The present disclosure relates to a coin handling apparatus.
In the related art, as a cash management system installed in a store, there is known a system comprising: a first cash handling apparatus that performs settlement processing by depositing and dispensing cash; and a second cash handling apparatus that dispenses cash that is loaded to the first cash handling apparatus, and that deposits cash collected from the first cash handling apparatus (see, for example, Patent Literature (hereinafter, referred to as “PTL”) 1). The first cash handling apparatus is disposed in a register counter in a store, and the second cash handling apparatus is disposed in a back office in the store. The first cash handling apparatus includes a type in which cash is manually deposited or dispensed upon settlement, and a type in which cash is automatically deposited or dispensed upon settlement. In such a cash management system, a drawer or a cash transport cassette is used for cash transport between the first cash handling apparatus and the second cash handling apparatus.
Further, there is known a coin recycling device that stores a coin in a coin change cup and a cash till drawer (see, for example, PTL 2). In a case where only the coin change cup is inserted into the coin recycling device, there becomes a state in which a coin path of a second manifold communicates with a coin path of a third manifold and a coin can be stored in the coin change cup via the coin path of the second manifold and the coin path of the third manifold. When the cash till drawer is inserted into the coin recycling device, the third manifold turns by being pushed by the cash till drawer. By this turning of the third manifold, there becomes a state in which an exit of the coin path of the second manifold faces the cash till drawer and a coin can be stored in the cash till drawer.
A coin handling apparatus of the present disclosure includes: a storage unit that stores a coin, and feeds out the coin that has been stored; a drawer attachment unit to which a drawer for a register is attached; a cassette attachment unit to which a coin transport cassette is attached; a first route forming portion forming a first route that guides the coin fed out of the storage unit to the drawer attached to the drawer attachment unit; a second route forming portion forming a second route that guides the coin fed out of the storage unit to the coin transport cassette attached to the cassette attachment unit; and a switching unit that switches a guide destination of the coin fed out of the storage unit to the first route or the second route. The coin transport cassette gives or receives the coin to or from a specific apparatus via an opening that is opened when the coin transport cassette is attached to the specific apparatus.
In a technique as in PTL 1, only the drawer or the cash transport cassette can be attached to the second cash handling apparatus. For this reason, in a case where change is prepared for both the drawer and the cash transport cassette, a reduction in time for preparing change may not be achieved since, for example, after change is inserted into the drawer, it is necessary to detach the drawer from the second cash handling apparatus, to attach the cash transport cassette to the second cash handling apparatus, and then to insert change into the cash transport cassette.
Further, in a case where a technique as in PTL 2 is used and change is prepared for both the coin change cup and the cash till drawer, a reduction in time for preparing change may not be achieved since it is necessary, after change is inserted into the coin change cup, to insert the cash till drawer into the coin recycling device and then to insert change into the cash till drawer, for example.
An object of the present disclosure is to provide a coin handling apparatus capable of reducing time for storing a coin in a drawer and a coin transport cassette.
According to the coin handling apparatus of the present disclosure, it is possible to reduce time for storing a coin in the drawer and the coin transport cassette.
Hereinafter, an embodiment of the present disclosure will be described with reference to the accompanying drawings.
<Configuration of Money Handling System>
First, a configuration of a money handling system will be described. In the present embodiment, a front office of a store refers to an area where a money settlement apparatus whereby a customer settles a commercial product is installed. A back office of a store refers to an area where an apparatus that manages banknotes and coins that are handled by a money settlement apparatus is installed. Note that, in the present embodiment, banknotes and coins may be referred to collectively as money.
A money handling system 1 illustrated in
The money settlement apparatuses 11 are installed in a checkout counter 10 that is an example of a front office of a store. The money settlement apparatus 11 is operated by a clerk or a customer himself/herself, and is used in settlement processing between a clerk and a customer. The money settlement apparatus 11 deposits payment paid by a customer or dispenses change that is paid to a customer. The money settlement apparatus 11 is communicably connected to a POS register (not illustrated) that is operated by a clerk or to a self-checkout register (not illustrated) that is operated by a customer. Note that, the money settlement apparatus 11 may be integrally formed with the POS register or the self-checkout register.
The money settlement apparatus 11 comprises: a first banknote handling apparatus 12 that handles a banknote; and a first coin handling apparatus 13 that handles a coin C (see
The POS register apparatus 14 is installed in the checkout counter 10. A clerk manually deposits or dispenses money to or from a drawer 40, thereby settlement processing of the POS register apparatus 14 is performed.
The depositing and dispensing apparatus 21, the money management apparatus 25, and the POS management apparatus 26 are installed in a back office 20 of the store. The depositing and dispensing apparatus 21 is communicably connected to each of the money settlement apparatuses 11 and to the POS register apparatus 14. The depositing and dispensing apparatus 21 dispenses a change fund for being loaded to the money settlement apparatus 11 and the POS register apparatus 14, or deposits proceeds from sales collected from the money settlement apparatus 11 and the POS register apparatus 14. The depositing and dispensing apparatus 21 comprises: a second banknote handling apparatus 22 that handles a banknote; and a second coin handling apparatus 23 that handles the coin C. Details of the second coin handling apparatus 23 will be described later.
The money management apparatus 25 is communicably connected to each of the money settlement apparatuses 11, to the POS register apparatus 14, and to the depositing and dispensing apparatus 21 via a local area network (LAN) or the like. The money management apparatus 25 manages money stored in each of the money settlement apparatuses 11, in the POS register apparatus 14, and in the depositing and dispensing apparatus 21. For example, the money management apparatus 25 manages money subjected to settlement processing in each of the money settlement apparatuses 11 and in the POS register apparatus 14, respectively, and manages money given or received between the money settlement apparatus 11 and the depositing and dispensing apparatus 21, and money given or received between the POS register apparatus 14 and the depositing and dispensing apparatus 21. Further, the money management apparatus 25 may monitor whether the coin transport cassette 30 is attached to the money settlement apparatus 11 or the depositing and dispensing apparatus 21. The money management apparatus 25 may monitor whether the drawer 40 is attached to the POS register apparatus 14 or the depositing and dispensing apparatus 21. The POS management apparatus 26 manages a flow of a commercial product. Note that, at least two of the POS register apparatus 14, the money management apparatus 25, and the POS management apparatus 26 may be integrally formed.
