The present application which claims priority of European Patent Application No. 20216982.7 filed Dec. 23, 2020, the contents of which are incorporated by reference herein.
The present invention is based on a coiling device, wherein the coiling device comprises
The present invention furthermore relates to an operating method for a coiling device for coiling a metal strip,
A coiling device of this kind is known, for example, from WO 2008/083 792 A1. A similar disclosure content can be gathered from U.S. Pat. No. 4,964,587 A.
When coiling metal strips, and depending on the thickness of the metal strip to be coiled, there are various requirements concerning the configuration of the coiling device. For coiling of relatively thin strips having a thickness of about 0.5 mm or more to at most about 20 mm, the coiling swing arm is configured in particular such that it has no further pressure roller in addition to the rear pressure roller, and the upper duct flap together with the lower duct flap form an opening funnel which tapers in the direction of the coiler and which has a relatively small opening angle. In contrast, for the coiling of relatively thick strips, having a thickness of at least 1.2 mm to at most about 25 mm (more accurately: usually up to 25.4 mm=one inch), the coiling swing arm is configured in such a way that it additionally has a further pressure roller upstream of the rear pressure roller, that is a front pressure roller, and the upper duct flap together with the lower duct flap form an opening funnel which tapers in the direction of the coiler and which has a relatively large opening angle.
Depending on the configuration of the respective coiling device, a coiling device from the prior art may thus be used either to coil only thin strips and medium strips or to coil only medium strips and thick strips, wherein the strips have a thickness of about 0.5 mm to about 1.2 mm, the medium strips have a thickness of about 1.2 mm to about 20 mm, and the thick strips have a thickness of about 20 mm to about 25 mm. Conversely, it is not possible in the prior art to use the same coiling device to coil strips with a thickness value between about 0.5 mm and about 25 mm.
It is the object of the present invention to develop a coiling device of the type mentioned above such that both thin strips, thick strips, and self-evidently also medium strips, can be coiled, wherein the coiling can be performed over the total possible thickness range of about 0.5 mm to about 25 mm.
The object is achieved by a coiling device having the features disclosed herein.
According to the invention, a coiling device of the type mentioned above is configured such that the coiling swing arm also has a front pressure roller in addition to a rear pressure roller, and such that the coiling device comprises a flap drive by which the upper duct flap can be positioned in such a way that, when the coiling swing arm is lined up with the coiling mandrel, the upper duct flap
As a result, depending on whether a thin or a thick metal strip is intended to be coiled, it is possible to set the geometry of the coiling device upstream of the coiler and the effectively acting configuration of the coiling swing arm as desired. For the coiling of a medium metal strip, the one or the other geometry and effectively acting configuration can be set as desired.
Preferably, the flap drive acts on one side on a joint of a toggle lever system, one end of which is connected in an articulated manner to the upper duct flap and the other end of which is mounted in an articulated manner so as to be positionally fixed relative to the coiler. Firstly, this allows a favorable deflection of forces and, secondly, allows an advantageous installation of the flap drive.
One end of the flap drive is preferably fastened in an articulated manner to the coiling swing arm. As a result, the positioning of this end of the upper duct flap relative to the coiling swing arm does not change. Indeed, this end is not moved relative to the coiling swing arm even during an activation of the swing arm drive and/or the flap drive. This simplifies the kinematics.
The flap drive may be configured in the form of a hydraulic cylinder unit. This allows the upper duct flap to be adjusted in a rapid, exact and robust manner.
Preferably,
This configuration is robust and reliable. It has an effect that activation of the flap drive leads to a circular pivoting movement of the first flap point about the first swing arm point and simultaneously to a circular pivoting movement of the second flap point about the second swing arm point. The combination of these two movements, together with the arrangement of the flap points and the swing arm points, defines the movement of the upper duct flap as a whole.
Preferably, it is provided
This configuration has the effect that, in the extended position of the flap extension, for the purpose of guiding a thin metal strip, guidance over a relatively large section (namely the length of the upper duct flap plus the length of the flap extension) is achieved and, in the retracted position of the flap extension, the required freedom of movement for displacing the upper duct flap between the position in which it covers the front pressure roller and the position in which it frees up the front pressure roller is available.
Preferably, at its end furthest away from the coiler, the flap extension is mounted in an articulated manner such that the transfer of the flap extension from the retracted position to the extended position and back is a pivoting movement about that end of the flap extension which is furthest away from the coiler. This configuration is simple in terms of design and reliable.
