The present invention relates generally to coin processing devices and, more particularly, to a coin processing device having a coin chute for transporting coins from an input area to an output area.
Coin processing machines generally have the ability to receive bulk coins from a user of the machine. Coin processing machines include a redemption type of machine wherein, after the deposited coins are counted, a receipt is issued indicating the value of the deposited coins. The user may redeem this receipt for the amount of deposited coins in the form of banknotes. In other embodiments, the receipt is redeemed for the amount of the deposited coins less a commission charged for use of the coin redemption machine.
These self-service prior art coin redemption machines are commonly used in a banking environment and/or a retail environment such as a grocery store. In operation, a user inputs (i.e., deposits) a batch of coins of mixed denominations into a hopper of the coin redemption machine. The machine determines the value of the deposited coins and outputs a receipt indicative of the determined amount. In some embodiments, the receipt also indicates a second, lesser amount, which reflects a commission charged for use of the machine. The user redeems the receipt for paper currency for the value of the deposited coins less the commission. For example, in a banking environment, a user redeems the receipt at the teller's window. In a retail environment, the user can redeem the receipt at a cashier's station or a customer-service station.
In general, the coins are sorted by denomination and sent to a coin container, such as a coin bin or a coin bag, for temporary storage until the coin container is removed or emptied. Although the process of sending the coins to the coin container can be as simple as dropping the coins into the coin container, in some instances the coins require additional guidance to the coin container. For example, a coin processing machine that sorts coins by denomination and sends the coins to respective coin bags, requires that rejected coins be sent via a separate coin chute to a separate reject container. Rejected coins are coins, such as foreign coins, game tokens, or blank metal slugs, that do not meet any of a number of coin identification tests. The rejected coins require a separate coin chute for traveling to the reject container. To eliminate cost and complex coin transporting mechanisms, it is advantageous to use the force of gravity for moving the coins from the input area to the reject container.
A problem associated with a coin chute is that the coins dropped in a receiving region of the coin chute tend to slide, rather than roll, along the coin chute. Therefore, the coin chute needs to be inclined at a relatively large angle with respect to the horizontal plane, such that the vertical component of the gravity force overcomes the frictional forces due to sliding contact between surfaces of the coins and surfaces of the coin chute. Inclining the coin chute at a relatively large angle is undesirable because the coin processing machine must be taller than when inclining the coin chute at a relatively small angle. As there is a push for smaller machines, allocating volume to a large-angle coin chute becomes extremely difficult.
Providing a coin chute that would force the received coins to roll, regardless of the coin size or orientation, would solve the above and other problems. There is a need, therefore, for a compact coin processing machine that uses a gravity-induced coin chute.
Briefly, in accordance with the foregoing, the invention is related to a coin chute for transporting coins in a coin processing machine. The coin chute includes a first surface, a second surface, and a rolling surface. The rolling surface connects the first surface and the second surface to form generally a V-shape cross-section to the coin chute. The V-shape has an angle θ between the first and second surface surfaces, and is inclined at an angle α relative to the horizontal. The angles θ and α are selected to be values that cause the coins to move under a gravitational force and slidably roll across the rolling surface.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the following drawings
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to the drawings and initially to
The coin redemption machine 10 includes a coin input area 15 which receives coins of mixed denominations from a user. The coin input area 15 allows the user of the currency processing machine 10 to deposit the user's coins which will ultimately be converted to some other sort of fund source (i.e., banknotes, credit to a smartcard, credit to an account, credit for purchases in the store containing the redemption machine 10, etc.) that is available to the user.
As shown, the coin input area 15 is generally funnel-shaped to direct coins to a coin processing area within the machine 10. The coin input area 15 can include a gravity-feed coin input tray, and/or a coin tray that is pivotable from a first position, wherein the coin tray is substantially horizontal, to a second position, wherein the coin tray is lifted, causing the coins to slide under the force of gravity into the coin redemption machine 10.
In its simplest form, the coin redemption machine 10 receives coins via the coin input area, and after these deposited coins have been authenticated, sorted, and/or counted, the currency redemption machine 10 outputs a receipt to the user indicative of the dollar amount of the deposited coins. The currency processing machine 10 may include a paper dispensing slot for providing a user with the receipt of the transaction that the user has performed. The user can redeem the receipt for funds from an attendant of the coin redemption machine 10. An attendant may include a store employee such as a cashier at a grocery store or a teller at a bank. Alternatively, the user can redeem the receipt for credit towards purchases at the store where the machine is located and/or in exchange for merchandise at the store.
The coin redemption machine 10 also includes a media slot 16 into which the user may insert an account card (e.g., a bank card such as an ATM card, an identification card including the type distributed by grocery stores, smartcards, etc.). The media slot 16 is coupled to a media reader/writer device in the coin redemption machine 10 that is capable of reading from or writing to one or more types of media including ATM cards, credit cards, smartcards, or other types of media cards. This media may include various types of memory storage technology such as magnetic storage, solid state memory devices, and optical devices. The touch screen 12 typically provides the user with a menu of options which prompts the user to carry out a series of actions for identifying the user by displaying certain commands and requesting that the user depress touch keys on the touch screen 12 (e.g., a user PIN, account number, etc.).
After the coins have been processed, e.g., sorted, counted, and/or authenticated, they are transported to a coin container (not shown), such as a coin bin or a coin bag. The coin container is located on a container base 18 inside a coin storage area 20, which is accessible via a door 22. Coins can also be transported to a coin dispensing mechanism 24, which is located above the storage area 20, for dispensing appropriate coin change to customers via an opening 25 in the door 22. Occasionally, coins that do not meet authentication requirements are detected, e.g., metal slugs, foreign coins, bus tokens, etc. These coins are rejected and then transported to a reject outlet 27 in the door 22 via a coin chute 26. The coin chute 26 can be made of any solid material, such as a molded plastic or a metal. In one embodiment, the material is selected to be a fire retardant material.