The coin transport cassette 30 is configured to be attachable to and detachable from the first coin handling apparatus 13 of the money settlement apparatus 11, and to be attachable to and detachable from the second coin handling apparatus 23 of the depositing and dispensing apparatus 21. When the coin transport cassette 30 is attached to the first coin handling apparatus 13, the coin transport cassette 30 is configured to be capable of giving or receiving the coin C between the coin transport cassette 30 and the first coin handling apparatus 13. When the coin transport cassette 30 is attached to the second coin handling apparatus 23, the coin transport cassette 30 is configured to be capable of giving or receiving the coin C between the coin transport cassette 30 and the second coin handling apparatus 23. The first coin handling apparatus 13 and the second coin handling apparatus 23 are examples of a specific apparatus. On the other hand, the coin transport cassette 30 is configured such that the coin C therein cannot be taken out when the coin transport cassette 30 is detached from the first coin handling apparatus 13 or the second coin handling apparatus 23. A clerk uses the coin transport cassette 30 to transport the coin C between the first coin handling apparatus 13 and the second coin handling apparatus 23. For example, when a change fund is loaded or when proceeds from sales are collected, a clerk uses the coin transport cassette 30 to transport the coin C between the first coin handling apparatus 13 and the second coin handling apparatus 23. The clerk cannot touch the coin C in the coin transport cassette 30 when transporting the coin C. For this reason, the coin C can be transported in a safe state in terms of security. Note that, it may also be configured such that only a person having the authority, such as a manager of a store, is allowed to open the coin transport cassette 30.
The drawer 40 is configured to be attachable to and detachable from the POS register apparatus 14, and to be attachable to and detachable from the second coin handling apparatus 23 of the depositing and dispensing apparatus 21. For example, when a change fund is loaded or when proceeds from sales are collected, a clerk uses the drawer 40 to transport the coin C between the POS register apparatus 14 and the second coin handling apparatus 23.
<Configuration of Coin Transport Cassette>
Next, a configuration of the coin transport cassette 30 will be described.
As illustrated in
The housing 31 comprises an upper surface portion 311, a bottom surface portion 312, a front surface portion 313, a rear surface portion 314, a right surface portion 315, and a left surface portion 316. As illustrated in
The reception unit 32 receives the coin C from the first coin handling apparatus 13 or the second coin handling apparatus 23. As illustrated in
The first reception port 321 is provided in a rear portion of the upper surface portion 311. The first reception port 321 is formed in a rectangle whose long side direction is parallel to the front-rear direction of the housing 31. The first reception port 321 is configured to be capable of receiving the coin C from the first coin handling apparatus 13. Note that, the shape of the first reception port 321 is not limited to a rectangle, and may also be any other shape.
The second reception port 322 is provided near the center of the upper surface portion 311. The second reception port 322 is formed in a quadrangle whose sides orthogonal to each other have a substantially equal length. The second reception port 322 has an opening area larger than the opening area of the first reception port 321. The second reception port 322 is configured to be capable of receiving the coin C from the second coin handling apparatus 23. Note that, the shape of the second reception port 322 is not limited to a quadrangle, and may also be any other shape.
The reception port opening and closing unit 323 opens and closes the first reception port 321 and the second reception port 322. The reception port opening and closing unit 323 comprises a reception port blocking member 323A and a reception port opening and closing driving unit (not illustrated). The reception port blocking member 323A is formed in a plate shape. A part of the reception port blocking member 323A forms a first blocking unit 323B that blocks the first reception port 321. Another part of the reception port blocking member 323A forms a second blocking unit 323C that blocks the second reception port 322. The reception port opening and closing driving unit comprises an opening and closing motor, and an opening and closing mechanism. The opening and closing motor is driven by control of the first coin handling apparatus 13 or the second coin handling apparatus 23. The opening and closing mechanism moves the reception port blocking member 323A frontward and rearward. The opening and closing mechanism is controlled by the driving of the opening and closing motor to move the reception port blocking member 323A frontward and rearward, whereby both the first reception port 321 and the second reception port 322 can be opened or closed simultaneously. Note that, the first reception port 321 and the second reception port 322 may be opened or closed individually.
As illustrated in
The discharge unit 34 discharges the coin C stored in the storage unit 33. As illustrated in
The discharge port 341 is an example of an opening, and is provided in a lower portion of the front surface portion 313.
The discharge port opening and closing unit 342 opens and closes the discharge port 341. The discharge port opening and closing unit 342 comprises a discharge port blocking member 342A, an opening and closing motor (not illustrated), and an opening and closing mechanism (not illustrated). The discharge port blocking member 342A is formed in a plate shape. The opening and closing motor is driven by control of the first coin handling apparatus 13 or the second coin handling apparatus 23. The opening and closing mechanism moves the discharge port blocking member 342A upward and downward. The opening and closing mechanism is controlled by the driving of the opening and closing motor to move the discharge port blocking member 342A upward and downward, whereby the discharge port 341 can be opened and closed.
The feeding unit 35 feeds out the coin C stored in the storage unit 33 such that the coin C is discharged from the discharge unit 34. As illustrated in
The transport mechanism 351 is an example of a cassette transport unit that transports the coin C in a horizontal direction. Note that, the horizontal direction mentioned here does not mean the horizontal direction in a strict sense, but means a state in which a horizontal-direction component of the transport direction is larger than a vertical-direction component thereof. However, the transport direction may also be the horizontal direction in a strict sense. The transport mechanism 351 comprises a transport motor (not illustrated), a driving pulley 351A, a driven pulley 351B, and a transport belt 351C. The transport motor is driven by control of the first coin handling apparatus 13 or the second coin handling apparatus 23. In a front and lower portion of the coin transport cassette 30, the driving pulley 351A is provided on a rotating shaft of the transport motor so as to extend rightward and leftward. In a rear and lower portion of the coin transport cassette 30, the driven pulley 351B is supported by a bearing (not illustrated) so as to extend rightward and leftward. The transport belt 351C is wound around the driving pulley 351A and the driven pulley 351B. The coin C received through the reception unit 32 is placed on the transport belt 351C. That is, the transport belt 351C forms a bottom portion of the storage unit 33.
The side wall portions 352 are provided on both sides of the transport belt 351C in the width direction, respectively. The side wall portions 352 are inclined so as to gradually approach each other downward such that the coin C that has fallen from the reception unit 32 can be guided onto the transport belt 351C.
The rear wall portion 353 is provided rearward from the transport belt 351C. The rear wall portion 353 is inclined so as to gradually approach the rear surface portion 314 upward such that the coin C that has fallen from the reception unit 32 can be guided onto the transport belt 351C.
As illustrated in
The holding portion 37 is configured such that a clerk can hold the coin transport cassette 30 when the clerk transports the coin transport cassette 30.
The opening and closing door 38 is configured such that by opening the opening and closing door 38, a clerk can manually feed the coin C into the storage unit 33, perform maintenance of a configuration disposed inside the housing 31, or the like.
<Configuration of First Coin Handling Apparatus of Money Settlement Apparatus>
Next, a configuration of the first coin handling apparatus 13 will be described.
First, the configuration of the first coin handling apparatus 13 visible from the outside will be described. As illustrated in
The depositing unit 132 is provided in a front portion of an upper surface portion 131A of the housing 131. That is, the depositing unit 132 is provided on a side on which a customer stands when operating the first coin handling apparatus 13. The depositing unit 132 is configured such that the coin C can be deposited into the first coin handling apparatus 13.
The dispensing unit 133 is provided in a lower portion of a front surface portion 131B of the housing 131. The dispensing unit 133 is configured such that the coin C can be dispensed from the first coin handling apparatus 13.
