This invention in certain example instances relates generally to coin-operated video entertainment systems. More particularly, certain exemplary aspects of the invention provide methods and/or systems for controlling access to a portable coin-operated interactive entertainment device that may be used to play video games and access other forms of entertainment (such as music) as well as providing features via such portable coin-operated interactive entertainment devices.
Coin-operated video game devices have become common in restaurants and bars. Coin-operated video game devices are large devices or devices that are secured to a table or other stationary object. One or more players may use a coin-operated video game device to play trivia games, card games, and/or other common games. Because of the value of such devices, they are designed to be stationary to prevent theft. Among other disadvantages, stationary coin-operated video game devices tend to be underutilized because users are required to be at the fixed location of the devices, which may not necessarily be in the best playing location for maximizing earnings. The large devices also reduce acceptance due to limited space at the location for such.
Some restaurants and bars have distributed non-coin operated portable communication devices that are configured to allow users to play trivia and card games. Because the devices are portable, risk of theft is a concern. In order to reduce losses due to theft, such devices are designed to be inexpensive and have reduced processing and display capabilities. The reduced processing and display capabilities result in a less than optimal experience for users.
Therefore, it will be appreciated that there is a need in the art for portable coin-operated video entertainment systems and/or methods that provide rich multimedia experiences while also controlling access to the portable components.
Certain exemplary aspects of the invention overcome one or more of the above-described and/or other problems and/or limitations by providing portable coin-operated interactive entertainment game systems and/or methods.
Portable interactive entertainment devices may include touch screens or other input means and allow users to play video games, access other forms of entertainment, and access data and/or devices connected to a local area network or a wide area network. In various exemplary embodiments, portable interactive entertainment devices are removably secured to one or more stands. Each portable interactive entertainment device and/or a central tower may be configured to receive payment and. The payment may be in the form of currency credit card, debit card, cash or other form of payment (or deposit). Portable interactive entertainment devices can become unsecured from stands in response to the receipt of payment and/or a deposit, or remote controls operated by the location's employees.
In certain exemplary embodiments, portable interactive entertainment devices may be configured to allow users to listen to music, gamble, order food, access the internet, play movies, watch TV, send messages and personal ads, participate in tournaments, order merchandise, make phone calls, view advertising, access and participate in other forms of entertainment, etc.
In certain exemplary embodiments, a locking system for a movable coin-operated handheld entertainment device and a dock station therefore is provided. On the handheld device, there is provided a spring-loaded control pin, a spring-loaded ground pin, a spring-loaded power pin, and at least one locking hook extending downwardly from a bottom surface of the handheld device. The control pin extends to a depth shallower than that of the ground pin and the power pin. On the dock, there is provided a plurality of stationary dock contacts for respectively receiving each of the pins of the handheld device, and at least one locking channel, with each said locking channel being arranged so as to respectively receive one said locking hook.
In connection with certain of these exemplary embodiments, the dock may further comprise a slide solenoid assembly including at least one protrusion with a barb formed on an upward facing end thereof arranged so as to pass through at least one locking channel and at least one locking hook corresponding to the at least one locking channel, and a locking solenoid assembly for locking the slide solenoid assembly in place. The locking system of claim 2, wherein The locking solenoid assembly may be configured to lock the slide solenoid assembly independent of whether power is provided to the dock and/or handheld device. Programmed logic circuitry may be configured to disengage the locking system when a valid deposit is provided to a deposit acceptor provided to the handheld device and/or the dock and/or when a signal is received from a remote control being operated by an authorized user. The locking system of claim 2, wherein The locking solenoid assembly and/or the slide solenoid assembly may include an electromagnet and/or a spring.
In certain exemplary embodiments, a security system for a movable coin-operated handheld entertainment device being operated at a location is provided. A transceiver is located on the device configured to emit a signal indicative of its location. A transceiver is located proximate to an entryway/exit of the location configured to detect signals emitted by the device. Distance determining programmed logic circuitry is configured to determine a distance between the device and the entryway/exit of the location in dependence on the signal. Alarm programmed logic circuitry is configured to raise a alarm in dependence on the distance. The at least one characteristic of the alarm is determined by the alarm programmed logic circuitry in dependence on the distance.
In connection with certain of these exemplary embodiments, a timer may be configured to determine an amount of time the device is within a predetermined distance from the entryway/exit of the location, and the alarm programmed logic circuitry is configured to wait a predetermined amount of time before raising an alarm. A speaker may be configured to emit a beep at one of a plurality of intensities in dependence on a signal received from the alarm programmed logic circuitry and/or a strobe light configured to flash at one of a plurality of intensities in dependence on a signal received from the alarm programmed logic circuitry.
In certain exemplary embodiments, there is provided a digital jukebox comprising at least one removable coin-operated handheld entertainment device, wherein each said device is configured to be used both as a remote interface to the jukebox and/or as a stand-alone jukebox in a confined area in dependence on a mode chosen by a user of the jukebox.
In connection with certain of these exemplary embodiments, releasing programmed logic circuitry may be configured to release the device from the jukebox when a valid deposit is provided to a deposit acceptor provided to the jukebox, and/or the device and/or when a signal is received from a remote control being operated by an authorized user. The device may include directional speakers.
Certain exemplary embodiments may include or utilize computer-executable instructions for performing one or more of the disclosed methods. The computer-executable instructions may be stored on a computer-readable medium, such as a portable memory drive or optical disk. Also, the various components may be arranged in any suitable form of programmed logic circuitry, such as, for example, hardware, software, firmware, and/or any suitable combination thereof.
These and other features, aspects, and advantages of the instant invention will be further understood by review of the following detailed description of the exemplary embodiments when read in conjunction with the appended drawings, in which:
Various exemplary embodiments may be implemented in connection with computer devices and/or systems that exchange and process data. Elements of an exemplary portable interactive entertainment device 100 are illustrated in
Portable interactive entertainment device 100 can include a variety of interface units and drives for reading and writing data or files. In particular, portable interactive entertainment device 100 includes a mass storage interface 114 coupling a hard disk drive 116 to system inter-connect bus 112. Hard disks generally include one or more read/write heads that convert bits to magnetic pulses when writing to a computer-readable medium and magnetic pulses to bits when reading data from the computer-readable medium. A single hard disk drive 116 is shown for illustration purposes only and with the understanding that portable interactive entertainment device 100 may include several of such drives. Furthermore, portable interactive entertainment device 100 may include drives for interfacing with other types of computer readable media such as magneto-optical drives, flash drives, and/or any suitable storage area.
Unlike hard disks, system memories, such as system memory 124, generally read and write data electronically and do not include read/write heads. System memory 124 may be implemented with a conventional system memory having a read only memory section that stores a basic input/output system (BIOS) and a random access memory (RAM) that stores other data and files. Of course, as above, it will be appreciated that any suitable storage area may be used in certain exemplary embodiments.
A user can interact with portable interactive entertainment device 100 with a variety of input devices and/or controllers.
Portable interactive entertainment device 100 may include additional interfaces for connecting peripheral devices to system inter-connect bus 112. An IEEE 1394 interface, for example, may additionally or alternatively be used to couple additional devices to portable interactive entertainment device 100. Peripheral devices may include touch sensitive screens, game pads, scanners, printers, and other input and output devices and may be coupled to system inter-connect bus 112 through parallel ports, game ports, PCI boards, or any other interface used to couple peripheral devices to a computer device.
Portable interactive entertainment device 100 also includes a video adapter 130 coupling a display device to system inter-connect bus 112. In the exemplary embodiment shown in
In certain exemplary embodiments, the trim of the handheld may be hard-tooled to injection mold translucent plastic and LEDs may be disposed around at least a portion of the outside of the frame. The colors of the plastic may be chosen to customize the look and feel of the handheld for a particular location (e.g., to bring it in line with trade dress of the location, etc.). Moreover, the color of the LEDs provided around the outside of the handheld also may be chosen to customize the look and feel of the handheld in a similar way. The frame may be formed from a robust, heavy duty plastic in certain exemplary embodiments. For example, a polycarbonate plastic, Norel plastic, or other like kind of plastic may be used. Furthermore, a handle may be provided to the handheld to allow a user to carry it much like a suitcase.
In addition to serving as a transportation-related and or aesthetic feature, the handle and/or at least a part of the frame may help to provide protection to the internal components to make them more resistance, for example, to shocks and/or vibrations. Conventionally, electronics are shock-mounted within the internal scope of the mechanism. For example, isolation is provided at the component level such that, for example, an LCD or hard drive are arranged so as to ride on rubber bushings.
In brief, shock isolating handles (or frames elements) may be used in connection with certain exemplary embodiments to hold the electronics, with these shock isolating handles being the first component to come into contact, for example, with the ground or other surface if the handheld is dropped. Thus, in certain exemplary embodiments, because substantially all components inside the handheld and the front bezel and back housing float within the scope of handles, the brunt of the force may be transferred first to the handle. In this way, a severe shock may destroy the handle, but only a reduced shock would be transferred to the more expensive and more sensitive electronic components.
In greater detail, the handles may be mounted with shock isolating grommets (e.g., shock isolating rubber grommets) in a plurality of locations on either or both sides of the electronics components. For example, as shown in
Certain components within the handheld may be double isolated. For example, the hard drive may be double isolated by suspending it on its own grommets in a similar manner. This may be advantageous because certain components, such as the hard drive 28, may be more susceptible to shocks and vibrations, and more robust protection may be desired. Similarly, the touch screen (not shown) and/or display (e.g., an LCD display, also not shown) may be housed within a metal envelope or housing. Ports on such components may be provided for interface, for example, with other peripherals and/or components within the handheld and thus may extend beyond and/or be accessible through the housing. The whole housing may float on its own rubber grommets mounted to the plastic. In this way, as above, the plastic may absorb shocks first, and then the rubber grommets on which the electronics are floating may absorb secondary shocks.
In certain exemplary embodiments, the display may be a widescreen display. The widescreen display has been found to be popular with end consumers. Games, however, have been designed for the more traditional 4:3 format. Rather than presenting a game in a letterbox, in certain exemplary embodiment, the extra space may be used to present additional information. For example, it may provide advertising content, order status or menu options, game-related information (e.g., scores, status, etc.), device-related information (e.g., credits, battery information, etc.). In connection with multiplayer games, the screen may be divided into more than one areas to show, for example, the progress, status, or other information corresponding to other players. Of course, it will be appreciated that even single-player games often lend themselves to being played by multiple players, with the multiple players playing cooperatively and/or competitively. Therefore, for single player and/or multiplayer games, multiple windows may be displayed on a single device for the multiple players, who may be located at the same location as the primary user or at another location altogether. The displays may be updated via information from a central tower, or direct connections may be established between differently located users. In the latter case, a central server may be consulted by each device to determine the appropriate address for the other device and a direct connection may be subsequently established, for example. Although the foregoing description has been made with respect to widescreen displays, it will be appreciated that the same and/or similar techniques may be applied to the more traditional 4:3 format displays.
The direct connection and/or other features may be facilitated by associating a unique identifier with each unit. In this way, for example, the server will know how to communicate with units, how to connect units within a location, units among locations, etc. Also, a local and/or central server may be able to determine whether a unit is authorized to work at a location based on its identifier. Thus, it may be possible in certain exemplary embodiments to track units wherever they are and, for example, to reduce the chances of units being stolen or taken from one location and improperly used at another.
A significant amount of research, including ergonomic research, has determined that the angle at which the devices are displayed can play a role in usability, performance, and comfort. For example, one particularly advantageous angle at which the device may be positioned is 22.5 degrees behind the perpendicular line extending upward from a flat surface (e.g., table, bar top, or the like). Choosing an appropriate angle may be based on, for example, desired eye lines, touching angles (e.g., for fingers with fingernails), etc. Also, as will be described in greater detail below, the handheld device may be used in connection with a docking station. Therefore, once an angle is chosen, in certain exemplary embodiments the device may be shaped so as to stand alone at that angle and also sit at the same angle when used in connection with a docking station.
Certain exemplary embodiments may be designed so as to operate on a lower power to reduce the amount of heat generated. In such cases, it may be possible to avoid placing fans and/or heat synchs in certain exemplary systems.
One skilled in the art will appreciate that the device connections shown in
Portable interactive entertainment device 100 includes a network interface 140 that may be used to couple portable interactive entertainment device 100 to a local area network (LAN) or a wide area network (WAN), such as the Internet. A wireless interface 142 may also be used to connect to LAN or a WAN. Wireless interface 142 may be configured to communicate with a WiFi network, an infrared remote control and/or a radio frequency remote control.
The operation of portable interactive entertainment device 100 can be controlled by computer-executable instructions stored on a computer-readable medium. For example, portable interactive entertainment device 100 may include computer-executable instructions for transmitting information to a server, receiving information from a server, displaying the received information on display device 132, etc.