Preferably, the extension drive acts on one side on a joint of a toggle lever system, wherein one end of the lever system is connected in an articulated manner to the flap extension and the other end of the lever system is mounted in an articulated manner so as to be positionally fixed relative to the coiler. This firstly allows a favorable deflection of forces and, secondly allows an advantageous installation of the flap drive.
The extension drive may be configured in the form of a hydraulic cylinder unit. This allows the flap extension to be adjusted in a rapid, exact and robust manner.
The object of the invention is furthermore achieved by an operating method disclosed herein, for coiling a metal strip by means of a coiling device according to the invention. According to the invention, an operating method of the type mentioned in the introduction is configured such that the duct flap
The above-described characteristics, features and advantages of the present invention, and the manner in which these are achieved, will become clearer and more distinctly understandable in conjunction with the following description of the exemplary embodiments, which will be discussed in more detail in conjunction with the drawings. In the drawings, in a schematic illustration:
In
The coiling device further comprises a coiling swing arm 4. The coiling swing arm 4 has, for its part, a front pressure roller 5, a rear pressure roller 6 and a deflection plate 7. The coiling device furthermore comprises a swing arm drive 8. The coiling swing arm 4 can be lined up with the coiling mandrel 3 and can be driven away from it by means of the swing arm drive 8. The swing arm drive 8 may be configured in particular in the form of a hydraulic cylinder unit. Here, the term “hydraulic cylinder unit” is used in the generic sense. A hydraulic cylinder unit thus has at least one hydraulic cylinder. However, the wording is also expressly intended to include the possibility of there being a plurality of hydraulic cylinders.
The coiling swing arm 4 is the coiling swing arm by which the metal strip 2 is first guided around the coiling mandrel 3 during incipient coiling. In technical circles, it is usually referred to as coiling swing arm number 1. As a rule, further coiling swing arms are present (not illustrated in
The coiling device furthermore comprises an upper duct flap 9. The upper duct flap 9 is arranged upstream of the coiler 1 in the feed direction x. It is used to guide the metal strip 2 to the coiler 1. Finally, the coiling device comprises a flap drive 10. The upper duct flap 9 can be positioned by the flap drive 10. The flap drive 10 may be configured in particular in the form of a hydraulic cylinder unit. Here, the term “hydraulic cylinder unit” is used in the generic sense as before.
The upper duct flap 9 is referred to as an upper duct flap because it is arranged above the metal strip 2 during the coiling of the metal strip 2. As a rule, there is also a lower duct flap 11 in addition to the upper duct flap 9, corresponding to the illustration in
The metal strip 2 has a thickness d. The thickness d may be less than 1 mm, for example 0.5 mm or 0.8 mm. The thickness d may, however, also have greater values, for example 1.2 mm or 2.0 mm or 3.0 mm. Even greater values are also possible. Specifically, the thickness d may have values of up to about 25 mm.
In the following text, the procedure for the coiling of the metal strip 2 when the thickness d of the metal strip 2 has a relatively low value (minimum as stated above, maximum about 1.2 mm) is first discussed in conjunction with
The metal strip 2 is initially fed in a substantially horizontal transport direction y via a roller table 12 comprising transport rollers 13 to a driving device 14. As a rule, the transport direction y is exactly horizontal. In individual cases, however, slight deviations of a few degrees (maximum 5°, as a rule 2° and less) from the horizontal may occur. The driving device 14 is able to deflect the metal strip 2 from the transport direction y downward in the feed direction x. The feed direction x is thus directed obliquely downward.
Before a strip head 15 reaches the driving device 14, the coiling device is brought into the configuration illustrated in
During the coiling of a few turns (as a rule between three turns and six turns), the coiling swing arm 4 still remains lined up with the coiling mandrel 3. It is driven away from the coiling mandrel 3 merely to such an extent that the respectively new turn of the metal strip 2 can be coiled. After the coiling of a few turns, however, the intention is for the coiling swing arm 4 to be driven away from the coiling mandrel 3. For this purpose, the coiling swing arm 4 is initially driven a little way away from the coiling mandrel 3 by means of the swing arm drive 8, see
The procedure for the coiling of the metal strip 2 when the thickness d of the metal strip 2 has a relatively great value (minimum about 20 mm, maximum about 25 mm) is discussed in conjunction with
As before, the metal strip 2 is initially fed via the roller table 12 to the driving device 14 is and deflected obliquely downward in the feed direction x by the driving device 14.