As illustrated in a diagram on an upper side of
An operation display 15 is connected to the first coin handling apparatus 13. The operation display 15 is formed of a touch screen-type liquid crystal display apparatus, and functions as an operation unit for inputting information on money handling in the first banknote handling apparatus 12 and the first coin handling apparatus 13, and as a display that displays information on money handling. Note that, the operation display 15 may be formed separately from the money settlement apparatus 11 or may be integrally formed with the money settlement apparatus 11. The operation display 15 may also be configured such that the operation unit and the display are provided independently of each other.
Next, an internal configuration of the first coin handling apparatus 13 will be described. As illustrated in
The storage units 135A to 135H are configured so as to be capable of storing the coin C and feeding out the coin C that has been stored. As a mechanism to feed out the coin C in the storage units 135A to 135H, it is possible to exemplify a mechanism in which a rotary disk rotating in an inclined state is used and the coin C is picked up one by one by a plurality of projection members on an outer area of a surface of the rotary disk and is fed out. Denominations that are stored in each of the storage units 135A to 135H are set in advance.
The feeding unit 136 is configured to be capable of receiving the coin C deposited through the depositing unit 132, feeding out the coin C one by one, and causing the coin C to fall into the dispensing unit 133. As a mechanism to feed out the coin C in the feeding unit 136, it is possible to exemplify a mechanism similar to that of the storage units 135A to 135H.
The depositing transport unit 137 transports the coin C fed out of the feeding unit 136.
The recognition unit 138 is provided in the depositing transport unit 137, recognizes denomination, authenticity, fitness, and/or the like of the coin C deposited through the depositing unit 132, and counts the coin C.
The plurality of chutes 139 is provided downstream of the recognition unit 138 in the depositing transport unit 137 in the transport direction of the coin C. The plurality of chutes 139 is provided side by side in a row in the transport direction of the coin C. Of the plurality of chutes 139, eight chutes 139A are configured to be capable of guiding the coin C to any one of the storage units 135A to 135H. One chute 139B is configured to be capable of guiding the coin C to the dispensing unit 133. One chute 139C that is the remaining chute is configured to be capable of guiding the coin C to the coin transport cassette 30. The chutes 139 are normally closed by gates (not illustrated), and guides the coin C to each portion described above by opening the gates. Note that, the number of the chutes 139A may be the same as the number of storage units, and may not be eight.
The dispensing transport unit 140 is provided downward from the feeding unit 136. The dispensing transport unit 140 transports the coin C fed out of the storage units 135A to 135H to the feeding unit 136. The dispensing transport unit 140 transports the coin C, which has been discharged from the coin transport cassette 30 and has fallen, to the feeding unit 136.
The control unit 141 controls entire operation of the first coin handling apparatus 13. The control unit 141 causes depositing processing of the coin C paid by a customer to be performed upon settlement of a commercial product. When the depositing processing is performed, for example, the control unit 141 controls the feeding unit 136 and the depositing transport unit 137 such that the coin C, which has been received through the depositing unit 132 and has fallen into the feeding unit 136, is fed out one by one and is transported. A coin that is transported is subjected to recognition of denomination, authenticity, fitness, and/or the like by the recognition unit 138. The control unit 141 controls the depositing transport unit 137 and the chutes 139 based on a recognition result by the recognition unit 138 such that the coin C which cannot be deposited is discharged as a rejected coin from the dispensing unit 133. The control unit 141 controls the depositing transport unit 137 and the gates such that the coin C which can be deposited is stored in the storage units 135A to 135H for each denomination.
The control unit 141 causes dispensing processing of the coin C to be performed in a case where there is change upon settlement of a commercial product. When the dispensing processing is performed, for example, the control unit 141 controls the storage units 135A to 135H storing the coin C to be dispensed and the dispensing transport unit 140 such that the coin C, which has been fed out of the storage units 135A to 135H and has fallen, is transported to the feeding unit 136. The control unit 141 controls the feeding unit 136 such that a bottom portion 136A of the feeding unit 136 is opened, thereby discharging the coin C into the dispensing unit 133. Note that, the control unit 141 may also cause the coin C, which has been transported to the feeding unit 136, to be fed out into the depositing transport unit 137 and to pass through the recognition unit 138, and then control the gate of the chute 139B, thereby causing the coin C to be discharged into the dispensing unit 133.
The control unit 141 causes the storage units 135A to 135H to be replenished with the coin C stored in the coin transport cassette 30 before a store opens, for example. The control unit 141 causes the coin C stored in the storage units 135A to 135H to be collected to the coin transport cassette 30 after a store closes, for example. Such replenishment processing and collection processing of the coin C will be described later.
<Configuration of Second Coin Handling Apparatus of Depositing and Dispensing Apparatus>
Next, a configuration of the second coin handling apparatus 23 will be described.
First, a configuration of the second coin handling apparatus 23 visible from the outside will be described. As illustrated in
The housing 231 comprises a first front surface portion 231A, and a second front surface portion 231B located upward from the first front surface portion 231A. The second front surface portion 231B is located rearward from the first front surface portion 231A, and is provided such that the surface of the second front surface portion 231B is parallel to a surface direction of the first front surface portion 231A. The housing 231 comprises a first upper surface portion 231C, and a second upper surface portion 231D located frontward from the first upper surface portion 231C. The second upper surface portion 231D is located downward from the first upper surface portion 231C, and is provided such that the surface of the second upper surface portion 231D is substantially parallel to the surface of the first upper surface portion 231C.
The second cassette attachment unit 232 is formed of a downwardly recessed portion provided in the second upper surface portion 231D. The length of the second cassette attachment unit 232 in the left-right direction is slightly longer than the length of the coin transport cassette 30 in the left-right direction. The second cassette attachment unit 232 is provided with the guide rail 232A extending frontward and rearward. As illustrated in
The depositing unit 233 is provided in an upper and front portion of the housing 231. That is, the depositing unit 233 is provided on a side on which a clerk stands when operating the second coin handling apparatus 23. The depositing unit 233 is configured such that the coin C can be deposited into the second coin handling apparatus 23. As illustrated in
As illustrated in
The second reception port 233B is an opening provided in a bottom surface portion of the downwardly recessed portion provided in the second upper surface portion 231D, that is, in a bottom surface portion forming the second cassette attachment unit 232. As illustrated in
The cover 233C is configured to turn around a rotating shaft (not illustrated) provided in the first upper surface portion 231C of the housing 231 and extending rightward and leftward, and is configured to be switchable between a closed state in which the cover 233C covers the first reception port 233A and the second cassette attachment unit 232 as illustrated in
As illustrated in
As illustrated in
Next, an internal configuration of the second coin handling apparatus 23 will be described. As illustrated in
The feeding unit 235 is configured to be capable of receiving the coin C deposited from the coin transport cassette 30 via the first reception port 233A and the coin C deposited through the second reception port 233B, feeding out the coin C one by one, and causing the coin C to fall into the return unit 242. As a mechanism to feed out the coin C in the feeding unit 235, it is possible to exemplify a configuration similar to that of the storage units 135A to 135H of the first coin handling apparatus 13.