Portable interactive entertainment device 100 may include a locking interface 144. As will be described in detail below, certain exemplary embodiments include portable interactive entertainment system device that may be removably secured to a stand.
The position of locking pin 204 may be controlled by the combination of a spring and an electromagnet in certain exemplary embodiments. Such components may be incorporated into a locking module 148 (shown in
According to certain exemplary embodiments, three pins may be used to connect individual units to docking stations and/or towers. A first pin may be connected to ground, a second pin may be a charging or power pin, and a third pin may be a control pin. The pins may have, for example, gold contacts or any other suitable contacts. The pins may be positioned on the handheld in certain exemplary embodiments to avoid spillages directly onto the pins, for example, and are thus provided to the handheld in a downward facing configuration.
The pins in certain exemplary embodiments may be disposed such that when the handheld is set into a stand, the ground and power pins make contact first (e.g., before the control pin). No voltage or very little voltage may flow through the plugs when first plugged in. However, when the handheld is set in more fully, the base may sense a resistor sitting in the other unit that turns the voltage on for the unit. In brief, this may help to reduce (and in some cases even prevent) arcing proximate and/or related to the pins, thus preserving the pins via a unique sequencing of connection-related events. The control pin may be short and/or situated so as to make contact with the base last. When the dock senses movement, it may shut the power off, e.g., when someone is trying to improperly remove (such as by pulling it upwardly while still locked), also helping to reduce (or even eliminate) arcing. More particularly, the shorter control pin will come out of contact, thereby causing the power pin to be turned off, when the unit is pulled upwardly while still locked in the stand.
In greater detail, the following steps may be used when removing handheld from dock. A user swipes a credit card. A release signal goes through the handheld, requesting the handheld's release from the docking station. In certain exemplary embodiments, this may involve connecting to a central server for verification and/or validation of the credit card; charging a temporary deposit fee or collecting information in case the device is subsequently damaged, lost, stolen, etc.; and sending back a confirmation of verification and/or validation. Such a signal may be sent back through the control pin. The dock may then sequence a series of solenoids. In certain exemplary embodiments, the dock may sequence a lock solenoid and a slide solenoid and turns the dock's power off. As will be described below, the slide solenoid may be responsible for positioning the handheld relative to the dock, and the lock solenoid may be responsible for locking the slide solenoid in place. The handheld may then be removed. In certain exemplary embodiments, signals may be merely sent down the pins or any other suitable wires, while the main programmed logic circuitry may be located in the dock.
The following steps may be used when returning a handheld to a dock. A timer may runs on the processor of the dock, for example, to determine whether the handheld is present by detecting the presence or absence of the control pin. The control pin may be designed in certain exemplary embodiments so as to have a small pull-up or small positive voltage on the dock. A ground resistor may be provided on the handheld. The dock may perform a divider to determine the status of the control pin. When a voltage of phi/2 is detected on the control pin, it is likely that the handheld present, and the handheld will transfer from A to D. It will be sensed whether the voltage is within half of a supply row and, if so, then the power will be turned on and the removal sequence will be ready to be (re)initiated. In this case, now if the pin goes all the way down to ground, the handheld may be re-released.
Thus, in certain exemplary embodiments, the sequence involves starting at half voltage, turning on the power, and charging the handheld. If the voltage is low, the handheld is released. A signal may be sent to the dock even if the handheld is discharged and the battery is dead in order to turn the dock back on in certain exemplary embodiments. This is one advantage of having the dock provide a small positive voltage, having the handheld provide a ground, and embedding the logic in the dock. An additional advantage is that the handheld will mechanically lock with the dock even if there is no power. This is because the coils are used only for unlocking. Thus, if the power goes out at the location, the units may remain secure in their docks.
A camera may be provided to a handheld device in a cavity formed near the credit card reader at the top of the device. For example, the camera may be configured to take a picture of a user. This picture may be used, for example, to create avatars for players during games or users of jukeboxes, to associate an image of a user with a score (e.g., a high score), for security purposes, etc. The camera may also be able to capture image and/or video so that users may send “live” emails to one another and/or to external users. Similarly, in certain exemplary embodiments, players may be able to see their competition live from within and/or among locations. As described above, in certain exemplary embodiments, a device may contact a central server to determine how to establish a direct connection to another device and then use a direct connection rather than communicating through a server. This may advantageously help reduce delays between devices, reduce the strain on the network in a location and/or among locations, etc. Also, in certain exemplary embodiments, users may create videos and upload them to a server for sharing, use the cameras as virtual photo booths and share through an online interface, etc. In certain exemplary embodiments, as will be described in greater detail below, users may be rewarded for creating custom content, participating in competitions (e.g., at or among and between commercial location(s)) such as media generation competitions, gaming competitions, or sporting competitions, etc.
Additional hardware components may be in wired and/or wireless connection with the device (e.g., an external microphone, musical instruments such as a guitar or drums, etc.) so as to provide additional entertainment features. For example, an external microphone could be used for karaoke within a location or among locations, a guitar could be used to play a “Guitar Hero”-like game, etc. Although most karaoke singing conventionally is done from a central stage or visible area within a location so that it is more like a performance, the camera features provided to the device may be used in connection with the karaoke features. Thus, it may be possible to capture sound and video using a handheld device for transmission to a larger viewable area in the location or across multiple locations. For example, the sound and video may be streamed to one or more locations, captured and sent with a delay, etc.
Some people may be willing to provide collateral in order to use a handheld device. In such a case, a prospective user may hand over to a manager, proprietor, or other authorized employee a credit card, driver's license, and/or other suitable collateral. In certain exemplary embodiments, a remote control may be used to release a handheld device for the user. For example, the person authorized to distribute a handheld device may decide which unit to release and press a button on the remote corresponding to the unit. This may in certain illustrative implementations cause the unit to identify itself (e.g., by causing its LEDs to become activated or behave in a certain manner, for example, changing from red to green, or flashing, etc.). Once the prospective user is ready to take the device and once the authorized person has verified that the unit is the correct unit to be distributed, a second button on the remote may be pushed to actually release the unit to the user.
There is, however, a concern that certain users will not want to give up their licenses and/or credit cards in order to use a handheld device. In cases, as described herein, a user may swipe a credit card at a tower, on a device, etc., in order to release the appropriate unit. This may also be advantageous in that it reduces the need for another person to be present and always responsible for distributing the devices. After a credit card is swiped, the card may be used as collateral, or a refundable deposit may be taken (e.g., similar to at a gas station). The card may be charged in connection with the normal operation of the device and, if there is a problem with the user's use of the device (e.g., damage, theft, loss, etc., to the device), the card may be charged an additional fee.
In certain other exemplary embodiments, a special card (e.g., a smart card, a card with a magnetic stripe, etc.) may be given to users and then swiped at a kiosk similar to a regular credit card. This card may take the form of, for example, a registered player card and can also be used as a debit card if appropriate contact and/or billing information is associated with the card. In these and/or other ways, the location may ensure that credit and/or debit mechanisms are used, rather than cash, to release the devices. This may be advantageous because users often may not have enough cash to cover the costs associated with the harm caused to the device, obtaining cash from a putative user may be difficult, the exact amount of damages may be difficult to determine, etc.
In connection with or in place of a special card, users may become registered users of the handheld device and/or services. They may do so by creating an account and providing certain identifying information. The account may be created using a device or an interface remote from the device (e.g., at a jukebox, on a website, etc.). This information may include, for example, name, address, and contact information (e.g., email address, home address, telephone and/or mobile phone numbers, etc.). The registered user also may be prompted to input optional demographic information, such as, for example, age, sex, race/ethnicity, etc. Any or all of this information may be used, for example, for market research purposes, custom advertising, awards and rewards (e.g., a predetermined number of credits for signing up, promotions, giveaways, etc.), and the like. Information regarding a payment and/or deposit source (e.g., a credit or debit card, bank account number, etc.) may also be collected, e.g., for convenience by, for example, automatic billing when more credits are desired or when a game is played, direct deposit of refunds or promotional rewards, etc. In this and/or other ways, registered users may establish connections between themselves, for example, to communicate with each other (e.g., by sending text, email, handheld-specific messages, etc., for example, indicating a meet-up location, a request to become friends, and the like), share credits among each other, etc. Messages also may be automatically generated for the registered user. For example, a message may be automatically sent to the user if the user no longer retains the high score position on a game. It will be appreciated that this message may be sent via email, SMS, etc.
As alluded to above, member information optionally may be embedded in or associated with a special card. Thus, the registered user may be able to access individualized and/or customized services by sliding this card and/or otherwise identifying its identity to the handheld or other device connected to a common audiovisual and/or game distribution network.
Portable interactive entertainment device 200 and stand 202 may be located in businesses such as bars and restaurants. Portable interactive entertainment device 200 may be configured to allow users, such as customers, to play video games, access menus, send and receive email, access a local area network (LAN), access a wide area network (WAN), pay bills, and/or perform other functions that are typically performed with computer devices.
Regardless of whether a user is a registered user, certain exemplary embodiments may allow tournaments and/or competitions between multiple players using one or more devices. The tournaments and/or competitions may be located within a single location or spread out among multiple locations. When users are competing within a location, colors of the lights on the handheld may be used to indicate members of various teams, competitors, etc. In this way, a user within a location will be able to recognize who that user is competing against as well as who that user is cooperating with. Furthermore, the lights may provide marquis effects for winners/losers, time to take a turn, etc. For example, LEDs (e.g., tri-color LEDs) disposed around the frame of the handheld may flash when it is a particular player's turn, may flash multiple colors in a predetermined or random pattern to indicate a win, etc. The colors also may be tied in to the colors of a central tower, docking station, jukebox, or other hardware device for further attraction of patrons, interactivity, and/or synchronization between devices.
A countertop device or central tower may be integrated with one or more other hardware devices typically found at a location. For example, a countertop device or central tower may be integrated with a jukebox. Often, either one or all of a jukebox, countertop, or central tower will have to be placed in a location away from where most of the “action” occurs, e.g., away from where people order drinks or food, pay for services, perform on stage, etc. Integrating the components may save space and draw more attention to the components individually and together. Indeed, the integrated components may be located at a prime spot in a located, e.g., at a point of purchase in a bar so that the user may even select songs, play a game, order food and drinks, etc., at the same time and even through a single device.
In certain exemplary embodiments, the integrated device may be designed to look like a familiar device, e.g., a jukebox, to prompt users to use devices with which they have some comfort and will not be intimidated by what might be perceived as complicated user interfaces or technology.
As noted above, plurality of handheld devices 63 may be removably connected to the jukebox 60. They may be stored in ports 65 and may be configured to be released from ports 65 when a valid payment and/or deposit is provided to one or more of the payment and/or deposit acceptors 61. Once a handheld device 63 is removed from the jukebox 60, it may be used as an interface to the jukebox 60, e.g., through a user interface available on the handheld device 63 which may be similar to or different from the user interface provided on the display 62 of the jukebox 60 itself. The handheld device 63 may be in wireless connection, for example, with the jukebox 60. In addition or in the alternative, a handheld device 63 may provide ancillary services in addition to those provided by the jukebox. For example, it may be used to order food and/or drinks, watch television, gamble, play games, etc. Still further, a handheld device 63 may be provided with directional speakers and thus may be used as a jukebox in and of itself for an area within a location. In such a case, the handheld device 63 may have instances of media stored on in its own computer-readable storage medium (e.g., a hard drive, flash drive, USB drive, etc.) itself, may communicate with the jukebox 60 to retrieve and/or stream instances of media, may communicate with a remote server in an audiovisual distribution network (not shown) to obtain further songs, etc. Additionally, users may be charged a premium for accessing certain services via the handheld device 63 such as, for example, when ordering music from the jukebox 60 or a remote server, when watching a television station not currently being shown at the location, when playing a game, etc.
In this way, in certain exemplary embodiments, multiple devices can be integrated to form dedicated jukebox and/or game unit. However, in certain other exemplary embodiments, the integrated devices may be configured to move within a location, for example, when a movable tabletop device and a jukebox are integrated, when a handheld and a jukebox are integrated, etc. In such cases, they may be configured to communicate in a wireless or wired fashion with a local or remote server and/or central audiovisual distribution network to download, queue up, and/or play instances of media (such as songs, videos tec.). This arrangement advantageously may help reduce crowding problems; allow for a more distributed game, jukebox, ordering, and/or other services, e.g., to raise more money and increasing enjoyment by having more and more individuals interact with more and more devices; etc.