Before the strip head 15 reaches the driving device 14, the coiling device is brought into the configuration illustrated in
When coiling a thin metal strip 2, the coiling swing arm 4 still remains lined up with the coiling mandrel 3 during the coiling of a few turns. It is driven away from the coiling mandrel 3 merely to such an extent that the respectively new turn of the metal strip 2 can be coiled. After the coiling of a few turns, however, the coiling swing arm 4 is driven away from the coiling mandrel 3. However, in contrast to the procedure for the coiling of a thin metal strip 2, the coiling swing arm 4 may now be readily completely withdrawn, that is brought into the state illustrated in
If the metal strip 2 has a thickness d of between about 1.2 mm and about 20 mm, coiling of the metal strip 2 can be carried out as desired either in the manner for coiling a thin metal strip 2 or in the manner for coiling a thick metal strip 2.
In addition to the fundamental configuration of the present invention,
As per
Furthermore, one end of the flap drive 10 is fastened in an articulated manner to the coiling swing arm 4. It is thus the case that during the movement of the coiling swing arm 4, this end also moves correspondingly as shown in particular in
Furthermore, the upper duct flap 9 is connected to the coiling swing arm 4 by means of a first and a second connecting element 20, 21. Specifically, the first connecting element 20 is connected in an articulated manner to a first flap point 22 of the upper duct flap 9 and to a first swing arm point 23 of the coiling swing arm 4. In a similar manner, the second connecting element 21 is connected in an articulated manner to a second flap point 24 of the upper duct flap 9 and to a second swing arm point 25 of the coiling swing arm 4. The first flap point 22 is arranged upstream of the second flap point 24 as seen in the feed direction x. In an analogous manner, the first swing arm point 23 is arranged upstream of the second swing arm point 25 as seen in the feed direction x. The curved shape of the second connecting element 21 serves to bridge a drive shaft (not illustrated) for driving the front pressure roller 5. For the sake of good order, it is pointed out that the terms “flap point” and “swing arm point” are merely intended to indicate the element on which the respective point is located, namely on the upper duct flap 9 or on the coiling swing arm 4, respectively. No further significance is associated with the choice of terminology.
In the following text, an important modification of the present invention is discussed in conjunction with
The important modification of
In the context of this modification, the coiling device comprises a flap extension 26 in addition to the elements discussed in conjunction with
When the coiling swing arm 4 is lined up with the coiling mandrel 3 and the upper duct flap 9 is also arranged between the coiling mandrel 3 and the front pressure roller 5 of the coiling swing arm 4, the flap extension 26 in the extended position is arranged upstream of the upper duct flap 9, as seen in the feed direction x, in the direction of the metal strip 2. Here, the flap extension 26 adjoins the upper duct flap 9 (in abutting fashion or with a small distance or with a small overlap). The flap extension 26 may be arranged in particular in a flush manner upstream of the upper duct flap 9. The metal strip 2 is thus guided first by the flap extension 26 and then by the upper duct flap 9 to the coiling mandrel 3. By contrast, in the retracted position, the flap extension 26 is driven away from the upper duct flap 9 and the metal strip 2. As a result, the upper duct flap 9 can be moved counter to the feed direction x.
In the following text, the procedure for the coiling of the metal strip 2 when the thickness d of the metal strip 2 has a relatively low value, as a rule about 1.2 mm or less, is firstly discussed in conjunction with
Analogously to the procedure in the configuration of
Before the strip head 15 reaches the driving device 14, the coiling device is brought into the configuration illustrated in
It is possible for the flap extension 26 to be transferred to the retracted position (
After the coiling of a few turns, the coiling swing arm 4 is driven away from the coiling mandrel 3. For this purpose, the coiling swing arm 4 is initially driven a little way away from the coiling mandrel 3 by means of the swing arm drive 8, see
The procedure for the coiling of the metal strip 2 when the thickness d of the metal strip 2 has a relatively great value (minimum about 20 mm, maximum about 25 mm) is now discussed in conjunction with
As before, the metal strip 2 is initially fed via the roller table 12 to the driving device 14 and deflected obliquely downward in the feed direction x by the driving device 14.
Before the strip head 15 reaches the driving device 14, the coiling device is brought into the configuration illustrated in
In this configuration, the coiling swing arm 4 has been lined up with the coiling mandrel 3. The rear pressure roller 6 of the coiling swing arm 4 therefore bears against the coiling mandrel 3 or has a minimal distance, lying in the order of magnitude of the thickness d of the metal strip 2, from the coiling mandrel 3. The upper duct flap 9 has been positioned in such a way that it is arranged upstream of the front pressure roller 5 of the coiling swing arm 4 as seen in the feed direction x. The metal strip 2 is therefore guided and deflected around the coiling mandrel 3 not only by the rear pressure roller 6 and the deflection plate 7 but additionally also by the front pressure roller 5. The front pressure roller 5 is thus active.