The upper-side transport unit 236 is an example of a second transport unit that transports the coin C fed out of the feeding unit 235.
As illustrated in
The storage unit 238 comprises storage boxes 238A, 238B, 238C, 238D, 238E, 238F, 238G, and 238H (which may be referred to hereinafter as “storage boxes 238A to 238H”). The storage boxes 238A to 238H are configured to be capable of storing the coin C and feeding out the coin C that has been stored. The storage boxes 238A to 238D are provided so as to be side by side in the front-rear direction on the right side in the housing 231. The storage boxes 238E to 238H are provided so as to be side by side in the front-rear direction on the left side in the housing 231. In
The reject unit 239 stores, as a rejected coin, the coin C recognized not as a coin to be handled or as unrecognizable by the recognition unit 237. The reject unit 239 is configured to be drawable from a side of a front surface of the housing 231 by opening a cover (not illustrated) of the housing 231.
The overflow storage unit 240 stores, as an overflow coin, the coin C that cannot be held in a case where the holding number of the coin C in the storage boxes 238A to 238H exceeds a predetermined holding number that has been set. The overflow storage unit 240 is configured to be drawable from the side of the front surface of the housing 231.
The forged coin storage unit 241 stores the coin C recognized as a forged coin by the recognition unit 237. The forged coin storage unit 241 is configured to be drawable from the side of the front surface of the housing 231.
The return unit 242 stores the coin C that has fallen from the feeding unit 235. The return unit 242 is configured to be drawable from the side of the front surface of the housing 231.
The upper-side chutes 243 are provided downstream of the recognition unit 237 in the upper-side transport unit 236 in the transport direction of the coin C. The upper-side chutes 243 are provided side by side in a row in the transport direction of the coin C. Of the plurality of upper-side chutes 243, eight upper-side chutes 243A are configured to be capable of guiding the coin C to any one of the storage boxes 238A to 238H. Another chute 243B is configured to be capable of guiding a rejected coin to the reject unit 239. Yet another upper-side chute 243C is configured to be capable of guiding an overflow coin to the overflow storage unit 240. One upper-side chute 243D that is the remaining upper-side chute 243 is configured to be capable of guiding a forged coin to the forged coin storage unit 241. The upper-side chutes 243 are normally closed by gates (not illustrated), and guide the coin C to each portion described above by opening the gates.
The lower-side transport unit 244 is an example of a first transport unit that transports the coin C fed out of the storage unit 238 to the drawer 40 attached to the drawer attachment unit 234C or to the coin transport cassette 30 attached to the first cassette attachment unit 234B. The lower-side transport unit 244 comprises a first route forming portion 245 and a second route forming portion 246.
The first route forming portion 245 forms a first route 245R that guides the coin C fed out of the storage unit 238 to the drawer 40 attached to the drawer attachment unit 234C. The first route forming portion 245 comprises drawer chutes 245A, 245B, 245C, 245D, 245E, 245F, 245G, and 245H (which may be referred to hereinafter as “drawer chutes 245A to 245H”). The drawer chutes 245A to 245H are examples of a first chute. The drawer chutes 245A to 245H are provided one by one downward from the storage boxes 238A to 238H, respectively. In
The second route forming portion 246 forms a second route 246R that guides the coin C fed out of the storage unit 238 to the coin transport cassette 30 attached to the first cassette attachment unit 234B. The second route forming portion 246 is provided between a row formed of the drawer chutes 245A to 245D in the front-rear direction and a row formed of the drawer chutes 245E to 245H in the front-rear direction. The second route forming portion 246 comprises a cassette chute 246A, a transport motor (not illustrated), a driving pulley 246B, a driven pulley 246C, and a transport belt 246D. The cassette chute 246A is an example of a second chute. The cassette chute 246A is formed of a pair of first plate-like members 51 to be described later, and guides the coin C fed out of the storage unit 238 onto the transport belt 246D. The transport motor is driven by control of the control unit 248. The driving pulley 246B is provided on a rotating shaft of the transport motor so as to extend rightward and leftward in a front and lower portion of the housing 231. The driven pulley 246C is received by a bearing (not illustrated) so as to extend rightward and leftward in a rear and lower portion of the housing 231. The transport belt 246D is wound around the driving pulley 246B and the driven pulley 246C. The transport belt 246D is configured to be capable of guiding the coin C stored in the storage boxes 238A to 238H to the second reception port 322 of the coin transport cassette 30 attached to the first cassette attachment unit 234B.
The switching unit 50 is driven by control of the control unit 248. The switching unit 50 switches a guide destination of the coin C stored in the storage boxes 238A to 238H to the first route 245R (the drawer chutes 245A to 245H) as illustrated in
One first plate-like member 51 of the pair of first plate-like members 51 is provided between the drawer chutes 245A to 245D and the transport belt 246D. The other first plate-like member 51 is provided between the drawer chutes 245E to 245H and the transport belt 246D. The length of the pair of first plate-like members 51 in the front-rear direction is longer than the length of the transport belt 246D in the front-rear direction. However, the length of the pair of first plate-like members 51 in the front-rear direction may be shorter than the length of the transport belt 246D in the front-rear direction. Portions of the pair of first plate-like members 51 on an upper side with respect to the transport belt 246D form the cassette chute 246A. Each of the pair of first plate-like members 51 is provided with four first coin passage holes 51A. Each of the first coin passage holes 51A is formed in a longitudinal shape (slit shape) so as to allow the coin C to pass therethrough in an attitude in which the coin C moves parallel to a surface of the coin C. The first coin passage holes 51A are provided at predetermined intervals in the front-rear direction.
One second plate-like member 52 of the pair of second plate-like members 52 is provided between the drawer chutes 245A to 245D and the storage boxes 238A to 238D. The other second plate-like member 52 is provided between the drawer chutes 245E to 245H and the storage boxes 238E to 238H. Each of the pair of second plate-like member 52 is provided with four second coin passage holes 52A. In the same manner as the first coin passage holes 51A, each of the second coin passage holes 52A is formed in a longitudinal shape (slit shape) so as to allow the coin C to pass therethrough in an attitude in which the coin C moves parallel to the surface of the coin C. The second coin passage holes 52A are provided at predetermined intervals in the front-rear direction. For example, the second coin passage holes 52A are provided at positions substantially opposite to those of the first coin passage holes 51A and at substantially the same intervals as those of the first coin passage holes 51A.