Thus, in certain exemplary embodiments, the handheld devices, etc., can be remote jukebox interfaces or individual jukeboxes themselves. In connection with such exemplary embodiments, the devices optionally may be provided with directional speakers, for example, of the type manufactured commercially and to specification by Bose, e.g., so as to reduce the area to which the sound may travel. Thus, handheld devices may provide very local jukeboxes within a location, for example, at the booth or table level, for a pool table or other game, etc. The devices may be pre-located at such positions and/or may be moved among various positions in accordance with the exemplary embodiments described herein. In addition or in the alternative, a headphone jack may be provided to the handheld device and/or a docking location thereof to allow a user to hear sound through headphones. In addition or in the alternative to using the handheld device as a portable and individualized jukebox within a location, the user may play customized music apart form normal jukebox operations (e.g., during a game), thereby supplementing or supplanting the standard audio feed of the operation mode. In one embodiment, the handheld device may include an icon that calls up a jukebox interface that enable handheld device to select songs to play from a jukebox at the location, or from the handheld device itself. In this way, each device can be sued as a jukebox or interface to a jukebox, thereby increasing the convenience for the user and the amount of song plays.
In a similar vein, the handheld devices may be provided with a port for receiving a computer-readable storage medium of a user (e.g., a USB drive, a flash drive, etc.) or a portable music playing device (e.g., an iPod, a portable MP3 player, a PDA, a mobile computer, etc.). The port may be, for example, an USB port, a firewire port, a mini-cable port, etc. Cables for connection thereto may be provided by the location and/or by the user, may be retractably stored within the handheld device or base or tower, etc. The handheld device, acting as a jukebox, may be configured to read songs from the computer-readable storage medium and/or the portable music playing device and play them locally (e.g., using the directional speaker exemplary embodiments described above). Similarly, the handheld device, acting as a point of sale and/or licensing intermediary, may be configured to sell instances of media to the user and then transfer such instances of media to a connected device directly. It will be appreciated that this may be accomplished using a licensing architecture similar to that provided in digital downloading jukeboxes.
As one exemplary security measure, the handheld may be programmed to take certain security precautions when it is moved, for example, a predetermined distance from a base, an exit to a location, an unauthorized portion within a location, etc. To determine the locations, for example, RF transceivers may be provided to the location and/or the handheld itself. For example, a determination of position may be based in part on the strength of an RF signal between the handheld and the door, for example. In certain example embodiments, for example, the existence and/or strength of a WIFI connection may also be used as an indicator of position.
Alerts may be provided by the handheld and/or other components within the location. For example, an audible sound from and/or visual display on the handheld and/or at the component (e.g., by a door) may indicate to the user that the user is nearing an inappropriate position. The audible sound and/or the visual display may change (e.g., become more or less intense) as the position of the handheld changes. For example, an audible beeping noise may be emitted when the user is a predetermined distance from the door, and the volume of the beeping may increase as the handheld moves nearer to the door. A strobe light also may be triggered when the user is a predetermined distance from the door.
The combination of an audible alarm and a strobe light at a door is advantageous in certain exemplary instances because a handheld device sometimes may be concealed by a would-be thief (e.g., under a coat) and may be difficult to hear in a crowded and noisy environment and/or where there are multiple exit points. The distances may be customizable and, in certain exemplary embodiments, set as ranges (e.g., start beeping at X ft. from the door, increase Y dB at X/2 feet, etc.).
In addition or in the alternative, in certain exemplary embodiments, the handheld may be programmed to shut down completely and only be programmed to turn back on when it is put into a docking station. This may accomplished through a combination of hardware and/or software, e.g., on the handheld device. For example, when the device is outside of the predetermined distance, warning messages may be provided for the user to give the user a chance to turn around.
In some cases, it may be advantageous to use the above described techniques in connection with a timer. For example, WIFI connections sometimes may be temporarily lost and/or RF signals may become temporarily jumbled. Therefore, a timer may be used to determine whether the device exists outside of a range for a predetermined amount of time before raising an alarm and/or powering down the handheld.
Portable interactive entertainment device 200 may also include a sensor or tag that is used to determine when a user attempts to remove the device from a premises. For example, portable interactive entertainment device 200 may include a radio frequency identification (RFID) tag that causes a reading system to sound an alarm when a user attempts to transport the device through a doorway. A security interface 150 (shown in
The system shown in
Central tower 402 may include a currency validator 408 that may be used to accept currency from users. Central tower 402 may additionally or alternatively include a credit card reader 410 configured to accept payments and/or deposits from credit cards and/or debit cards. Credit card reader 410 may also be configured to read advertisement data from a plastic card having a magnetic strip. In certain exemplary embodiments, the magnetic strip includes the advertisement data. In certain exemplary embodiments, the magnetic strip includes a network address, such as an Internet address, or other pointer that identifies the location of the advertisement.
Currency validator 408 and credit card reader 410 may be configured to provide signals that will result in portable interactive entertainment devices 404 and 406 being released from stands 412 and 414. In one embodiment, stands 412 and 414 are integrated into a single structure. Stands 412 and 414 may also be attached to central tower 402.
Central tower 402 may also included a game collection 416 that stores a variety of video games. In certain exemplary embodiments, games may be retrieved from game collection 416 and transmitted to portable interactive entertainment devices 404 and 406 upon the request of users. The request may include payment and/or a deposit from users to play the games. Central tower 402 may also be configured to host games that are played by users of portable interactive entertainment devices 404 and 406. For example, central tower 402 and portable interactive entertainment devices 404 and 406 may be configured in a client server architecture such that central tower 402 processes game data and data is exchanged between central tower 402 and portable interactive entertainment devices 404 and 406.
A predetermined number of units (e.g., 4, 8, 16, etc.) may be provided to an individual tower. Multiple towers (e.g., 2-4 towers) may be provided per location. They may be spread apart to prevent crowding in a particular area, distribute people more effectively throughout a location, promote team play, etc. In such a case, there may be one master tower and the other towers may function as slaves. For example, one tower may be responsible for connecting to the outside audiovisual and/or game network, for distributing media and/or services within a site, providing accounting functions, etc. In certain exemplary embodiments, a separate device (e.g., a jukebox) may be used as a tower, e.g., by receiving money and distributing credits to devices in a wireless manner. Additionally, the other device's screen (e.g., the jukebox's screen) may be used as an additional game portal.
A network interface card 418 may also be included to allow central tower 402 to connect to a local area network 420 and a wide area network, such as the Internet 422. A wireless communication module 424 may also be included to allow central tower 402 to communicate with local area network 420 and the Internet 422. In one embodiment, one more additional central towers, such as central tower 434 may also be connected to the Internet 422 or another wide area network (WAN) or local area network (LAN). Connecting to additional central towers allows users of portable interactive entertainment devices 404 and 406 to play games, participate in tournaments and communicate with users at other locations, such as other restaurants and bars. In certain exemplary embodiments, portable interactive entertainment devices may be used to view the identification of others who are logged on or in close proximity. Users may also user portable interactive entertainment devices to exchange video game credits. For example, a first person using a portable interactive entertainment device may send a credit to a second person using another portable interactive entertainment device when the first person loses a video game to the second person.
Portable interactive entertainment devices 404 and 406 may also be configured to communicate in a peer-to-peer environment. For example, portable interactive entertainment devices 404 and 406 may be used to play game, exchange instant messages or exchange other types of data. The communication path between portable interactive entertainment devices 404 and 406 may be wireless or wired. In one embodiment, portable interactive entertainment devices 404 and 406 are configured to communicate with LAN 420 via a wireless access point 426.
The system shown in
A printer 432 may also be connected to LAN 420 to facilitate printing of documents. In one implementation, a user may review a bill on portable interactive entertainment device 404 and provide a credit card payment to cause printer 432 to print a credit card receipt that will be signed by a customer. In certain exemplary embodiments, printer 432 may be utilized to print e-mail messages, Internet content, images captured by a portable interactive entertainment device or any other content that is conventionally processed by printers.
Portable interactive entertainment devices 404 and 406 may communicate with central tower 402 via a wireless or wired connection. Wireless connections facilitate movement of the portable interactive entertainment devices within a premises.
A premises, such as a restaurant or bar, may also include an Ethernet connection at some or all of the tables within the premises which allow for a wired connection between portable interactive entertainment devices 404 and 406 and central tower 402.
Those skilled in art will appreciate that aspects of the invention may be used with a variety of different equipment configurations.
As alluded to above, indicators may be provided to indicate the status of a handheld with respect to its being placed in a docked state at a docking location (e.g., a docking station, a table top device, a central tower, another device such as a jukebox, etc.). The indicators may be configured to signal to the user and/or to authorized personnel (e.g., managers, operators, proprietors, etc.) which handheld should be picked up, when it is appropriate to be picked up (e.g., when it is unlocked), whether a handheld is charging, whether a device has been successfully returned to its docked state, etc. In certain exemplary embodiments, the indicators may be colors (e.g., provided by LED lights), icons, sounds, and/or the like, that change in dependence on the status of the handheld vis-à-vis the docking location and the state of either or both of the handheld and the docking location, etc. This may further attract users to the central tower and/or prompt them to inquire about the colorful and/or attractive nature of the devices.
Although the handheld devices may be detachably connected to a base or docking location, they may be tethered to one or more locations in the alternative or in addition according to certain exemplary embodiments. Thus, it may be possible to have an at least partially movable handheld, for example, such that the handheld is detachable from the docking location movable only within the scope of a secured tether. The tethers may act as a security device, as well as provide power to the device.
Certain exemplary embodiments therefore may provide a field-configurable security cable or tether. This may be in the form of an armored cable that links two components allowing them to move within the length of the tether. The tether may be field configurable such that the tether may be added, taken away, or reconfigured at the desire of an authorized user (e.g., manager, proprietor, operator, etc.) and is therefore reusable. In certain exemplary embodiments, the tether may have a universal connector with respect to various components in the system. For example, the tether may be configured to link together any or all of a base, handheld, tower, and a fixed point. In this way, the security provided by the tether can be configured and re-configured in the field in order to meet the desires of a particular location. For example, the tether may be provided between the tower and a charging base, between the tower and handheld, between a fixed element (like a table of floor) and the base, or between a fixed element and the handheld, thus providing great flexibility in configuring (and reconfiguring) the system at a particular location.
A plug 1610 may be provided for aesthetic purposes when a tether is not being used. The plug 1610 may include protrusions 1610a for connecting to holes formed in the components in lieu of the ends of the tether 1602.
Each component (e.g., a tower or jukebox 1620, a handheld device 1630, a dock 1640, and/or an element 1650) may have a receiving port 1622 for accommodating the secure tether 1602. As shown perhaps best in connection with the element 1650, the receiving port 1622 may include a hole for receiving power from the electrical connection 1606 provided to the tether 1602. A plurality of holes 1622b may be configured to receiving fasteners (e.g., screws or the like) through the corresponding holes 1608 in the plate 1604.
As can be appreciated from
In certain exemplary embodiments, techniques for collecting billing and/or royalty information from a network of connected gaming devices are provided. In connection with such exemplary embodiments, the business model and/or underlying technology for charging operators an amount based on payment inserted (and/or games or instances of media played) on a monthly basis is provided. Additionally, it may be possible to rewards creators of content by collecting information from the gaming device and performing accounting features on such information. Such information may include, for example, information concerning the games played to collect money, licensing to pay royalties to designers, etc. Locations may be charged, in certain exemplary embodiments, per game offered for play, per play of a single game, pay per time, etc. These costs may be passed on to end-users, for example, on a per play, per time, etc., basis.
A network of gaming devices comprising a plurality of gaming devices are connected, in substantially real-time or with a delay, to at least one remote server. The devices are programmed in order to collect and/or upload payment and/or play information to at least one remote server for further processing. The remote server is further programmed in such a way that it can parse the information received from the plurality of gaming devices. Each gaming device is uniquely associated to one patron through the use of a database, such that the patron is billed according to certain business rules associated with the gaming device in the database. Additionally, the system may permit the payment of royalties to right-owners of the game on a per-play model, wherein the right-owners receive moneys for each plays accounted for.
In certain exemplary embodiments, a plurality of players may play a plurality of interactive video and/or entertainment games on a gaming devices. Each gaming device has a unique identifier permitting the unique identification of each game. In an exemplary embodiment, each time a player inserts payment using any of the payment mechanisms the gaming device equipped with, programmed logic circuitry is configured record in a database, log file, memory location, etc. for transmission to the server activity information (including, for example, the amount of payment inserted) as well other additional information (such as, for example, the unique identifier of the gaming device, the identifier of the game played, date and time of play, amount of credits collected for play, etc.).
In certain other exemplary embodiments, each time a game is selected for play, or alternatively each time a game is played, the gaming device may record in a database, log file, memory, etc. for transmission to the server the play activity information, such as, for example, an identifier for uniquely identifying the played game and additional information, such as, for example, the unique identifier of the gaming device, the identifier of the game played, date and time of play, amount of money or credits collected, etc. The play activity information may be as simple as a play count.