Just like when coiling a thin metal strip 2, the coiling swing arm 4 still remains lined up with the coiling mandrel 3 during the coiling of a few turns. It is driven away from the coiling mandrel 3 merely to such an extent that the respectively new turn of the metal strip 2 can be coiled. After the coiling of a few turns, however, the coiling swing arm 4 is driven away from the coiling mandrel 3. However, in contrast to the procedure for the coiling of a thin metal strip 2, the coiling swing arm 4 may now be readily completely withdrawn, that is brought into the state illustrated in
In summary: the flap extension 26 is pivoted out, and is brought into the extended position, only during incipient coiling of a thin metal strip 2. After incipient coiling of the thin metal strip 2, the flap extension is pivoted in, that is brought into the retracted position. During the coiling of a thick metal strip 2, the flap extension 26 permanently remains in the retracted position.
If the metal strip 2 has a thickness d of between about 1.2 mm and about 20 mm, coiling of the metal strip 2 can be carried out as desired either in the manner for coiling a thin metal strip 2 or in the manner for coiling a thick metal strip 2.
In addition to the important modification of the present invention,
Corresponding to the illustration in
Furthermore, the extension drive 27 acts on one side on a joint 29 of a toggle lever system. Two articulated arms 30, 31 of the toggle lever system are connected to one another in an articulated manner at the joint 29. The end of the one articulated arm 30 is connected in an articulated manner to the flap extension 26. The end of the other articulated arm 31 is mounted in an articulated manner at a fastening location 32. The fastening location 32 is positionally fixed relative to the coiler 1. In particular, it is not arranged on the coiling swing arm 4.
The present invention has many advantages. In particular, metal strips 2 over a large range of thicknesses may be coiled by means of the coiling device according to the invention. Furthermore, the construction is low-maintenance, robust and reliable. Finally, it is also readily possible to convert existing coiling devices.
Although the invention has been illustrated and described in more detail using the preferred exemplary embodiment, the invention is not restricted by the disclosed examples and other variants can be derived therefrom by a person skilled in the art without departing from the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
20216982 | Dec 2020 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2890003 | Jones | Jun 1959 | A |
2918226 | O'Brien | Dec 1959 | A |
3100605 | Bond | Aug 1963 | A |
3587274 | Rotter | Jun 1971 | A |
3818737 | Kajiwara | Jun 1974 | A |
3905218 | Galletti | Sep 1975 | A |
3913367 | Galletti | Oct 1975 | A |
4063440 | Brashear | Dec 1977 | A |
4530224 | Hild | Jul 1985 | A |
4964587 | Oki | Oct 1990 | A |
5544840 | Murakami | Aug 1996 | A |
5632454 | Murakami | May 1997 | A |
6039283 | Munoz-Baca | Mar 2000 | A |
6283403 | Braun | Sep 2001 | B1 |
6364242 | Braun | Apr 2002 | B1 |
6488227 | Miyaguchi | Dec 2002 | B1 |
6578789 | Braun | Jun 2003 | B1 |
6585187 | Miyaguchi | Jul 2003 | B2 |
7059161 | Armenat | Jun 2006 | B2 |
7410117 | Klein | Aug 2008 | B2 |
7454938 | Morel | Nov 2008 | B2 |
8302899 | Kipping | Nov 2012 | B2 |
10293392 | Matsumoto | May 2019 | B2 |
10406578 | Matsumoto | Sep 2019 | B2 |
20020130213 | Miyaguchi | Sep 2002 | A1 |
20040244450 | Armenat | Dec 2004 | A1 |
20060144981 | Klein | Jul 2006 | A1 |
20070262184 | Morel et al. | Nov 2007 | A1 |
20100025514 | Kipping | Feb 2010 | A1 |
20100059621 | Kipping et al. | Mar 2010 | A1 |
20100083720 | Hackenberg | Apr 2010 | A1 |
20170106422 | Matsumoto | Apr 2017 | A1 |
20170106423 | Matsumoto | Apr 2017 | A1 |
20170106424 | Matsumoto | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
108787752 | Nov 2018 | CN |
2 876 365 | Apr 2006 | FR |
S49-122865 | Nov 1974 | JP |
S54-91438 | Jun 1979 | JP |
20130120955 | Dec 2013 | KR |
WO 2008037408 | Apr 2008 | WO |
WO 2008083792 | Jul 2008 | WO |
WO-2015141701 | Sep 2015 | WO |
Entry |
---|
European Search Report dated Jun. 14, 2021 in corresponding European Patent Application No. 20216982.7. |
Number | Date | Country | |
---|---|---|---|
20220193743 A1 | Jun 2022 | US |