The switching mechanisms 53A to 53D are provided between the one first plate-like member 51 and the one second plate-like member 52. The switching mechanisms 53A to 53D are provided at predetermined intervals in the front-rear direction. For example, the switching mechanisms 53A to 53D are provided at substantially the same intervals as those of the first coin passage holes 51A. The switching mechanisms 53A to 53D switch the guide destination of the coin C, which has been fed out of each of the storage boxes 238A to 238D and has passed through the second coin passage holes 52A, to the first route 245R or the second route 246R. The switching mechanisms 53E to 53H are provided between the other first plate-like member 51 and the other second plate-like member 52. In the same manner as the switching mechanisms 53A to 53D, the switching mechanisms 53E to 53H are provided at predetermined intervals in the front-rear direction. The switching mechanisms 53E to 53H switch the guide destination of the coin C, which has been fed out of each of the storage boxes 238E to 238H and has passed through the second coin passage holes 52A, to the first route 245R or the second route 246R. The switching mechanisms 53A to 53H have the same configuration. The switching mechanism 53A to 53H each comprise a fixing member 531, and a blocking member 532.
As illustrated in
The fixing member main body 531B is provided with an attitude defining portion 531C which has a groove-shape, which penetrates in the left-right direction, and whose lower portion opens. The attitude defining portion 531C defines an attitude of the coin C such that the coin C moves parallel to a surface Ca of the coin C.
The attitude defining portion 531C comprises an opening on a side of the second plate-like member 52, and the opening is a coin reception port 531D that receives the coin C fed out of the storage boxes 238A to 238H via the second coin passage hole 52A. The lower portion of the attitude defining portion 531C comprises an opening that is a first opening 531E configured to be capable of discharging the coin C to the first route 245R. The attitude defining portion 531C comprises an opening on a side of the first plate-like member 51, and the opening is a second opening 531F configured to be capable of discharging the coin C to the second route 246R via the first coin passage hole 51A.
The blocking member 532 comprises a blocking member main body 532A. The blocking member main body 532A is provided to be turnable in the front-rear direction around a rotating shaft 533 extending between the fixing member 531 and the first plate-like member 51 in the left-right direction.
A coin passage hole 532B is provided on a rear side of a lower portion of the blocking member main body 532A. The coin passage hole 532B is configured such that the coin C that has exited from the second opening 531F of the fixing member 531 can pass through the coin passage hole 532B without changing the attitude of the coin C.
A first opening blocking unit 532C is provided downward from the coin passage hole 532B of the blocking member main body 532A. The first opening blocking unit 532C is provided so as to extend from the blocking member main body 532A in a direction of the second plate-like member 52 and so as not to come into contact with the second plate-like member 52. The first opening blocking unit 532C is configured to be capable of blocking the first opening 531E of the fixing member 531.
A second opening blocking unit 532D is provided on a front side of the coin passage hole 532B of the blocking member main body 532A. The second opening blocking unit 532D is formed in a plate shape. As illustrated in
As illustrated in
The control unit 248 controls entire operation of the second coin handling apparatus 23. The control unit 248 counts coins collected from the first coin handling apparatus 13 by the coin transport cassette 30 and the coin C collected from the POS register apparatus 14 by the drawer 40. The control unit 248 replenishes the coin transport cassette 30 or the drawer 40 with the coin C stored in the storage boxes 238A to 238H. Such counting processing and replenishment processing of the coin C will be described later.
Further, an operation display (not illustrated) is connected to the second coin handling apparatus 23. As the operation display, it is possible to exemplify a configuration similar to that of the operation display 15 connected to the first coin handling apparatus 13. The second coin handling apparatus 23 functions as an operation unit for inputting information on money handling in the second banknote handling apparatus 22 and the second coin handling apparatus 23, and as a display displays information on money handling.
<Operation of Money Handling System>
First, as operation of the money handling system 1, counting processing of the coin C collected from the first coin handling apparatus 13 by the coin transport cassette 30 in the second coin handling apparatus 23 will be described.
As illustrated in
The control unit 248 controls the opening and closing motor of the discharge port opening and closing unit 342 of the coin transport cassette 30 such that the discharge port 341 is opened. Next, the control unit 248 controls the transport motor of the feeding unit 35 of the coin transport cassette 30 such that the transport belt 351C rotates, thereby sequentially discharging the coin C stored in the storage unit 33 so as to be fed out of the discharge port 341. When a sensor (not illustrated) detects that all of the coin C stored in the storage unit 33 has been discharged, the control unit 248 controls the transport motor of the feeding unit 35 to cause the rotation of the transport belt 351C to end, and controls the opening and closing motor of the discharge port opening and closing unit 342 such that the discharge port 341 is closed.
On the other hand, the coin C fed out of the coin transport cassette 30 passes through the first reception port 233A, and falls into the feeding unit 235 via a feeding mechanism (not illustrated) provided in the first reception port 233A on an inner side of the housing 231. The control unit 248 controls the feeding unit 235 and the upper-side transport unit 236 such that the coin C fed out of the coin transport cassette 30 is transported. The coin that is transported is subjected to recognition of denomination, authenticity, fitness, and/or the like by the recognition unit 237. The control unit 248 controls the upper-side transport unit 236 and the gates based on a recognition result by the recognition unit 237 such that the coin C that can be deposited is stored in the storage boxes 238A to 238H for each denomination, and that a rejected coin, an overflow coin, and a forged coin are stored in the reject unit 239, the overflow storage unit 240, and the forged coin storage unit 241, respectively. When the counting of all of the coin C stored in the coin transport cassette 30 is completed, the control unit 248 transmits information on the denominations and number of the coin C, which has been counted, to the money management apparatus 25. Thereafter, a clerk detaches the coin transport cassette 30 from the second coin handling apparatus 23, and closes the cover 233C as illustrated in
[Counting Processing of Coin Collected by Drawer in Second Coin Handling Apparatus]
Next, as operation of the money handling system 1, counting processing of the coin C collected by the drawer 40 in the second coin handling apparatus 23 will be described. Note that, a difference between the counting processing of the coin C collected by the drawer 40 and the counting processing of the coin C collected by the coin transport cassette 30 lies in processing when placing the coin C into the housing 231 of the second coin handling apparatus 23, so that processing after the coin C is placed into the housing 231 will be described in a simplified manner.
In the states illustrated in
The coin C that has passed through the second reception port 233B falls into the feeding unit 235 via a feeding mechanism (not illustrated) provided in the second reception port 233B on an inner side of the housing 231, and is stored in the storage boxes 238A to 238H, the reject unit 239, the overflow storage unit 240, or the forged coin storage unit 241 based on a recognition result by the recognition unit 237. When the delivery of all of the coin C inserted into the tray 233D to the second reception port 233B is completed, a clerk returns the tray 233D to the state illustrated in
[Replenishment Processing of Coin Transport Cassette and Drawer with Coin in Second Coin Handling Apparatus]
Next, as operation of the money handling system 1, replenishment processing of the coin transport cassette 30 and the drawer 40 with the coin C in the second coin handling apparatus 23 will be described.
A clerk draws the drawer portion 234A of the second coin handling apparatus 23 onto a side of the clerk, and attaches the drawer 40, which is empty, to the drawer attachment unit 234C as illustrated in
The control unit 248 causes the first reception port 321 and the second reception port 322 to open simultaneously by controlling the opening and closing motor of the reception port opening and closing unit 323 of the coin transport cassette 30 to move the reception port blocking member 323A.