In certain exemplary embodiments, the handheld device may then communicate the play activity information and/or the money activity information to the remote server which, in turn, will record the play activity information and/or money activity information associated with the unique gaming device in a database. The recorded information may also be used in conjunction with business rules to establish billing to the operator operating the equipment. For example, once per month billing software can retrieve play activity information and/or money activity information and calculate for each operator the amount due based on the total game plays made by each device or total moneys inserted into each device owned by respective operator. Of course, several business rules may apply; for example, a minimum dollar amount per month per unit can be applied, and each unit may have different business rules depending on the contract associated with the purchase of the unit. For example, operator A may have a gaming device D1 that is billed at 20% of gross money inserted in the unit and gaming device D2 that is billed at 10 cents per game played. If, for example, device D1 earned $100 during the billing period and device D2 played 100 games, the billing system would calculate the total amount due by operator by applying the appropriate business rules to each devices, namely: $100×20%+100×0.10=$20+$10=$30.
In certain exemplary embodiments, play activity information and/or money activity information may be used with the unique game identifier included in the play activity information or money activity information in order to pay a royalty to the game software right owner. For instance, if game #1 is played 100 times on the network and the royalty rate for this game is set at $0.01, $1 would be paid out to the content owner. The system may aggregate payments from multiple games to a single content owner.
Certain exemplary embodiments may be able to calculate the most popular games, the most popular game designers, etc., based on the collected information. This information may be passed on to users, correspond to incentives for developers of content, etc. In addition to creating games, users also may be able to create custom advertisements, media, etc., which may be displayable to other patrons of the bar in certain exemplary embodiments. It will be appreciated that authorized personnel (e.g., at a location, etc.) may wish to screen such advertisements and/or other media creations including games, to make sure that the content is appropriate (e.g., in terms of obscenity and/or decency standards, collection of information, privacy concerns, etc.).
Additionally, locations and/or users may be charged premiums for certain services. For example, certain games may cost more, as may Internet and/or email connections, etc. TV channels and/or other audiovisual content also may be ordered for a premium price in certain exemplary embodiments (e.g., in a case where there are multiple games being broadcast but the user wants to watch a different game from one of the games being displayed on a display at the location, etc.). Other features may include, for example, gambling services, such as the ability to bet on horses. Still further services may be offered for further premiums, including, for example, odds, breeders marks, additional information, etc.
A central tower and/or a separate jukebox may serve as a central payment and/or deposit collection system. Because of the size of a handheld, a credit card reader may be provided thereto, but there typically is not enough room for a conventional bill and/or coin acceptor. Thus, a central tower and/or jukebox may be configured to accept payments and/or deposits in any acceptable form, such as, for example, in cash, credit, debit, etc. Once the money is accepted, credits corresponding to the money may be distributed to and/or shared among and/or between multiple devices. For example, the credits may be distributed among and/or between jukeboxes, handheld devices, etc.
Thus, credits may be shared among and/or between users and/or devices. With respect to the sharing of credits, a connectivity protocol may be established among and/or between jukeboxes and portable devices in certain exemplary embodiments. The credit exchange model may comprise one or more of several distinct techniques, including, for example, a basic credit exchange handling, a remainder handling, and a bonus credit handling. Remainder and bonus credits handling are particularly advantageous for use in connection with gaming systems. Complicated and obscure credit rules management can confuse and frustrate end users, thus making them less inclined to use the system. This is disadvantageous, as many end users are inclined to put additional money into a machine following a special bonus (e.g., money remainder rounded up). Accordingly, in certain exemplary embodiments, there is provided a flexible credit exchange model that is simple to understand and profitable for the relevant parties, including, for example, the hardware providers, proprietors, game operators, and end users.
Credit rules may be defined for jukeboxes and/or gaming systems. By way of example and without limitation, in one implementation, a jukebox may charge 2 credits for $1.00 and provide a bonus credit after $5.00 has been paid, whereas three or four credits may correspond to $1.00 a game.
In a first example, a basic credit exchange handling service is provided by means of a “virtual coin acceptor.” For example, a virtual coin acceptor button may be added to a device's interface. Each time the user pushes this button, 1 monetary unit is inserted in a predefined function (e.g., the jukebox function) of the device for a given currency denomination (e.g., $0.25) from the money available on the device as a whole. Because the money is inserted consciously by the user's action in the jukebox, all of it must be used within jukebox sessions. This basically works like a real coin acceptor, in that money can be inserted but not removed. The other money may be used for other services.
Thus, there is flexibility in allowing credit exchange between different sets of credit rules. The concept is simple to understand, in that an exported jukebox works in the same way as a typical floor or wall unit. The credit exchange is simple because it is based on a predefined monetary unit (e.g., $0.25). Credit rules and/or bonuses may apply on the device the proper way, because all money sent to a particular function will be spent on it.
In certain exemplary embodiments, users may be allowed to browse the contents (e.g., instances of media or games available for play) before deciding how much they want to spend. Moreover, multiple credit rules may be applied for a different function or different functions for the remaining money after delegation to the first function is terminated. In certain exemplary embodiments, allocations to different functions may be made at the same time.
Such techniques may result in unusable remainders. These remainders may be handled according to certain exemplary techniques.
In a first exemplary technique, rounding up may be provided via a function (e.g., a popup menu) upon the insertion of additional payment. In such a case, credits may be converted following basic credit handling process. This conversion may produce unusable remainders (e.g., a credit rule is set to 3 credits for $1.00 on a gaming system). At the end of a jukebox session, for example, a function may appear with a timer offering the user to add money so that the system rounds up any unusable remainder he has left. If the user does not add money, the remainder may be discarded by the system. Of course, it will be appreciated that the function could be presented at other times, such as, for example, when a song has finished playing, after a game is ended, etc.
According to this exemplary technique, users may not have to “lose” any money, since unusable remainders are rounded up. This may keeps users playing with the system, thus increasing their monetary contributions. It will be appreciated that operators may have to adjust rounding up rules based on, for example, an analysis of user behaviors including how much rounding is sufficient to prompt additional insertion of money, location and/or operator tolerance for giving away free credits, etc.
In a second exemplary technique for rounding up, credits may be automatically rounded up to a fixed monetary unit. In such a case, credits may be converted following a basic credit handling process. This conversion may produce unusable remainders (e.g., when a credit rule is set to 3 credits for $1.00 on a device). On the device, after credit rules are reapplied, any unusable remainder may be rounded up to a previously fixed monetary unit (e.g., $0.33). This solution may provide a simple way of having a controlled round up process for unusable remainders possibly generated by a session of the device. It could also be used with a threshold for more control over the total cost of these “gifts” in certain exemplary embodiments.
According to this exemplary technique, users may not have to “lose” any money, since unusable remainders are rounded up. The solution is flexible, as each device provider can apply its own monetary unit and threshold of choice. As above, it will be appreciated that operators may have to adjust rounding up rules based on, for example, an analysis of user behaviors including how much rounding is sufficient to prompt additional insertion of money, location and/or operator tolerance for giving away free credits, etc.
The following is an example scenario of this technique presented by way of illustration and without limitation. In this example scenario, the credit rules are: 3 credits are provided for $1.00 on the game unit, therefore corresponding a fixed monetary unit for rounding up at $0.33; and at the jukebox, 2 credits are provided for $1.00. There is automatic rounding up to a fixed monetary unit without a threshold in this example. A patron puts $2.00 into a gaming unit, and receives 6 credits with each credit being worth $0.33. The patron plays 1 game for 1 credit, leaving $1.66 in the gaming unit. A song is played at the jukebox for 1 credit at a cost of $0.50. At the gaming unit, $1.16 is now available. The system rounds up this amount to the fixed monetary unit ($0.33), requiring the operator to give $0.17. Now, the end user has $1.33, or enough for 4 credits.
The monetary impact of fictional rounding up scenario will now be provided using the same example credit rules provided above. Table 1 indicates the plays done via gaming interfaces in July 2007, on some 1432 jukeboxes.
Based on the above information, the following fictional “exploit” scenario is provided. The following two behaviors are less than optimal because it will always generate a remainder of $0.16 forcing the operator to give $0.17 after each song is queued. First, always return to the jukebox when at least one game has been played. Second, always queue only one song at a time and go back to the gaming interface. Table 2 shows the total cost of the rounding up process according to the number of plays and this disadvantageous “exploit” behavior.
The example above is based on typical pricing mixed with exploit habit on end user's side. The total cost of the rounding up process very much depends on the fixed monetary unit for rounding up, the possible threshold, the behavior of the end users and the number of uses of the jukebox from the gaming interface. It will be appreciated that a more advantageous exploit scenario may be established based on these and/or other factors.
A technique for handling bonus credits will now be described wherein there is persistence of BONUS CREDITS WORTH $0.00. In such a case, instead of distributing the value of bonus credits over total credits thus reducing the value of each credit individually, the credit rules may remain unchanged and supplemental bonus credits worth $0.00 may be registered in the gaming system. Because bonus credits are not worth any money, they may never be transferred to the device via the virtual coin acceptor. Hence, patrons may be able to go to the device and come back without losing bonus credits.
The following provides an example scenario wherein this technique is used. The following credit rules are applied: for a game device, 4 credits may be purchased for $1.00, and 5 bonus credits may be awarded after $5.00 has been paid in; at the jukebox, 2 credits may be purchased for $1.00, and bonus 12 credits may be awarded after $5.00 has been paid in. In the scenario, a patron inserts $5.00 into a gaming unit. The patron receives 25 credits—20 credits worth $0.25 each, and 5 bonus credits worth $0.00 each. The patron pays 2 credits, costing $0.50. The patron now has 18 credits worth $4.50 and still has 5 bonus credits worth $0.00. The patron goes to the jukebox with $4.50 while the bonus credits are persisted on the gaming unit. The patron plays 1 song, costing $0.50. The patron now has $4.00 at the jukebox. The patron returns to the gaming unit. The credit rules are reapplied on the $4.00 left, meaning that the patron now has 16 credits. The persisted bonus credits are reapplied, so that the patron now has 16 credits and 5 bonus credits for a total of 21 credits. In sum, then, the patron went to the jukebox having 23 credits and came back with 21, keeping his bonus.
This may be contrasted with a distributed value technique, where each credit is worth money. In a similar situation, a patron puts $5.00 into a gaming unit. The patron receives 25 credits, with each credit worth $0.20. He pays 2 credits at a total cost of $0.40. The patron now has 23 credits worth $4.60. The patron goes to the jukebox with $4.60 and plays 1 song, costing 1 credit or $0.50. The patron now has $4.10. The patron returns to the gaming unit. The patron no longer has the $5.00 in credits required to access the bonus credit rule. When the credit rules are reapplied on the $4.10, 16 credits are awarded with a remainder of $0.10. This remainder optionally may be rounded up, providing the patron with 17 total credits. In this case, the patron went to the jukebox with 23 credits and came back with only 17 after only a single play at the jukebox. The patron therefore disadvantageously lost his bonus.
Contrasting these two examples, it can be seen how the technique for handling bonus credits wherein there is persistence of BONUS CREDITS ACCORDING TO CERTAIN EXEMPLARY EMBODIMENTS PROVIDES NO EXTRA COST FOR THE LOCATION OR OPERATOR BUT PROVIDES THE PATRON WITH AN INCREASED VALUE.
It will be appreciated that other applications may be provided in a manner customized for the particular location. For example, such applications may include the receipt of job applications, taking of surveys, training, cash register services, and/or the like.
While the preferred aspects of the invention have been illustrated and described herein, it will be apparent to one of ordinary skill in the art that various changes and/or modifications can be made. Thus, the specific description herein is meant to be exemplary only and is not intended to limit the invention beyond the terms of appended claims.
