, including ramped ends 96 that stop the pin mounts 90 from moving, thereby placing the pins 66 in the coiling position.
Referring now to
As mentioned above, the pins 66 are located closer to each other when positioned in the coiling position than when positioned in the strip receiving position. Moving the pins 66 closer together increases the density of the center of the resulting coil, and also reduces the outer diameter of the resulting coil for the same number of rotations. The inherent resilient nature of the strip of dunnage allows the coiler to more tightly coil the strip to increase the density of the coil relative to the density of the strip of dunnage.
Once a desired length of the strip of dunnage has been produced, the separating mechanism 56 (
After the coil is pushed off of the pins 66, the coiling mechanism 24 may rotate in the opposite direction from coiling (e.g., counterclockwise), to move the pin mounts 90 back along the control surfaces of the cam 82, and return the pair of pins 66 from the coiling position to the strip receiving position. The coiling mechanism 24 also rotates the coiling fork 64 about the coiling axis to the strip receiving position, aligning the pins 66 along an axis across the path of the strip of dunnage exiting the dunnage conversion machine 22 and guided to the coiling mechanism 24 by the guide surface 68.
In summary, the present invention provides a coiler 24 for producing tighter or smaller coils of dunnage using a cam 82 to move fork pins 66 from a dunnage-receiving position inwardly to a more closely-spaced coiling position. The fork pins 66 are coupled to pin mounts 90 that cooperate with the cam 82 and slots 88 in a guide plate 80 to move the parallel fork pins 66 between the dunnage-receiving and coiling positions. The fork pins 66 are mounted to extend perpendicular to and through the guide plate 80 on opposing sides of a path of the dunnage to capture and wind a dunnage strip 34 into a coil 38.
Turning now to an alternative embodiment,
As in the previous embodiment, the coiling mechanism 124 includes a guide plate 134 with a flat surface facing the same direction as the coiling pins 66. The coiling pin mounts 130 may be flush with the surface of the guide plate 134 to present a continuous surface to the strip of dunnage as it is fed between the coiling pins 66. The front surface of the guide plate 134 may form part of a housing for receiving and supporting the coiling pin mounts 130 and related components. In the illustrated embodiment, the coiling pin mounts 130 have a disk-like shape and are mounted to bearings 136 received in circular openings in the guide plate 130. The bearings 136 rotate about the respective coiling pin axis 132, and the coiling pins 66 are mounted to respective coiling pin mounts 130 offset from but parallel to the coiling pin axis 132. The housing, specifically a back side of the guide plate 130 in the illustrated embodiment, may be enclosed by a back plate 138.
As in the previous embodiment, the coiling pins 66 are spaced apart and oriented relative to the guide surface 68 to receive a leading end of a strip of dunnage between the coiling pins 66 in a strip receiving position. During operation, however, as the coiling pins 66 rotate about the coiling axis 128, the coiling pins 66 can move between the strip receiving position and a coiling position. The spacing between the coiling pins 66 is less in the coiling position than in the strip receiving position. The coiling pins 66 rotate about the coiling axis 128 and at least one of the coiling pins 66 and its coiling pin mount 130 rotate about its coiling pin axis 132, which is offset from but parallel to the coiling axis 128.
In contrast to the cam arrangement of the previous embodiment, however, the offset nature of the coiling pin axis 132 from the respective coiling pin 66 and the central coiling axis 128 provides a simpler construction to achieve a similar effect. The coiling pins 66 and the coiling pin mounts 130 are not free to rotate in any manner. A biasing member 140, such as a spring or an elastic element, located in the housing formed between the guide plate 134 and the back plate 138, biases the pin mount 130 toward the strip receiving position. In the illustrated embodiment, the biasing member 140 is a coil spring (only one shown). The coil spring 140 is connected at one end to the pin mount 130, and at the opposite end to the guide plate 134. As the pin mount 130 rotates, the coil spring 140 is stretched around a spring guide surface 142 formed on a back side of the guide plate 134. The spring guide surface 142 is curved in the illustrated embodiment. The spring guide surface 142 ends at a stop 144 formed in the back of the guide plate 134. The stop 144 defines the furthest extension of the coil spring 140, and also may limit rotation of the pin mount 130.
Operation of the coiling mechanism 124 will now be described with reference to the sequential front and rear views of the coiling mechanism in
In
In the coiling position, the coiling pins 66 are closer together than in the strip receiving position. The resilient nature of a strip of dunnage means that the coiling pins 66 can compress the strip of dunnage 150 in the coiling position without unduly damaging its cushioning properties. And moving the coiling pins 66 closer together enables the coiling mechanism 124 to wind the strip of dunnage 150 into a coil with a relatively compact center.
As should be evident from the foregoing description, no motive elements are required to drive rotation of the coiling pins 66 about respective coil pin axes 132. The speed of rotation of the coiling fork 125 about the coiling axis 128, and the speed at which the strip of dunnage 150 is fed to the coiling mechanism 124, cooperate to cause the pin mounts 130 to rotate against the force applied by the coil spring 140 until the stop 144 is reached. At this point, the coiling pins 66 are in the coiling position, such that the stop 144 defines a minimum distance between the coiling pins 66, and thus the compactness of the core of the resulting coil of dunnage.
Upon removal of the completed coil from the coiling pins 66, the coil springs 140 return the pin mounts 130, and thus the respective coil pins 66, to the strip-receiving position. The coiling fork 126 rotates about the coiling axis 128 to align the coiling pins 66 perpendicular to the path of the strip of dunnage 150 so that the coiling mechanism 124 is ready to receive the leading end of another strip of dunnage.
Although the invention has been shown and described with respect to a certain illustrated embodiment or embodiments, equivalent alterations and modifications will occur to others skilled in the art upon reading and understanding the specification and the annexed drawings. In particular regard to the various functions performed by the above described integers (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such integers are intended to correspond, unless otherwise indicated, to any integer which performs the specified function (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated embodiment or embodiments of the invention.
Number | Date | Country | |
---|---|---|---|
62796970 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17421906 | Jul 2021 | US |
Child | 18193485 | US |