When the first reception port 321 and the second reception port 322 of the coin transport cassette 30 are opened, the control unit 248 causes the coin transport cassette 30 and the drawer 40 to be replenished with the coin C of predetermined denominations by a predetermined number.
For example, when the drawer 40 is replenished with the coin C, the control unit 248 controls the storage boxes 238A to 238H and the switching unit 50 such that the coin C fed out of the storage boxes 238A to 238H is guided to the first route 245R (the drawer chutes 245A to 245H) as indicated by an arrow C1 in
At this time, the control unit 248 first controls the pair of switching control units 54 such that the blocking members 532 of the switching mechanisms 53A to 53H are turned to realize the state illustrated in
When the replenishment processing of the drawer 40 with the coin C in the storage boxes 238A to 238H is completed, the control unit 248 controls the storage boxes 238A to 238H and the switching unit 50 such that the coin C fed out of the storage boxes 238A to 238H is guided to the second route 246R (the transport belt 246D) as indicated by an arrow C2 in
At this time, the control unit 248 first controls the pair of switching control units 54 such that the blocking members 532 of the switching mechanisms 53A to 53H are turned in a direction intersecting the surface Ca of the coin C (a direction substantially parallel to a thickness direction of the coin C) that moves by the definition of the attitude defining portion 531C, to thereby realize the state illustrated in
The control unit 248 further controls the transport motor of the second route forming portion 246 such that the coin transport cassette 30 is replenished with the coin C, which has been guided onto the transport belt 246D, via the second reception port 322.
In this manner, the coin transport cassette 30 and the drawer 40 can be replenished with the coin C in the storage boxes 238A to 238H without detaching the coin transport cassette 30 and the drawer 40 from the second coin handling apparatus 23.
When the replenishment processing of the coin transport cassette 30 and the drawer 40 with the coin C is completed, the control unit 248 controls the coin transport cassette 30 such that the second reception port 322 of the coin transport cassette 30 is closed.
The control unit 248 controls the opening and closing motor of the reception port opening and closing unit 323 of the coin transport cassette 30 to cause the reception port blocking member 323A to move, thereby closing the first reception port 321 and the second reception port 322 simultaneously.
Thereafter, a clerk draws the drawer portion 234A onto a side of the clerk, and detaches the coin transport cassette 30 and the drawer 40 from the second coin handling apparatus 23.
[Replenishment Processing of Coin from Coin Transport Cassette in First Coin Handling Apparatus]
Next, as operation of the money handling system 1, the replenishment processing of the coin C from the coin transport cassette 30 in the first coin handling apparatus 13 will be described. Note that, processing similar to the processing with the second coin handling apparatus 23 described above will be briefly described.
A clerk opens the cover 131D of the housing 131 of the first coin handling apparatus 13, and attaches the coin transport cassette 30 replenished with the coin C to the cassette attachment unit 134 as illustrated in
When a required amount of the coin C stored in the storage unit 33 is discharged, the control unit 141 controls the coin transport cassette 30 such that the rotation of the transport belt 351C is ended and that the discharge port 341 is closed.
On the other hand, the coin C fed out of the coin transport cassette 30 falls into the dispensing transport unit 140. The control unit 141 of the first coin handling apparatus 13 controls the dispensing transport unit 140 such that the coin C fed out of the coin transport cassette 30 is transported to the feeding unit 136. The control unit 141 controls the feeding unit 136 and the depositing transport unit 137 such that the coin C fed out of the feeding unit 136 is fed out one by one and transported. The coin C that is transported is subjected to recognition of denomination by the recognition unit 138. The control unit 141 controls the depositing transport unit 137 and the gates of the chutes 139 based on a recognition result by the recognition unit 138 such that the coin C is stored in the storage units 135A to 135H for each denomination.
After the replenishment processing of the required amount of the coin C stored in the coin transport cassette 30 is completed, a clerk may detach the coin transport cassette 30 from the first coin handling apparatus 13 before the start of settlement processing for a customer, or may cause the first coin handling apparatus 13 to perform settlement processing for a customer while the coin transport cassette 30 is attached to the first coin handling apparatus 13.
[Collection Processing of Coin to Coin Transport Cassette in First Coin Handling Apparatus]
Next, as operation of the money handling system 1, collection processing of the coin C to the coin transport cassette 30 in the first coin handling apparatus 13 will be described. Note that, processing similar to the processing with the second coin handling apparatus 23 described above will be briefly described.
In a state in which the coin transport cassette 30 is attached to the cassette attachment unit 134, the control unit 141 of the first coin handling apparatus 13 controls the coin transport cassette 30 such that the first reception port 321 of the coin transport cassette 30 is opened.
The coin transport cassette 30 opens the first reception port 321 and the second reception port 322 simultaneously by control of the control unit 141.
When the first reception port 321 and the second reception port 322 of the coin transport cassette 30 are opened, the control unit 141 causes the coin C stored in the storage units 135A to 135H to be collected by the coin transport cassette 30.
The control unit 141 controls the storage units 135A to 135H and the dispensing transport unit 140 such that the coin C fed out of the storage units 135A to 135H is transported to the feeding unit 136. The control unit 141 controls the feeding unit 136, the depositing transport unit 137 and the gates such that the coin C is collected to the coin transport cassette 30 via the first reception port 321.
When the collection processing of the coin C to the coin transport cassette 30 is completed, the control unit 141 controls the coin transport cassette 30 such that the first reception port 321 of the coin transport cassette 30 is closed.
The coin transport cassette 30 closes the first reception port 321 and the second reception port 322 simultaneously by control of the control unit 141. Thereafter, a clerk detaches the coin transport cassette 30 from the first coin handling apparatus 13.
The second coin handling apparatus 23 comprises the drawer attachment unit 234C; the first cassette attachment unit 234B which is provided at a position different from a position of the drawer attachment unit 234C and the coin transport cassette 30 is attachable to the first cassette attachment unit 234B when the drawer 40 is attached to the drawer attachment unit 234C; the first route 245R that guides the coin C fed out of the storage unit 238 to the drawer 40 attached to the drawer attachment unit 234C; the second route 246R that guides the coin C fed out of the storage unit 238 to the coin transport cassette 30 attached to the first cassette attachment unit 234B; and the switching unit 50 that switches the guide destination of the coin C fed out of the storage unit 238 to the first route 245R or the second route 246R. Thus, after the coin C is stored in the drawer 40, the coin C can be stored in the coin transport cassette 30 without detaching the drawer 40 from the second coin handling apparatus 23. Further, when the coin C is being stored in the drawer 40, the coin transport cassette 30 can be allowed to be attached to the first cassette attachment unit 234B, and the storage of the coin C in the coin transport cassette 30 can be immediately started after the coin C is stored in the drawer 40. Accordingly, time for replenishing the coin transport cassette 30 and the drawer 40 with the coin C can be reduced.