This application is a Continuation of U.S. patent application Ser. No. 15/485,427 filed Apr. 12, 2017, which is a Continuation of U.S. patent application Ser. No 14/861,304 filed Sep. 22, 2015 (now abandoned), which is a Divisional of U.S. patent application Ser. No. 11/902,790 filed Sep. 25, 2007 (now U.S. Pat. No. 9,171,419 issued Oct. 27, 2015), which is the Continuation-In-Part of U.S. patent application Ser. No. 11/624,008 filed Jan. 17, 2007 (now U.S. Pat. No. 9,330,529 issued May 3, 2016), the entire contents of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3710137 | Stephens, Jr. | Jan 1973 | A |
3807541 | Kortenhaus | Apr 1974 | A |
3982620 | Kortenhaus | Sep 1976 | A |
4008369 | Theurer et al. | Feb 1977 | A |
4064362 | Williams | Dec 1977 | A |
4186438 | Benson et al. | Jan 1980 | A |
4232295 | McConnell | Nov 1980 | A |
4335809 | Wain | Jun 1982 | A |
4335908 | Burge | Jun 1982 | A |
4336935 | Goldfarb | Jun 1982 | A |
4356509 | Skerlos et al. | Oct 1982 | A |
4369442 | Werth et al. | Jan 1983 | A |
4375287 | Smith | Mar 1983 | A |
4412292 | Sedam et al. | Oct 1983 | A |
4413260 | Siegel et al. | Nov 1983 | A |
4521014 | Sitrick | Jun 1985 | A |
4528643 | Freeny, Jr. | Jul 1985 | A |
4558413 | Schmidt et al. | Dec 1985 | A |
4572509 | Sitrick | Feb 1986 | A |
4577333 | Lewis et al. | Mar 1986 | A |
4582324 | Koza et al. | Apr 1986 | A |
4588187 | Dell | May 1986 | A |
4593904 | Graves | Jun 1986 | A |
4597058 | Izumi et al. | Jun 1986 | A |
4636951 | Harlick | Jan 1987 | A |
4652998 | Koza et al. | Mar 1987 | A |
4654799 | Ogaki et al. | Mar 1987 | A |
4658093 | Hellman | Apr 1987 | A |
4667802 | Verduin et al. | May 1987 | A |
4674055 | Ogaki et al. | Jun 1987 | A |
4675538 | Epstein | Jun 1987 | A |
4677311 | Morita | Jun 1987 | A |
4677565 | Ogaki et al. | Jun 1987 | A |
4696527 | Ding et al. | Sep 1987 | A |
4703465 | Parker | Oct 1987 | A |
4704725 | Harvey et al. | Nov 1987 | A |
4707804 | Leal | Nov 1987 | A |
4722053 | Dubno et al. | Jan 1988 | A |
4761684 | Clark et al. | Aug 1988 | A |
4766581 | Korn et al. | Aug 1988 | A |
4787050 | Suzuki | Nov 1988 | A |
4792849 | McCalley et al. | Dec 1988 | A |
4807052 | Amano | Feb 1989 | A |
4811325 | Sharples, Jr. et al. | Mar 1989 | A |
4814972 | Winter et al. | Mar 1989 | A |
4815868 | Speicher | Mar 1989 | A |
4825054 | Rust et al. | Apr 1989 | A |
4829570 | Schotz | May 1989 | A |
4852154 | Lewis et al. | Jul 1989 | A |
4857714 | Sunyich | Aug 1989 | A |
4868832 | Marrington et al. | Sep 1989 | A |
4885694 | Pray et al. | Dec 1989 | A |
4905279 | Nishio | Feb 1990 | A |
4920432 | Eggers et al. | Apr 1990 | A |
4922420 | Nakagawa et al. | May 1990 | A |
4924378 | Hershey et al. | May 1990 | A |
4926485 | Yamashita | May 1990 | A |
4937807 | Weitz et al. | Jun 1990 | A |
4949187 | Cohen | Aug 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
4956768 | Sidi et al. | Sep 1990 | A |
4958835 | Tashiro et al. | Sep 1990 | A |
4965675 | Hori et al. | Oct 1990 | A |
4977593 | Balance | Dec 1990 | A |
4999806 | Chernow et al. | Mar 1991 | A |
5008814 | Mathur | Apr 1991 | A |
5012121 | Hammond et al. | Apr 1991 | A |
5027426 | Chiocca, Jr. | Jun 1991 | A |
5041921 | Scheffler | Aug 1991 | A |
5046093 | Wachob | Sep 1991 | A |
5053758 | Cornett et al. | Oct 1991 | A |
5058089 | Yoshimaru et al. | Oct 1991 | A |
5077607 | Johnson et al. | Dec 1991 | A |
5081534 | Geiger et al. | Jan 1992 | A |
5101451 | Ash et al. | Mar 1992 | A |
5101499 | Streck et al. | Mar 1992 | A |
5106097 | Levine | Apr 1992 | A |
5117407 | Vogel | May 1992 | A |
D327687 | Arbiter | Jul 1992 | S |
5128862 | Mueller | Jul 1992 | A |
5138712 | Corbin | Aug 1992 | A |
5148159 | Clark et al. | Sep 1992 | A |
5155847 | Kirouac et al. | Oct 1992 | A |
5159678 | Wengelski et al. | Oct 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5166886 | Molnar et al. | Nov 1992 | A |
D332096 | Wolff et al. | Dec 1992 | S |
5172413 | Bradley et al. | Dec 1992 | A |
5180309 | Egnor | Jan 1993 | A |
5189630 | Barstow et al. | Feb 1993 | A |
5191573 | Hair | Mar 1993 | A |
5191611 | Lang | Mar 1993 | A |
5192999 | Graczyk et al. | Mar 1993 | A |
5197094 | Tillery et al. | Mar 1993 | A |
5203028 | Shiraishi | Apr 1993 | A |
5210854 | Beaverton et al. | May 1993 | A |
5214761 | Barrett et al. | May 1993 | A |
5222134 | Waite et al. | Jun 1993 | A |
5228015 | Arbiter et al. | Jul 1993 | A |
5231157 | Herzig et al. | Jul 1993 | A |
5237157 | Kaplan | Aug 1993 | A |
5237322 | Heberle | Aug 1993 | A |
5239480 | Huegel | Aug 1993 | A |
5250747 | Tsumura | Oct 1993 | A |
5252775 | Urano | Oct 1993 | A |
5260999 | Wyman | Nov 1993 | A |
5261104 | Bertram et al. | Nov 1993 | A |
5262875 | Mincer et al. | Nov 1993 | A |
5276866 | Paolini | Jan 1994 | A |
5278904 | Servi | Jan 1994 | A |
5282028 | Johnson et al. | Jan 1994 | A |
5289476 | Johnson et al. | Feb 1994 | A |
5289546 | Hetherington | Feb 1994 | A |
5315161 | Robinson et al. | May 1994 | A |
5315711 | Barone et al. | May 1994 | A |
5319455 | Hoarty et al. | Jun 1994 | A |
5321846 | Yokota et al. | Jun 1994 | A |
5327230 | Dockery | Jul 1994 | A |
5335313 | Douglas | Aug 1994 | A |
5339095 | Redford | Aug 1994 | A |
5339413 | Koval et al. | Aug 1994 | A |
5341350 | Frank et al. | Aug 1994 | A |
5355302 | Martin et al. | Oct 1994 | A |
5357276 | Banker et al. | Oct 1994 | A |
5369778 | San Soucie et al. | Nov 1994 | A |
5375206 | Hunter et al. | Dec 1994 | A |
5386251 | Movshovich | Jan 1995 | A |
5389950 | Bouton | Feb 1995 | A |
5404505 | Levinson | Apr 1995 | A |
5406634 | Anderson et al. | Apr 1995 | A |
5408417 | Wilder | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5410703 | Nilsson et al. | Apr 1995 | A |
5418713 | Allen | May 1995 | A |
5420923 | Beyers, II et al. | May 1995 | A |
5428252 | Walker et al. | Jun 1995 | A |
5428606 | Moskowitz | Jun 1995 | A |
5431492 | Rothschild et al. | Jul 1995 | A |
5440632 | Bacon et al. | Aug 1995 | A |
5444499 | Saitoh | Aug 1995 | A |
5445295 | Brown | Aug 1995 | A |
5455619 | Truckenmiller et al. | Oct 1995 | A |
5455926 | Keele et al. | Oct 1995 | A |
5457305 | Akel et al. | Oct 1995 | A |
5465213 | Ross | Nov 1995 | A |
5465329 | Whisler | Nov 1995 | A |
5467326 | Miyashita et al. | Nov 1995 | A |
5469370 | Ostrover et al. | Nov 1995 | A |
5469573 | McGill, III et al. | Nov 1995 | A |
5471576 | Yee | Nov 1995 | A |
5473746 | Pritt et al. | Dec 1995 | A |
5475835 | Hickey | Dec 1995 | A |
5481509 | Knowles | Jan 1996 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5489103 | Okamoto | Feb 1996 | A |
5495610 | Shing et al. | Feb 1996 | A |
5496178 | Back | Mar 1996 | A |
5499921 | Sone | Mar 1996 | A |
5511000 | Kaloi et al. | Apr 1996 | A |
5513117 | Small | Apr 1996 | A |
5515173 | Mankovitz et al. | May 1996 | A |
5519435 | Anderson | May 1996 | A |
5519457 | Nishigaki et al. | May 1996 | A |
5521631 | Budow et al. | May 1996 | A |
5521918 | Kim | May 1996 | A |
5521922 | Fujinami et al. | May 1996 | A |
5523781 | Brusaw | Jun 1996 | A |
5528732 | Klotz, Jr. | Jun 1996 | A |
5532734 | Goertz | Jul 1996 | A |
5532991 | Sasaki | Jul 1996 | A |
5546039 | Hewitt et al. | Aug 1996 | A |
5548729 | Akiyoshi et al. | Aug 1996 | A |
5550577 | Verbiest et al. | Aug 1996 | A |
5554968 | Lee | Sep 1996 | A |
5555244 | Gupta et al. | Sep 1996 | A |
5557515 | Abbruzzese et al. | Sep 1996 | A |
5557541 | Schulhof et al. | Sep 1996 | A |
5557724 | Sampat et al. | Sep 1996 | A |
5559505 | McNair | Sep 1996 | A |
5559549 | Hendricks et al. | Sep 1996 | A |
5559714 | Banks et al. | Sep 1996 | A |
5561709 | Remillard | Oct 1996 | A |
5565908 | Ahmad | Oct 1996 | A |
5566237 | Dobbs et al. | Oct 1996 | A |
5570363 | Holm | Oct 1996 | A |
5578999 | Matsuzawa et al. | Nov 1996 | A |
5579404 | Fielder et al. | Nov 1996 | A |
5583561 | Baker et al. | Dec 1996 | A |
5583937 | Ullrich et al. | Dec 1996 | A |
5583994 | Rangan | Dec 1996 | A |
5583995 | Gardner et al. | Dec 1996 | A |
5590318 | Zbikowski et al. | Dec 1996 | A |
5592482 | Abraham | Jan 1997 | A |
5592551 | Lett et al. | Jan 1997 | A |
5592611 | Midgely et al. | Jan 1997 | A |
5594509 | Florin et al. | Jan 1997 | A |
5596702 | Stucka et al. | Jan 1997 | A |
5607099 | Yeh et al. | Mar 1997 | A |
5612581 | Kageyama | Mar 1997 | A |
5613909 | Stelovsky | Mar 1997 | A |
5616876 | Cluts | Apr 1997 | A |
5617565 | Augenbraun et al. | Apr 1997 | A |
5619247 | Russo | Apr 1997 | A |
5619249 | Billock et al. | Apr 1997 | A |
5619250 | McClellan et al. | Apr 1997 | A |
5619698 | Lillich et al. | Apr 1997 | A |
5623666 | Pike et al. | Apr 1997 | A |
5631693 | Wunderlich et al. | May 1997 | A |
5636276 | Brugger | Jun 1997 | A |
5638426 | Lewis | Jun 1997 | A |
5642337 | Oskay et al. | Jun 1997 | A |
5643831 | Ochiai et al. | Jul 1997 | A |
5644714 | Kikinis | Jul 1997 | A |
5644766 | Coy et al. | Jul 1997 | A |
5654714 | Takahashi et al. | Aug 1997 | A |
5659466 | Norris et al. | Aug 1997 | A |
5661517 | Budow et al. | Aug 1997 | A |
5661802 | Nilssen | Aug 1997 | A |
5663756 | Blahut et al. | Sep 1997 | A |
5668592 | Spaulding, II | Sep 1997 | A |
5668778 | Quazi | Sep 1997 | A |
5668788 | Allison | Sep 1997 | A |
