This application claims priority from German Patent Application No. 10 2004 058 573.3 dated Dec. 3, 2004, the entire disclosure of which is incorporated herein by reference.
The invention relates to a coiler plate for sliver-coiling devices, especially of draw frames and carding machines.
In general, coiler plates have a sliver channel with an inlet and an outlet for sliver and a rotary plate, there being present on the underside of the rotary plate a cover which has a through opening. In a known coiler plate (EP-A-0 670 281), a round tube, as starting material, is formed by shaping to form a three-dimensionally curved sliver channel. In the semi-finished product, the outlet bend is followed by a straight portion which is separated during completion of the sliver channel. The outlet of the sliver channel is so constructed that it terminates level with the base of the rotary plate. The base of the rotary plate has a through opening, the internal diameter of which is greater than the external diameter of the outlet of the sliver channel, so that a distancing space is created. The distancing space and the opening are introduced when the rotary plate is being cast. The panel-shaped cover of the rotary plate on its underside likewise has a through opening, the internal diameter of the cover terminating flush with the outer wall of the sliver tube outlet. During assembly, the outlet of the sliver tube outlet is inserted through the opening in the rotary plate into the opening of the cover. A casting material is then poured in so that the sliver channel is fixed at an outlet by the casting material, the pour-in site being so covered by the panel-shaped cover that only the free cross-section of the sliver channel is free. A disadvantageous aspect is the considerable effort required in terms of manufacturing and assembly. In particular, the distancing space, which is approximately elliptical in cross-section, has to be introduced into the rotary plate. In addition, care must be taken when sealing the sliver channel into the rotary plate with the casting material. The casting material is expensive. A further problem is the considerable amount of time required to close the gap space between the rotary plate and the sliver tube outlet. Sharp edges and transitions require laborious polishing.
It is an aim of the invention to provide a coiler plate of the kind described at the beginning which avoids or mitigates that mentioned disadvantages, which has a particularly simple construction and which allows simple manufacture and assembly.
The invention provides a coiler plate for a sliver-coiling device for a spinning preparation machine, comprising:
Because a connection piece having a through opening is formed with the cover, especially by a shaping step, the openings and the connecting element for the sliver channel outlet can be integrated into the cover. The opening, which may be, for example, approximately kidney-shaped, is advantageously produced from the sheet-form cover by non-cutting shaping, a clean transition being created between the flat cover surface and the contours of the opening, so that subsequent machining work is completely or largely unnecessary. In particular, there are no problems with adhering fibres or the like.
The connection piece and the opening may be formed, for example, by non-cutting shaping, by pressing, by deep-drawing, especially including pre-drawing and final drawing, by stamping, by flow-forming, by flow-drilling, or by transfer moulding. Advantageously, the cover is pre-perforated, for example, by cutting, especially laser cutting. The pre-perforated opening may be, for example, approximately kidney-shaped, circular or approximately oval. Advantageously, the cover is heated before and/or during shaping. Advantageously, the sliver channel consists of special steel. Advantageously, the rotary plate consists of cast material, for example cast aluminium. Advantageously, the cover is formed from a wear-resistant material. Advantageously, the cover is formed from a low-friction material. Advantageously, the cover consists of metal, for example, special steel. Advantageously, the cover is in sheet-form. Instead, the cover may consist of a deformable plastics material, especially a plastics material that is wear-resistant and low-friction. Advantageously, the plastics material is wear-resistantly reinforced. Advantageously, the surface of the cover in contact with the coiled fibre material is wear resistant and low-friction. The opening in the cover may be, for example, approximately kidney-shaped, or the cover is substantially oval. Advantageously, the cross-section of the connection piece is partly kidney-shaped. Advantageously, the cross-section of the connection piece in the inlet region conforms to the outlet cross-section of the sliver channel. Advantageously, the outlet cross-section of the sliver channel is substantially oval. Advantageously, the cross-section of the connection piece in the inlet region is substantially oval. Advantageously, the cross-section of the sliver channel outlet and the cross-section of the connection piece in the inlet region are substantially circular. Advantageously, the connection piece is integrated into the cover. Advantageously, the kidney-shaped or oval opening is integrated into the cover. Advantageously, the connecting element (connection piece, passageway) for the outlet of the sliver channel is integrated into the cover. Advantageously, the outlet of the sliver channel is introducible, especially pushable, into the upper region of the connection piece. Advantageously, between the outlet of the sliver channel and the inlet region of the connection piece there is a transfer tube, guide element or the like. The inlet cross-section of the connection piece may be arranged parallel to the cover. The inlet cross-section of the connection piece and the cover may be arranged at an angle to one another. Advantageously, the sliver outlet and the inlet region of the transfer tube, guide element or the like are joined to one another. Advantageously, the outlet region of the transfer tube, guide element or the like and or the inlet of the connection piece are joined to one another. Advantageously, there is a space (gap) between the outlet of the transfer tube, guide element or the like and the inlet of the connection piece. Advantageously, there is a seal between the outlet of the sliver channel and the connection piece. Advantageously, the seal is formed by silicone or the like. Advantageously, the seal is formed by an adhesive or the like. Advantageously, the outlet of the sliver channel and the upper inner region of the connection piece overlap one another. Advantageously, there is a spacer element or the like between the outlet of the sliver channel and the upper inner region of the connection piece. Advantageously, sliver channels having outlets of different diameters are insertable into the connection piece. Advantageously, the sliver channel is joined, for example joined directly, to the connection piece. Advantageously, the sliver channel is joined to the connection piece by means of a connecting element, for example a connecting tube, transfer tube, guide element or the like. Advantageously, the outlet region of the sliver channel is associated with a sliver separation device. Advantageously, the connecting tube, transfer tube, guide element or the like is associated with a sliver separation device. Advantageously, there is a sliver separation device between the outlet of the sliver channel and the inlet of the connection piece.
The invention also provides a coiler plate for sliver-coiling devices, especially of draw frames and carding machines, having a sliver channel with an inlet and an outlet for sliver and having a rotary plate, there being present on the underside of the rotary plate a cover which has a through opening, wherein a connection piece having a through opening is formed integrally with the cover by shaping.
According to
According to
A casting material 40 joins the sliver channel 20 in the region of its inlet 20a to a plate holder 21a. The sliver channel 20 is provided at its outlet 20b with a connection piece 23. It may be advantageous to fix and/or seal the outlet 20b in the inlet opening 23a of the connection piece 23, for example by means of silicone, adhesive or the like. The underside of the rotary plate 21 is provided with a cover 22, for example a cover sheet of special steel. Special steel is wear-resistant and low in friction with respect to the sliver 38 coiled in the can 39. In addition, mechanical machining (sanding, polishing) of the base of the rotary plate 21, which, preferably in the form of a cast article, consists of aluminium or an aluminium alloy, is avoided. The cover 22 is arranged to lie closely against the underside of the rotary turret 21 and is affixed, for example, by adhesive bonding. The edge 22′, 22″ of the cover 22 is bent up and rests against the rotary plate 21. A connection piece 23 having a through opening is formed integrally with the cover 21, the opening being configured for the passage of the sliver. The transitions 23′, 23″ at the outlet of the drafting system 23 are rounded.
According to
In accordance with
The embodiment according to
The drafting system 26 shown in
Although the foregoing invention has been described in detail by way of illustration and example for purposes of understanding, it will be obvious that changes and modifications may be practised within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 058 573.3 | Dec 2004 | DE | national |