The first route forming portion 245 guides the coin C to the drawer 40 by the drawer chutes 245A to 245H. Thus, the coin C can be guided to the drawer 40 with a simple configuration.
The second route forming portion 246 comprises the transport belt 246D that guides the coin C to the coin transport cassette 30. Thus, the coin C can be transported in a horizontal direction by the transport belt 246D to be guided to the coin transport cassette 30, and it is possible to restrain the second coin handling apparatus 23 from becoming high.
The second route forming portion 246 comprises the cassette chute 246A that guides the coin C onto the transport belt 246D. Thus, the coin C fed out of the storage unit 238 can be surely guided onto the transport belt 246D.
The switching mechanisms 53A to 53H that form the switching unit 50 each comprise the fixing member 531 and the blocking member 532. The fixing member 531 comprises the first opening 531E capable of discharging the coin C to the first route 245R, and the second opening 531F capable of discharging the coin C to the second route 246R. The blocking member 532 is configured to be capable of blocking the second opening 531F in a case where the coin C fed out of the storage unit 238 is guided to the first route 245R, and to be capable of blocking the first opening 531E in a case where the coin C fed out of the storage unit 238 is guided to the second route 246R. Thus, it is possible to control the guide destination of the coin C with a simple configuration in which the blocking member 532 is only moved with respect to the fixing member 531.
The fixing member 531 comprises the attitude defining portion 531C that defines the attitude of the coin C such that the coin C moves parallel to the surface Ca. The blocking member 532 is configured to be capable of blocking the second opening 531F or the first opening 531E by moving in the direction intersecting the surface Ca of the coin C that moves by the definition of the attitude defining portion 531C. Thus, in comparison with a configuration in which the second opening 531F or the first opening 531E can be blocked by moving the coin C in the direction intersecting the surface Ca and moving the blocking member 532 in the direction parallel to the surface Ca of the coin C in the fixing member 531, it is possible to reduce the amount of movement of the blocking member 532, and to restrain the size of the switching unit 50 from becoming large.
The blocking member 532 is configured such that the blocking member 532 is capable of blocking the second opening 531F or the first opening 531E by turning around the rotating shaft 533. Thus, in comparison with a mechanism in which the blocking member 532 in its entirety is moved in parallel, it is possible to simplify the configuration.
The one switching control unit 54 of the pair of switching control units 54 moves the blocking members 532 of the switching mechanisms 53A to 53D in the same direction, and the other switching control unit 54 moves the blocking members 532 of the switching mechanisms 53E to 53H in the same direction. Thus, it is possible to control the movement of all the blocking members 532 by using the switching control units 54 whose number is fewer than the number of the blocking members 532.
It goes without saying that the present disclosure is not limited to those indicated in the embodiment described thus far, and various modifications can be made without departing from the spirit of the present disclosure. The embodiment described above and variations that are indicated below may be combined in any way as long as they are applicable.
<Variation 1>
First, a switching unit 60A of Variation 1 will be described.
The switching unit 60A switches the guide destination of the coin C fed out of a storage unit (not illustrated) to first chutes 681A, which form a pair of first routes 68R that guide the coin C to the drawer 40, or a second chute 691A, which forms a second route 69R that guides the coin C to the coin transport cassette 30. The switching unit 60A comprises a pair of guide members 61A, and a pair of switching plates 62A. The pair of guide members 61A guides the coin C fed out of the storage unit to above the pair of first chutes 681A. Each of the pair of switching plates 62A is provided so as to be turnable around a rotating shaft 63A provided upward from the first chute 681A.
In a case where the coin C is guided to the second route 69R, the switching unit 60A controls a driving unit (not illustrated) such that the pair of switching plates 62A is turned so as to block upper ends of the respective first chutes 681A and so as not to block an upper end of the second chute 691A as illustrated in
In a case where the coin C is guided to the first routes 68R, the switching unit 60A causes the pair of switching plates 62A to be turned such that the pair of switching plates 62A does not block the upper ends of each of the first chutes 681A and that surfaces of the switching plates 62A become substantially parallel to the vertical direction as illustrated in
<Variation 2>
Next, a switching unit 60B of Variation 2 will be described.
An inclined disk 251B is provided in a storage unit 250B. The inclined disk 251B rotates in an inclined state in the same manner as the feeding mechanism provided in the storage units 135A to 135H, and picks up the coin C one by one by a plurality of projection members on an outer area of a surface of the inclined disk 251B and feeds out the coin C. The switching unit 60B comprises a driving unit 61B, a first coin guide portion 62B, and a second coin guide portion 63B. The driving unit 61B rotates the inclined disk 251B. The first coin guide portion 62B guides the coin C fed out of the inclined disk 251B to the first route 68R formed of a first route forming portion 681B. The second coin guide portion 63B guides the coin C fed out of the inclined disk 251B to the second route 69R formed of a second route forming portion 691B. The first route forming portion 681B and the second route forming portion 691B are each formed of chutes, a transport belt, and the like that are capable of guiding the coin C to the drawer 40 and the coin transport cassette 30, respectively.
In a case where the coin C is guided to the drawer 40, the switching unit 60B controls the driving unit 61B such that the inclined disk 251B is rotated in the counterclockwise direction (to the left) as indicated by an arrow Y1 in
Note that, the switching unit 60B of Variation 2 may also be configured as follows. A connection portion between the inclined disk 251B and the first coin guide portion 62B and a connection portion between the inclined disk 251B and the second coin guide portion 63B are provided with a gate, respectively. The switching unit 60B may cause the coin C to be guided to the first route 68R or the second route 69R by opening one of the two gates while causing the inclined disk 251B to be rotated. In this case, the driving unit 61B may be configured to cause the inclined disk 251B to be rotated in both the directions of the arrow Y1 and the arrow Y2 or may be configured to cause the inclined disk 251B to be rotated in only one direction thereof.
<Variation 3>
Next, a switching unit 60C of Variation 3 will be described.
A horizontal disk 251C is provided in a storage unit 250 C. The horizontal disk 251C rotates in a direction indicated by an arrow Y3 in a state in which the surface of the disk coincides with the horizontal direction, and feeds out the coin C one by one from a discharge port 252C of the storage unit 250C by centrifugal force with a plurality of projection members on an outer area of a surface of the horizontal disk 251C. The switching unit 60C comprises a driving unit 61C. The driving unit 61C is an example of a first driving unit, and turns the storage unit 250C around a rotating shaft 62C.
In a case where the coin C is guided to the drawer 40, the switching unit 60C causes the horizontal disk 251C to be rotated in a state in which the discharge port 252C faces an entrance of the first route 68R, thereby feeding out the coin C in the storage unit 250C and guiding the coin C to the first route 68R as illustrated in
Note that, in order to cause the discharge port 252C to face the entrance of the first route 68R or the entrance of the second route 69R, the switching unit 60C of Variation 3 may also be configured as follows. The switching unit 60C may move the storage unit 250C in the up-down direction in
<Variation 4>
Next, a switching unit 60D of Variation 4 will be described.