5675734 | Hair | Oct 1997 | A |
5680533 | Yamato et al. | Oct 1997 | A |
5684716 | Freeman | Nov 1997 | A |
5689641 | Ludwig et al. | Nov 1997 | A |
5691778 | Song | Nov 1997 | A |
5691964 | Niederlein et al. | Nov 1997 | A |
5696914 | Nahaboo et al. | Dec 1997 | A |
5697844 | Von Kohorn | Dec 1997 | A |
5703795 | Mankovitz | Dec 1997 | A |
5704146 | Herring et al. | Jan 1998 | A |
5708811 | Arendt et al. | Jan 1998 | A |
5712976 | Falcon, Jr. et al. | Jan 1998 | A |
5713024 | Halladay | Jan 1998 | A |
5715416 | Baker | Feb 1998 | A |
5717452 | Janin et al. | Feb 1998 | A |
5721583 | Harada et al. | Feb 1998 | A |
5721815 | Ottesen et al. | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721829 | Dunn et al. | Feb 1998 | A |
5724525 | Beyers, II et al. | Mar 1998 | A |
5726909 | Krikorian | Mar 1998 | A |
5734719 | Tsevdos et al. | Mar 1998 | A |
5734961 | Castille | Mar 1998 | A |
5739451 | Winsky et al. | Apr 1998 | A |
5743745 | Reintjes | Apr 1998 | A |
5745391 | Topor | Apr 1998 | A |
5748254 | Harrison et al. | May 1998 | A |
5748468 | Notenboom et al. | May 1998 | A |
5748954 | Mauldin | May 1998 | A |
5751336 | Aggarwal et al. | May 1998 | A |
5752232 | Basore et al. | May 1998 | A |
5757936 | Lee | May 1998 | A |
5758340 | Nail | May 1998 | A |
5761655 | Hoffman | Jun 1998 | A |
5762552 | Vuong et al. | Jun 1998 | A |
5774527 | Handelman et al. | Jun 1998 | A |
5774668 | Choquier et al. | Jun 1998 | A |
5774672 | Funahashi et al. | Jun 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5781889 | Martin et al. | Jul 1998 | A |
5786784 | Gaudichon | Jul 1998 | A |
5790172 | Imanaka | Aug 1998 | A |
5790671 | Cooper | Aug 1998 | A |
5790856 | Lillich | Aug 1998 | A |
5790935 | Payton | Aug 1998 | A |
5793364 | Bolanos et al. | Aug 1998 | A |
5793980 | Glaser et al. | Aug 1998 | A |
5798785 | Hendricks et al. | Aug 1998 | A |
5802283 | Grady et al. | Sep 1998 | A |
5802558 | Pierce | Sep 1998 | A |
5802599 | Cabrera et al. | Sep 1998 | A |
5805804 | Laursen et al. | Sep 1998 | A |
5808224 | Kato | Sep 1998 | A |
5809246 | Goldman | Sep 1998 | A |
5812643 | Schelberg, Jr. et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5825884 | Zdepski et al. | Oct 1998 | A |
5828343 | MacDonald, Jr. et al. | Oct 1998 | A |
5831555 | Yu et al. | Nov 1998 | A |
5831663 | Waterhouse et al. | Nov 1998 | A |
5832024 | Schotz et al. | Nov 1998 | A |
5832287 | Atalla | Nov 1998 | A |
5835843 | Haddad | Nov 1998 | A |
5842869 | McGregor et al. | Dec 1998 | A |
5845104 | Rao | Dec 1998 | A |
5845256 | Pescitelli et al. | Dec 1998 | A |
5848398 | Martin et al. | Dec 1998 | A |
5851149 | Xidos et al. | Dec 1998 | A |
5854887 | Kindell et al. | Dec 1998 | A |
5857020 | Peterson, Jr. | Jan 1999 | A |
5857707 | Devlin | Jan 1999 | A |
5862324 | Collins | Jan 1999 | A |
5864811 | Tran et al. | Jan 1999 | A |
5864868 | Contois | Jan 1999 | A |
5864870 | Guck | Jan 1999 | A |
5867714 | Todd et al. | Feb 1999 | A |
5870721 | Norris | Feb 1999 | A |
5880386 | Wachi et al. | Mar 1999 | A |
5880769 | Nemirofsky et al. | Mar 1999 | A |
5884028 | Kindell et al. | Mar 1999 | A |
5884298 | Smith, II et al. | Mar 1999 | A |
5887139 | Madison, Jr. et al. | Mar 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5893162 | Lau et al. | Apr 1999 | A |
5895455 | Bellinger et al. | Apr 1999 | A |
5896094 | Narisada et al. | Apr 1999 | A |
5903266 | Berstis et al. | May 1999 | A |
5913040 | Rakavy et al. | Jun 1999 | A |
5914712 | Sartain et al. | Jun 1999 | A |
5915094 | Kouloheris et al. | Jun 1999 | A |
5915238 | Tjaden | Jun 1999 | A |
5917537 | Lightfoot et al. | Jun 1999 | A |
5917835 | Barrett et al. | Jun 1999 | A |
5918213 | Bernard et al. | Jun 1999 | A |
5920700 | Gordon et al. | Jul 1999 | A |
5920702 | Bleidt et al. | Jul 1999 | A |
5923885 | Johnson et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5926624 | Katz et al. | Jul 1999 | A |
5930765 | Martin | Jul 1999 | A |
5931908 | Gerba et al. | Aug 1999 | A |
5933090 | Christenson | Aug 1999 | A |
5940504 | Griswold | Aug 1999 | A |
5949411 | Doerr et al. | Sep 1999 | A |
5949688 | Montoya et al. | Sep 1999 | A |
5953429 | Wakai et al. | Sep 1999 | A |
5956716 | Kenner et al. | Sep 1999 | A |
5959869 | Miller et al. | Sep 1999 | A |
5959945 | Kleiman | Sep 1999 | A |
5960167 | Roberts et al. | Sep 1999 | A |
5963916 | Kaplan | Oct 1999 | A |
5966495 | Takahashi et al. | Oct 1999 | A |
5970467 | Alavi | Oct 1999 | A |
5978855 | Metz et al. | Nov 1999 | A |
5978912 | Rakavy et al. | Nov 1999 | A |
5980261 | Mino et al. | Nov 1999 | A |
5999499 | Pines et al. | Dec 1999 | A |
5999624 | Hopkins | Dec 1999 | A |
6002720 | Yurt et al. | Dec 1999 | A |
6005599 | Asai et al. | Dec 1999 | A |
6008735 | Chiloyan et al. | Dec 1999 | A |
6009274 | Fletcher et al. | Dec 1999 | A |
6011758 | Dockes et al. | Jan 2000 | A |
6018337 | Peters et al. | Jan 2000 | A |
6018726 | Tsumura | Jan 2000 | A |
6021386 | Davis et al. | Feb 2000 | A |
6023705 | Bellinger et al. | Feb 2000 | A |
6025868 | Russo | Feb 2000 | A |
6026168 | Li et al. | Feb 2000 | A |
6034925 | Wehmeyer | Mar 2000 | A |
6038591 | Wolfe et al. | Mar 2000 | A |
6040829 | Croy et al. | Mar 2000 | A |
6041354 | Biliris et al. | Mar 2000 | A |
6049891 | Inamoto | Apr 2000 | A |
6054987 | Richardson | Apr 2000 | A |
6055573 | Gardenswartz et al. | Apr 2000 | A |
6057874 | Michaud | May 2000 | A |
6067564 | Urakoshi et al. | May 2000 | A |
6069672 | Claassen | May 2000 | A |
6072982 | Haddad | Jun 2000 | A |
6107937 | Hamada | Aug 2000 | A |
6118450 | Proehl et al. | Sep 2000 | A |
6124804 | Kitao et al. | Sep 2000 | A |
6131088 | Hill | Oct 2000 | A |
6131121 | Mattaway et al. | Oct 2000 | A |
6134547 | Huxley et al. | Oct 2000 | A |
6138150 | Nichols et al. | Oct 2000 | A |
6146210 | Cha et al. | Nov 2000 | A |
6148142 | Anderson | Nov 2000 | A |
6151077 | Vogel et al. | Nov 2000 | A |
6151634 | Glaser et al. | Nov 2000 | A |
6154207 | Farris et al. | Nov 2000 | A |
6157935 | Tran et al. | Dec 2000 | A |
6161059 | Tedesco et al. | Dec 2000 | A |
6167358 | Othmer et al. | Dec 2000 | A |
6170060 | Mott et al. | Jan 2001 | B1 |
6173172 | Masuda et al. | Jan 2001 | B1 |
6175861 | Williams, Jr. et al. | Jan 2001 | B1 |
6182126 | Nathan et al. | Jan 2001 | B1 |
6185184 | Mattaway et al. | Feb 2001 | B1 |
6185619 | Joffe et al. | Feb 2001 | B1 |
6191780 | Martin et al. | Feb 2001 | B1 |
6192340 | Abecassis | Feb 2001 | B1 |
6195732 | Adams et al. | Feb 2001 | B1 |
6198408 | Cohen | Mar 2001 | B1 |
6209060 | Machida | Mar 2001 | B1 |
6212138 | Kalis et al. | Apr 2001 | B1 |
6216175 | Sliger et al. | Apr 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6219692 | Stiles | Apr 2001 | B1 |
6223209 | Watson | Apr 2001 | B1 |
6226412 | Schwab | May 2001 | B1 |
6226715 | Van Der Wolf et al. | May 2001 | B1 |
6240550 | Nathan et al. | May 2001 | B1 |
6243725 | Hempleman et al. | Jun 2001 | B1 |
6247022 | Yankowski | Jun 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6262569 | Carr et al. | Jul 2001 | B1 |
6280327 | Leifer et al. | Aug 2001 | B1 |
6282709 | Reha et al. | Aug 2001 | B1 |
6288688 | Hughes et al. | Sep 2001 | B1 |
6288991 | Kajiyama et al. | Sep 2001 | B1 |
6289382 | Bowman-Amuah | Sep 2001 | B1 |
6292443 | Awazu et al. | Sep 2001 | B1 |
6298373 | Burns et al. | Oct 2001 | B1 |
6301710 | Fujiwara | Oct 2001 | B1 |
6302793 | Fertitta, III et al. | Oct 2001 | B1 |
6308204 | Nathan et al. | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6315572 | Owens et al. | Nov 2001 | B1 |
6323911 | Schein et al. | Nov 2001 | B1 |
6332025 | Takahashi et al. | Dec 2001 | B2 |
6336219 | Nathan | Jan 2002 | B1 |
6341166 | Basel | Jan 2002 | B1 |
6344862 | Williams et al. | Feb 2002 | B1 |
6346951 | Mastronardi | Feb 2002 | B1 |
6353820 | Edwards et al. | Mar 2002 | B1 |
6356971 | Katz et al. | Mar 2002 | B1 |
6359616 | Ogura et al. | Mar 2002 | B1 |
6359661 | Nickum | Mar 2002 | B1 |
6370580 | Kriegsman | Apr 2002 | B2 |
6379187 | Nishimatsu | Apr 2002 | B2 |
6381575 | Martin et al. | Apr 2002 | B1 |
6384737 | Hsu et al. | May 2002 | B1 |
6393584 | McLaren et al. | May 2002 | B1 |
6396480 | Schindler et al. | May 2002 | B1 |
6397189 | Martin et al. | May 2002 | B1 |
6407987 | Abraham | Jun 2002 | B1 |
6408435 | Sato | Jun 2002 | B1 |
6408437 | Hendricks et al. | Jun 2002 | B1 |
6421651 | Tedesco et al. | Jul 2002 | B1 |
6425125 | Fries et al. | Jul 2002 | B1 |
6430537 | Tedesco et al. | Aug 2002 | B1 |
6430738 | Gross et al. | Aug 2002 | B1 |
6434678 | Menzel | Aug 2002 | B1 |
6438450 | DiLorenzo | Aug 2002 | B1 |
6442549 | Schneider | Aug 2002 | B1 |
6446080 | Van Ryzin et al. | Sep 2002 | B1 |
6446130 | Grapes | Sep 2002 | B1 |
6449688 | Peters et al. | Sep 2002 | B1 |
6470496 | Kato et al. | Oct 2002 | B1 |
6473794 | Guheen et al. | Oct 2002 | B1 |
6488508 | Okamoto | Dec 2002 | B2 |
6490570 | Numaoka | Dec 2002 | B1 |
6493871 | McGuire et al. | Dec 2002 | B1 |
6496927 | McGrane et al. | Dec 2002 | B1 |
6498855 | Kokkosoilis et al. | Dec 2002 | B1 |
6522707 | Brandstetter et al. | Feb 2003 | B1 |
6535911 | Miller et al. | Mar 2003 | B1 |
6538558 | Sakazume et al. | Mar 2003 | B2 |