Referring now to
The entry region 28 receives coins 34 after they have been rejected and sent to the coin chute 26. The entry region 28 is located at one end of the middle region 32 and it is shaped to keep coins 34 from bouncing out of the entry region 28 and to direct the coins 34 toward the middle region 32. The entry region 28 includes three surfaces or sides: two opposing surfaces, the first surface 36a and the second surface 38a, and an end surface 40. The first surface 36 is referred to with suffixes “a,” “b,” and “c” to designate a particular region of the first surface 36 in the entry region 28, the middle region 32, and the exit region 30, respectively. Similarly, the second surface 38 is referred to with suffixes “a,” “b,” and “c” to designate a particular region of the second surface 38 in the entry region 28, the middle region 32, and the exit region 30, respectively.
As can be seen in
The radius of the bridging surface 42a is selected to inhibit opposing coin edges from simultaneously contacting both the first surface 36a and the second surface 38a. Also, the bridging surface 42a can have a constant or variable thickness. The width of the first surface 36a and the width of the second surface 38a can be constant or variable. For example, in the embodiment shown in
The end surface 40 is connected to both the first surface 36a and the second surface 38a to form a closed end of the entry region 28, and it has a triangular shape, wherein the shape is defined in part by the angle θ. Thus, the entry region 28 has a closed end and an open end, the open end being coupled to the middle region 32. The end surface 40 is inclined at an angle θ relative to the vertical axis, the angle β being formed generally parallel to the length of the coin chute 26. The angle θ is dimensioned to limit coins 34 from bouncing within said entry region 28 or within middle region 32. In one embodiment the angle β is between about 25 degrees and 30 degrees.
The middle region 32 has generally a similarly shaped cross-section as the cross-section of the entry region 28, and it includes the first surface 36b, the second surface 38b, and the bridging surface 42b. As shown in
In general, after the entry region 28 receives the coins 34, a coin surface of each of the coins 34 slidably engages either the first surface 36a or the second surface 38a. Because of the force that gravity exerts on each of the coins 34, after slidably engaging either the first surface 36a or the second surface 38a, a coin edge of each of the coins 34 engages the bridging surface 42a. However, depending on the orientation of each of the coins 34 when they are received by the entry region 28, a coin edge of each of the coins 34 may engage the bridging surface 42a before a coin surface slidably engages one of the two entry surfaces, the first surface 36a or the second surface 38a, or the coin edge may engage the bridging surface 42a generally simultaneously with the coin surface slidably engaging one of the two entry sides. The coins 34, in general, slide along the bridging surface 42a and then start rolling along the bridging surface 42b before they exit at the exit region 30. The rolling movement of the coins 34 along the bridging surface 42b can be pure rolling, where the only contact between the coins 34 and the middle region 32 occurs between a coin edge and the bridging surface 42b, or it can be sliding rolling, where in addition to the contact between a coin edge and the bridging surface 42b there is also contact between a coin surface and one of the first surface 36b and the second surface 38b.
The middle region 32 can include additional features for varied purposes, such as securing the coin chute 26 to a coin chute support, or accommodating other internal components of the coin redemption machine 10. For example, a plurality of securing tabs 44 (shown in
The exit region 30, shown more clearly in
In
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
446303 | Thompson | Feb 1891 | A |
480360 | Avery | Aug 1892 | A |
812327 | Cranner | Feb 1906 | A |
917629 | Long | Apr 1909 | A |
1931579 | Gilchrist et al. | Oct 1933 | A |
4050218 | Call | Sep 1977 | A |
4165802 | Mathews | Aug 1979 | A |
4731043 | Ristvedt et al. | Mar 1988 | A |
4911280 | Bruner | Mar 1990 | A |
4966570 | Ristvedt et al. | Oct 1990 | A |
5007079 | Vogl et al. | Apr 1991 | A |
5176565 | Ristvedt et al. | Jan 1993 | A |
5194037 | Jones et al. | Mar 1993 | A |
5297986 | Ristvedt | Mar 1994 | A |
5370211 | Plana | Dec 1994 | A |
5372542 | Geib et al. | Dec 1994 | A |
5401211 | Geib et al. | Mar 1995 | A |
5425439 | Tsuchida | Jun 1995 | A |
5441138 | Hird et al. | Aug 1995 | A |
5480348 | Mazur et al. | Jan 1996 | A |
5514034 | Jones et al. | May 1996 | A |
5542881 | Geib | Aug 1996 | A |
5564546 | Molbak et al. | Oct 1996 | A |
5564978 | Jones et al. | Oct 1996 | A |
5676234 | Smith et al. | Oct 1997 | A |
5782686 | Geib et al. | Jul 1998 | A |
5799767 | Molbak | Sep 1998 | A |
5915519 | Glaser | Jun 1999 | A |
6196913 | Geib et al. | Mar 2001 | B1 |
6206167 | Taylor et al. | Mar 2001 | B1 |
6264545 | Magee et al. | Jul 2001 | B1 |
6494776 | Molbak | Dec 2002 | B1 |
6510936 | Smith et al. | Jan 2003 | B2 |
6520309 | Ishida et al. | Feb 2003 | B1 |
6708811 | Roscoe | Mar 2004 | B2 |
20020130011 | Casanova et al. | Sep 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040154899 A1 | Aug 2004 | US |