The switching unit 60D comprises a driving unit 61D, and a coin guide portion 62D. The driving unit 61D is an example of the first driving unit, and turns the storage unit 250B around a rotating shaft 63D. The coin guide portion 62D guides the coin C fed out of the inclined disk 251B to the first route 68R or the second route 69R.
In a case where the coin C is guided to the drawer 40, the switching unit 60D controls the driving unit 61B such that the inclined disk 251B rotates in the clockwise direction (to the right) as indicated by an arrow Y5 in
<Variation 5>
Next, a switching unit 60E of Variation 5 will be described.
The switching unit 60E comprises an extension and retraction portion 61E, and a driving unit 62E. The extension and retraction portion 61E is connected to the first route forming portion 681B forming the first route 68R or the second route forming portion 691B forming the second route 69R by extension and retraction. The extension and retraction portion 61E comprises a fixed guide portion 611E fixed to the storage unit 250B, and a movement guide portion 612E that moves with respect to the fixed guide portion 611E. The driving unit 62E is an example of a second driving unit, and causes the extension and retraction portion 61E to extend and retract by moving the movement guide portion 612E with respect to the fixed guide portion 611E.
In a case where the coin C is guided to the drawer 40, the switching unit 60E controls the driving unit 62E such that the extension and retraction portion 61E is connected to the first route forming portion 681B as illustrated in
<Variation 6>
Next, a switching unit 60F of Variation 6 will be described.
The switching unit 60F comprises a driving unit 61F. The driving unit 61F is an example of a third driving unit, and moves the first route forming portion 681B and the second route forming portion 691B in a direction approaching the storage unit 250B and in a direction away from the storage unit 250B.
In a case where the coin C is guided to the drawer 40, the switching unit 60F controls the driving unit 61F to realize a state in which the coin C can be guided to the first route 68R by the coin guide portion 62D as illustrated in
Note that, the switching unit 60F of Variation 6 may also be configured as follows. The switching unit 60F may move the storage unit 250B in the up-down direction in
<Variation 7>
Next, a switching unit 60G of Variation 7 will be described.
The switching unit 60G comprises a coin guide portion 61G, a first movable guide portion 62G, a second movable guide portion 63G, and a driving unit 64G. The coin guide portion 61G is fixed to the storage unit 250B, and guides the coin C fed out of the inclined disk 251B to the first movable guide portion 62G or the second movable guide portion 63G. The first movable guide portion 62G guides the coin C guided by the coin guide portion 61G to the first route 68R. The second movable guide portion 63G guides the coin C guided by the coin guide portion 61G to the second route 69R. The driving unit 64G moves the first movable guide portion 62G and the second movable guide portion 63G in the left-right direction in
In a case where the coin C is guided to the drawer 40, the switching unit 60G controls the driving unit 64G such that the first movable guide portion 62G is connected to the coin guide portion 61G to realize a state in which the coin C can be guided to the first route 68R as illustrated in
<Variation 8>
Next, a switching unit 60H of Variation 8 will be described.
The switching unit 60H comprises a connection member 61H, and a driving unit 62H. The first movable guide portion 62G and the second movable guide portion 63G are fixed onto a side of one end of the connection member 61H. A side of the other end of the connection member 61H is fixed to a rotating shaft 63H of the driving unit 62H. The driving unit 62H turns the first movable guide portion 62G and the second movable guide portion 63G around the rotating shaft 63H.
In a case where the coin C is guided to the drawer 40, the switching unit 60H controls the driving unit 62H such that the first movable guide portion 62G is located below an exit of the coin guide portion 61G to realize a state in which the coin C can be guided to the first route 68R as illustrated in
<Other Variations>
It may also be configured such that the blocking members 532 of the switching mechanisms 53A to 53D are moved in the same direction by controlling the switching control unit 54, thereby guiding the coin C to the first route 245R via the switching mechanisms 53A and 53B or guiding the coin C to the second route 246R via the switching mechanisms 53C and 53D, for example.
It may also be configured such that after the coin C fed out of the storage boxes 238A to 238D is guided to the first route 245R and the coin C fed out of the storage boxes 238E to 238H is guided to the second route 246R, the coin C fed out of the storage boxes 238A to 238D is guided to the second route 246R and the coin C fed out of the storage boxes 238E to 238H is guided to the first route 245R.
It may also be configured such that the switching mechanisms 53A to 53H are controlled and the guide destination of the coin C is switched to the first route 245R or the second route 246R based on denominations of the coin C stored in the storage boxes 238A to 238H. For example, it may be configured such that the guide destination of the coin C fed out of the storage box 238A is switched to the first route 245R or the second route 246R by the switching mechanism 53A, and that the guide destination of the coin C fed out of the storage box 238B that stores the coin C of a denomination different from that of the coin C in the storage box 238A is switched to the first route 245R or the second route 246R by the switching mechanism 53B. In this case, the switching mechanisms 53A to 53H may be controlled by different switching control units, respectively, or may be controlled by the same switching control unit.
The switching unit 50 may also be configured such that the coin C of an arbitrary combination of denominations among a plurality of denominations of the coin C stored in the storage boxes 238A to 238H is guided to only the first route 245R, for example, and that the coin C of denominations different from those of the coin C guided to the first route 245R is guided to only the second route 246R.
The number of the blocking members 532 that are connected by the connection member 541 may be two, three, or five or more. Alternatively, each of the blocking members 532 may be individually movable without providing the connection member 541.
The second route 246R may also be formed of a chute and cause the coin C to be guided downward from the storage boxes 238A to 238H with the chute to be stored in the coin transport cassette 30.
The first route forming portion 245 may also be configured such that the coin C is guided to the drawer 40 by the transport belt, in the same manner as the second route forming portion 246.
The second coin handling apparatus 23 may not have the function of depositing the coin C from the coin transport cassette 30 and the drawer 40.
It may also be configured such that the second opening 531F or the first opening 531E can be blocked by moving the coin C in the direction intersecting the surface Ca and moving the blocking member 532 in the direction parallel to the surface Ca of the coin C in the fixing member 531 without providing the attitude defining portion 531C in the fixing member 531.
It may also be configured such that the second opening 531F or the first opening 531E can be blocked by causing the blocking member 532 in its entirety to be moved in parallel (to be slid).
In the embodiment described above and the respective variations described above, the inclined disk or the horizontal disk in the storage unit is not limited to those exemplified in the embodiment described above and the respective variations described above, but may be configured in other ways as long as coins can be fed out one by one thereby.
The disclosure of Japanese Patent Application No. 2020-050821, filed on Mar. 23, 2020, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
The present disclosure is applicable to a coin handling apparatus.
Number | Date | Country | Kind |
---|---|---|---|
2020-050821 | Mar 2020 | JP | national |
This application is a continuation of U.S. application Ser. No. 17/206,171, filed on Mar. 19, 2021, which claims priority to Japanese Patent Application No. 2020-050821 filed on Mar. 23, 2020, the contents of each are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17206171 | Mar 2021 | US |
Child | 18384385 | US |