6543052 | Ogasawara | Apr 2003 | B1 |
6544122 | Araki et al. | Apr 2003 | B2 |
6549719 | Mankovitz | Apr 2003 | B2 |
D475029 | Nathan et al. | May 2003 | S |
6560651 | Katz et al. | May 2003 | B2 |
6570507 | Lee et al. | May 2003 | B1 |
6571282 | Bowman-Amuah | May 2003 | B1 |
6577735 | Bharat | Jun 2003 | B1 |
6578051 | Mastronardi et al. | Jun 2003 | B1 |
6587403 | Keller et al. | Jul 2003 | B1 |
6590838 | Gerlings et al. | Jul 2003 | B1 |
6598230 | Ballhorn | Jul 2003 | B1 |
6622307 | Ho | Sep 2003 | B1 |
6628939 | Paulsen et al. | Sep 2003 | B2 |
6629318 | Radha et al. | Sep 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643690 | Duursma et al. | Nov 2003 | B2 |
6654801 | Mann et al. | Nov 2003 | B2 |
6658090 | Harjunen et al. | Dec 2003 | B1 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6702585 | Okamoto | Mar 2004 | B2 |
6724974 | Naruto et al. | Apr 2004 | B2 |
6728824 | Chen | Apr 2004 | B1 |
6728956 | Ono | Apr 2004 | B2 |
6728966 | Arsenault et al. | Apr 2004 | B1 |
6744882 | Gupta et al. | Jun 2004 | B1 |
6751794 | McCaleb et al. | Jun 2004 | B1 |
6755744 | Nathan et al. | Jun 2004 | B1 |
6762585 | Liao | Jul 2004 | B2 |
D495755 | Wurz et al. | Sep 2004 | S |
6789215 | Rupp et al. | Sep 2004 | B1 |
6816578 | Kredo et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6898161 | Nathan | May 2005 | B1 |
6904592 | Johnson | Jun 2005 | B1 |
6920614 | Schindler et al. | Jul 2005 | B1 |
6928653 | Ellis et al. | Aug 2005 | B1 |
6934700 | Ijdens et al. | Aug 2005 | B1 |
6942574 | LeMay et al. | Sep 2005 | B1 |
6974076 | Siegel | Dec 2005 | B1 |
7012534 | Chaco | Mar 2006 | B2 |
7024485 | Dunning et al. | Apr 2006 | B2 |
7103583 | Baum et al. | Sep 2006 | B1 |
7107109 | Nathan et al. | Sep 2006 | B1 |
7111129 | Percival | Sep 2006 | B2 |
7114013 | Bakke et al. | Sep 2006 | B2 |
7124194 | Nathan et al. | Oct 2006 | B2 |
7160132 | Phillips et al. | Jan 2007 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7188352 | Nathan et al. | Mar 2007 | B2 |
7195157 | Swartz et al. | Mar 2007 | B2 |
7198571 | LeMay et al. | Apr 2007 | B2 |
7205471 | Looney et al. | Apr 2007 | B2 |
7206417 | Nathan | Apr 2007 | B2 |
7210141 | Nathan et al. | Apr 2007 | B1 |
7231656 | Nathan | Jun 2007 | B1 |
7237198 | Chaney | Jun 2007 | B1 |
7281652 | Foss | Oct 2007 | B2 |
7293277 | Nathan | Nov 2007 | B1 |
D560651 | Berkheimer et al. | Jan 2008 | S |
7347723 | Daily | Mar 2008 | B1 |
D566195 | Ichimura et al. | Apr 2008 | S |
7356831 | Nathan | Apr 2008 | B2 |
7406529 | Reed | Jul 2008 | B2 |
7415707 | Taguchi et al. | Aug 2008 | B2 |
7418474 | Schwab | Aug 2008 | B2 |
7424731 | Nathan et al. | Sep 2008 | B1 |
7430736 | Nguyen et al. | Sep 2008 | B2 |
7433832 | Bezos et al. | Oct 2008 | B1 |
7448057 | Nathan | Nov 2008 | B1 |
7483958 | Elabbady | Jan 2009 | B1 |
7500192 | Mastronardi | Mar 2009 | B2 |
7512632 | Mastronardi et al. | Mar 2009 | B2 |
7519442 | Nathan et al. | Apr 2009 | B2 |
7522631 | Brown et al. | Apr 2009 | B1 |
7533182 | Wurtzel et al. | May 2009 | B2 |
7548851 | Lau | Jun 2009 | B1 |
7549919 | Nathan et al. | Jun 2009 | B1 |
7574727 | Nathan et al. | Aug 2009 | B2 |
7634228 | White et al. | Dec 2009 | B2 |
7647613 | Drakoulis et al. | Jan 2010 | B2 |
7657910 | McAulay | Feb 2010 | B1 |
D616414 | Nathan et al. | May 2010 | S |
7749083 | Nathan et al. | Jul 2010 | B2 |
7757264 | Nathan | Jul 2010 | B2 |
7761538 | Lin et al. | Jul 2010 | B2 |
7770165 | Olson et al. | Aug 2010 | B2 |
7778879 | Nathan et al. | Aug 2010 | B2 |
7783593 | Espino | Aug 2010 | B2 |
7783774 | Nathan et al. | Aug 2010 | B2 |
7793331 | Nathan et al. | Sep 2010 | B2 |
7819734 | Nathan et al. | Oct 2010 | B2 |
7822687 | Brillon et al. | Oct 2010 | B2 |
D629382 | Nathan et al. | Dec 2010 | S |
7937724 | Clark et al. | Mar 2011 | B2 |
7922178 | Finocchio | Apr 2011 | B2 |
D642553 | Nathan et al. | Aug 2011 | S |
7992178 | Nathan et al. | Aug 2011 | B1 |
7996873 | Nathan et al. | Aug 2011 | B1 |
8015200 | Seiflein et al. | Sep 2011 | B2 |
8028318 | Nathan | Sep 2011 | B2 |
8032879 | Nathan et al. | Oct 2011 | B2 |
8037412 | Nathan et al. | Oct 2011 | B2 |
8052512 | Nathan et al. | Nov 2011 | B2 |
8103589 | Nathan et al. | Jan 2012 | B2 |
8151304 | Nathan et al. | Apr 2012 | B2 |
8165318 | Nathan et al. | Apr 2012 | B2 |
8214874 | Nathan | Jul 2012 | B2 |
D665375 | Garneau et al. | Aug 2012 | S |
8292712 | Nathan et al. | Oct 2012 | B2 |
8325571 | Cappello et al. | Dec 2012 | B2 |
8332895 | Nathan et al. | Dec 2012 | B2 |
8429530 | Neuman et al. | Apr 2013 | B2 |
9171419 | Dion et al. | Oct 2015 | B2 |
9330529 | Fedesna et al. | May 2016 | B2 |
20010011262 | Hoyt | Aug 2001 | A1 |
20010016815 | Takahashi et al. | Aug 2001 | A1 |
20010023403 | Martin et al. | Sep 2001 | A1 |
20010030660 | Zainoulline | Oct 2001 | A1 |
20010030912 | Kalis et al. | Oct 2001 | A1 |
20010037367 | Iyer | Nov 2001 | A1 |
20010044725 | Matsuda et al. | Nov 2001 | A1 |
20020002079 | Martin et al. | Jan 2002 | A1 |
20020002483 | Siegel et al. | Jan 2002 | A1 |
20020018074 | Buil et al. | Feb 2002 | A1 |
20020032603 | Yeiser | Mar 2002 | A1 |
20020040371 | Burgess | Apr 2002 | A1 |
20020045960 | Phillips | Apr 2002 | A1 |
20020113824 | Myers, Jr. | Aug 2002 | A1 |
20020116476 | Eyal et al. | Aug 2002 | A1 |
20020118949 | Jones et al. | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020123331 | Lehaff et al. | Sep 2002 | A1 |
20020126141 | Mastronardi | Sep 2002 | A1 |
20020129036 | Ho Yuen Lok et al. | Sep 2002 | A1 |
20020129371 | Emura et al. | Sep 2002 | A1 |
20020158130 | Pellaumail | Oct 2002 | A1 |
20020162104 | Raike et al. | Oct 2002 | A1 |
20030004833 | Pollak et al. | Jan 2003 | A1 |
20030005099 | Sven et al. | Jan 2003 | A1 |
20030006911 | Smith et al. | Jan 2003 | A1 |
20030008703 | Gauselmann | Jan 2003 | A1 |
20030014272 | Goulet et al. | Jan 2003 | A1 |
20030018740 | Sonoda et al. | Jan 2003 | A1 |
20030027120 | Jean | Feb 2003 | A1 |
20030031096 | Nathan et al. | Feb 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030041093 | Yamane et al. | Feb 2003 | A1 |
20030050058 | Walsh et al. | Mar 2003 | A1 |
20030064805 | Wells | Apr 2003 | A1 |
20030065639 | Fiennes et al. | Apr 2003 | A1 |
20030076380 | Yusef et al. | Apr 2003 | A1 |
20030088538 | Ballard | May 2003 | A1 |
20030093790 | Logan | May 2003 | A1 |
20030101450 | Davidsson et al. | May 2003 | A1 |
20030104865 | Itkis | Jun 2003 | A1 |
20030108164 | Laurin et al. | Jun 2003 | A1 |
20030135424 | Davis et al. | Jul 2003 | A1 |
20030144910 | Flaherty et al. | Jul 2003 | A1 |
20030163388 | Beane | Aug 2003 | A1 |
20030176218 | LeMay et al. | Sep 2003 | A1 |
20030191753 | Hoch | Oct 2003 | A1 |
20030208586 | Mastronardi et al. | Nov 2003 | A1 |
20030225834 | Lee et al. | Dec 2003 | A1 |
20030233469 | Knowlson | Dec 2003 | A1 |
20040010800 | Goci | Jan 2004 | A1 |
20040025185 | Goci et al. | Feb 2004 | A1 |
20040044723 | Bell | Mar 2004 | A1 |
20040085334 | Reaney | May 2004 | A1 |
20040103150 | Ogdon et al. | May 2004 | A1 |
20040129774 | Utz | Jul 2004 | A1 |
20040145477 | Easter et al. | Jul 2004 | A1 |
20040148362 | Friedman | Jul 2004 | A1 |
20040158555 | Seedman et al. | Aug 2004 | A1 |
20040204220 | Fried et al. | Oct 2004 | A1 |
20040205171 | Nathan et al. | Oct 2004 | A1 |
20040220926 | Lamkin et al. | Nov 2004 | A1 |
20040243482 | Laut | Dec 2004 | A1 |
20050034084 | Ohtsuki | Feb 2005 | A1 |
20050044254 | Smith | Feb 2005 | A1 |
20050048816 | Higgins | Mar 2005 | A1 |
20050060405 | Nathan et al. | Mar 2005 | A1 |
20050073782 | Nathan | Apr 2005 | A1 |
20050086172 | Stefik | Apr 2005 | A1 |
20050111671 | Nathan | May 2005 | A1 |
20050125833 | Nathan et al. | Jun 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050240661 | Heller et al. | Oct 2005 | A1 |
20050267819 | Kaplan | Dec 2005 | A1 |
20060018208 | Nathan et al. | Jan 2006 | A1 |
20060031896 | Pulitzer | Feb 2006 | A1 |
20060035707 | Nguyen | Feb 2006 | A1 |
20060062094 | Nathan et al. | Mar 2006 | A1 |
20060143575 | Sauermann | Jun 2006 | A1 |
20060227673 | Yamashita et al. | Oct 2006 | A1 |
20060239131 | Nathan et al. | Oct 2006 | A1 |
20060240771 | Graves | Oct 2006 | A1 |
20060247064 | Nguyen et al. | Nov 2006 | A1 |
20060293773 | Nathan et al. | Dec 2006 | A1 |
20070025701 | Kawasaki et al. | Feb 2007 | A1 |
20070047198 | Crooijmans et al. | Mar 2007 | A1 |
20070086280 | Cappello et al. | Apr 2007 | A1 |
20070121430 | Nathan et al. | May 2007 | A1 |
20070139410 | Abe et al. | Jun 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070160224 | Nathan | Jul 2007 | A1 |
20070204263 | Nathan et al. | Aug 2007 | A1 |
20070209053 | Nathan | Sep 2007 | A1 |
20070220052 | Kudo et al. | Sep 2007 | A1 |
20070220580 | Putterman | Sep 2007 | A1 |
20070247979 | Brillon et al. | Oct 2007 | A1 |
20070275777 | Walker | Nov 2007 | A1 |
20080003881 | Wu | Jan 2008 | A1 |
20080005698 | Koskinen | Jan 2008 | A1 |
20080065925 | Oliverio et al. | Mar 2008 | A1 |
20080066016 | Dowdy et al. | Mar 2008 | A1 |
20080069545 | Nathan et al. | Mar 2008 | A1 |
20080077962 | Nathan | Mar 2008 | A1 |
20080086379 | Dion et al. | Apr 2008 | A1 |
20080096659 | Kreloff | Apr 2008 | A1 |
20080137849 | Nathan | Jun 2008 | A1 |
20080141175 | Sama | Jun 2008 | A1 |
20080155588 | Roberts et al. | Jun 2008 | A1 |
20080168807 | Dion et al. | Jul 2008 | A1 |
20080171594 | Fedesna et al. | Jul 2008 | A1 |
20080195443 | Nathan et al. | Aug 2008 | A1 |
20080198271 | Malki | Aug 2008 | A1 |
20080222199 | Tiu et al. | Sep 2008 | A1 |
20080239887 | Tooker et al. | Oct 2008 | A1 |
20080275771 | Levine | Nov 2008 | A1 |
20080305738 | Khedouri et al. | Dec 2008 | A1 |
20090005165 | Arezina | Jan 2009 | A1 |
20090006993 | Tuli et al. | Jan 2009 | A1 |
20090030802 | Plotnick et al. | Jan 2009 | A1 |
20090037969 | Nathan | Feb 2009 | A1 |
20090042632 | Guenster et al. | Feb 2009 | A1 |
20090063976 | Bull et al. | Mar 2009 | A1 |
20090070341 | Mastronardi et al. | Mar 2009 | A1 |
20090091087 | Wasmund | Apr 2009 | A1 |
20090098925 | Gagner | Apr 2009 | A1 |
20090100092 | Seiflein et al. | Apr 2009 | A1 |
20090109224 | Sakurai | Apr 2009 | A1 |
20090128631 | Ortiz | May 2009 | A1 |
20090138111 | Mastronardi | May 2009 | A1 |
20090158203 | Kerr et al. | Jun 2009 | A1 |
20090168901 | Yarmolich et al. | Jul 2009 | A1 |
20090172565 | Jackson et al. | Jul 2009 | A1 |
20090177301 | Hayes | Jul 2009 | A1 |
20090234914 | Mikkelsen et al. | Sep 2009 | A1 |
20090240721 | Giacalone, Jr. | Sep 2009 | A1 |
20090241061 | Asai et al. | Sep 2009 | A1 |
20090265734 | Dion et al. | Oct 2009 | A1 |
20090282491 | Nathan et al. | Nov 2009 | A1 |
20090287696 | Galuten | Nov 2009 | A1 |
20090298577 | Gagner et al. | Dec 2009 | A1 |
20090307314 | Smith et al. | Dec 2009 | A1 |
20090328095 | Vinokurov et al. | Dec 2009 | A1 |
20100042505 | Straus | Feb 2010 | A1 |
20100131558 | Logan et al. | May 2010 | A1 |
20100211818 | Nathan et al. | Aug 2010 | A1 |
20100211872 | Rolston | Aug 2010 | A1 |
20100241259 | Nathan | Sep 2010 | A1 |
20100247081 | Victoria Pons | Sep 2010 | A1 |
20100269066 | Nathan et al. | Oct 2010 | A1 |
20100299232 | Nathan et al. | Nov 2010 | A1 |
20100306179 | Lim | Dec 2010 | A1 |
20110055019 | Coleman | Mar 2011 | A1 |
20110066943 | Brillon et al. | Mar 2011 | A1 |
20110111489 | Beese et al. | May 2011 | A1 |
20110173521 | Horton et al. | Jul 2011 | A1 |
20110246517 | Nathan et al. | Oct 2011 | A1 |
20110270894 | Mastronardi et al. | Nov 2011 | A1 |
20110283236 | Beaumier et al. | Nov 2011 | A1 |
20110298938 | Nathan et al. | Dec 2011 | A1 |
20110304685 | Khedouri et al. | Dec 2011 | A1 |
20110321026 | Nathan et al. | Dec 2011 | A1 |
20120009985 | Nathan et al. | Jan 2012 | A1 |
20120053713 | Nathan | Mar 2012 | A1 |
20120105464 | Franceus | May 2012 | A1 |
20120143732 | Nathan et al. | Jun 2012 | A1 |
20120150614 | Dion et al. | Jun 2012 | A1 |
20120158531 | Dion et al. | Jun 2012 | A1 |
20120166965 | Nathan et al. | Jun 2012 | A1 |
20120240140 | Nathan | Sep 2012 | A1 |
20120323654 | Writer | Dec 2012 | A1 |
20130021281 | Tse et al. | Jan 2013 | A1 |
20130040715 | Nathan et al. | Feb 2013 | A1 |
20130044995 | Cappello et al. | Feb 2013 | A1 |
20130070093 | Rivera et al. | Mar 2013 | A1 |
20130091054 | Nathan et al. | Apr 2013 | A1 |
20140026154 | Nathan | Jan 2014 | A1 |
20160012677 | Dion et al. | Jan 2016 | A1 |
20170216730 | Dion et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
5401299 | Apr 2000 | AU |
2119184 | Sep 1994 | CA |
1340939 | Mar 2002 | CN |
3406058 | Aug 1985 | DE |
3723737 | Jan 1988 | DE |
3820835 | Jan 1989 | DE |
3815071 | Nov 1989 | DE |
4244198 | Jun 1994 | DE |
19539172 | Sep 1996 | DE |
19610739 | Sep 1997 | DE |
19904007 | Aug 2000 | DE |
0082077 | Jun 1983 | EP |
2122799 | Jan 1984 | EP |
0140593 | May 1985 | EP |
0256921 | Feb 1988 | EP |
2602352 | Feb 1988 | EP |
0283304 | Sep 1988 | EP |
0283350 | Sep 1988 | EP |
0309298 | Mar 1989 | EP |
0313359 | Apr 1989 | EP |
0340787 | Nov 1989 | EP |
0363186 | Apr 1990 | EP |
0425168 | May 1991 | EP |
0464562 | Jan 1992 | EP |
0480558 | Apr 1992 | EP |
0498130 | Aug 1992 | EP |
0507110 | Oct 1992 | EP |
0529834 | Mar 1993 | EP |
0538319 | Apr 1993 | EP |
0631283 | Dec 1994 | EP |
0632371 | Jan 1995 | EP |
0711076 | May 1996 | EP |
0786122 | Jul 1997 | EP |
0817103 | Jan 1998 | EP |
0841616 | May 1998 | EP |
0919964 | Jun 1999 | EP |
0959570 | Nov 1999 | EP |
0974896 | Jan 2000 | EP |
0974941 | Jan 2000 | EP |
0982695 | Mar 2000 | EP |
1001391 | May 2000 | EP |
2808906 | Nov 2001 | EP |
1170951 | Jan 2002 | EP |
1288802 | Mar 2003 | EP |
1408427 | Apr 2004 | EP |
1549919 | Jul 2005 | EP |
1962251 | Aug 2008 | EP |
2166328 | Apr 1986 | GB |
2170943 | Aug 1986 | GB |
2193420 | Feb 1988 | GB |
2238680 | Jun 1991 | GB |
2254469 | Oct 1992 | GB |
2259398 | Mar 1993 | GB |
2262170 | Mar 1993 | GB |
2380377 | Apr 2003 | GB |
2505584 | Mar 2014 | GB |
S57-173207 | Oct 1982 | JP |
S58-179892 | Oct 1983 | JP |
S60-253082 | Dec 1985 | JP |
S61-84143 | Apr 1986 | JP |
S62-192849 | Aug 1987 | JP |
S62-284496 | Dec 1987 | JP |
S63-60634 | Mar 1988 | JP |
H02-153665 | Jun 1990 | JP |
H05-74078 | Mar 1993 | JP |
H05-122282 | May 1993 | JP |
H06-127885 | May 1994 | JP |
H07-504517 | May 1995 | JP |
H07-281682 | Oct 1995 | JP |
H07-311587 | Nov 1995 | JP |
H08-37701 | Feb 1996 | JP |
H08-274812 | Oct 1996 | JP |
H08-279235 | Oct 1996 | JP |
3034555 | Nov 1996 | JP |
H08-289976 | Nov 1996 | JP |
H09-28918 | Feb 1997 | JP |
H09-114470 | May 1997 | JP |
H09-127964 | May 1997 | JP |
H09-244900 | Sep 1997 | JP |
H10-98344 | Apr 1998 | JP |
H10-222537 | Aug 1998 | JP |
H11-3088 | Jan 1999 | JP |
H11-24686 | Jan 1999 | JP |
H11-95768 | Apr 1999 | JP |
2000-270314 | Sep 2000 | JP |
2002-537584 | Nov 2002 | JP |
2003-076380 | Mar 2003 | JP |
2003-084903 | Mar 2003 | JP |
2003-099072 | Apr 2003 | JP |
2002-83640 | Sep 2003 | JP |
2004-29459 | Jan 2004 | JP |
2004-030469 | Jan 2004 | JP |
2004-054435 | Feb 2004 | JP |
2007-034253 | Feb 2004 | JP |
2007-041722 | Feb 2004 | JP |
2005-018438 | Jan 2005 | JP |
2005-107267 | Apr 2005 | JP |
2005-184237 | Jul 2005 | JP |
2005-215209 | Aug 2005 | JP |
2006-39704 | Feb 2006 | JP |
2006-048076 | Feb 2006 | JP |
2007-505410 | Mar 2007 | JP |
2007-102982 | Apr 2007 | JP |
2007-104072 | Apr 2007 | JP |
2007-128609 | May 2007 | JP |
2007-164078 | Jun 2007 | JP |
2007-164298 | Jun 2007 | JP |
2007-179333 | Jul 2007 | JP |
2007-199775 | Aug 2007 | JP |
2007-241748 | Sep 2007 | JP |
2008-058656 | Mar 2008 | JP |
2009-017529 | Jan 2009 | JP |
2009-075540 | Apr 2009 | JP |
2009-288702 | Dec 2009 | JP |
514511 | Dec 2002 | TW |
M274284 | Sep 2005 | TW |
M290206 | May 2006 | TW |
8601326 | Feb 1986 | WO |
9000429 | Jan 1990 | WO |
9007843 | Jul 1990 | WO |
9108542 | Jun 1991 | WO |
9120082 | Dec 1991 | WO |
9316557 | Aug 1993 | WO |
9318465 | Sep 1993 | WO |
9321732 | Oct 1993 | WO |
9403894 | Feb 1994 | WO |
9414273 | Jun 1994 | WO |
9415306 | Jul 1994 | WO |
9415416 | Jul 1994 | WO |
9503609 | Feb 1995 | WO |
9529537 | Nov 1995 | WO |
9612255 | Apr 1996 | WO |
9612256 | Apr 1996 | WO |
9612257 | Apr 1996 | WO |
9612258 | Apr 1996 | WO |
9807940 | Feb 1998 | WO |
9811487 | Mar 1998 | WO |
9845835 | Oct 1998 | WO |
9935753 | Jul 1999 | WO |
0100290 | Jan 2001 | WO |
0108148 | Feb 2001 | WO |
0171608 | Sep 2001 | WO |
0184353 | Nov 2001 | WO |
02060546 | Aug 2002 | WO |
02095752 | Nov 2002 | WO |
03005743 | Jan 2003 | WO |
03069613 | Aug 2003 | WO |
03098382 | Nov 2003 | WO |
2004029775 | Apr 2004 | WO |
2005026916 | Mar 2005 | WO |
WO 2005052751 | Jun 2005 | WO |
2006014739 | Feb 2006 | WO |
2006056933 | Jun 2006 | WO |
WO 2006106631 | Oct 2006 | WO |
2006138064 | Dec 2006 | WO |
WO 2007069143 | Jun 2007 | WO |
2007092542 | Aug 2007 | WO |
2008033853 | Mar 2008 | WO |
WO 2009004531 | Jan 2009 | WO |
2011094330 | Aug 2011 | WO |
2013040603 | Mar 2013 | WO |
Entry |
---|
European Patent Office, “European Search Report,” issued in connection with European Patent Application No. 08 00 5442, dated Jan. 15, 2009 (2 pages). |
Grimes, Galen A., “Chapter 18, Taking Advantage of Web-Based Audio,” pp. 1-21, retrieved on Mar. 24, 2000. |
Koskelainen, Petri, “Report on Streamworks (tm),” Aug. 1995, pp. 1-4. |
Stevens, W. Richard, “TCP/IP Illustrated,” vol. 1, 1994, The Protocols, Chapter 2, pp. 22 and 27, and Chapter 17, pp. 223-229. |
A Brochure entitled “About ECast,” at least as early as Sep. 25, 2007, retrieved from www.ecastinc.com (1 page). |
Definition of “Dynamically,” Merriam Webster's Collegiate Dictionary, 1999 Tenth Edition, Merriam-Webster, Inc., p. 361. |
Ahanger et al.; A Digital On-Demand Video Service Supporting Content-Based Queries; 1993; 9 pages. |
Austin Cyber Limits: Name That Tune [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://www.pbs.ork/klru/austin/games/namethattune.html>. |
Back to the Tunes [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://citc5.hispeed.com/rules.html>. |
Chan et al., “Distributed servers architectures for networked video services”, IEEE Trans on Networking, vol. 9, No. 2, pp. 125-136, 2001. |
Chen et al., “Optimization of the grouped sweeping scheduling (GSS) with heterogeneous multimedia streams”, ACM Multimedia, pp. 1-7, 1993. |
Crutcher et al., “The networked video Jukebox”, IEEE, Trans. on circuits and systems for video technology, vol. 4, No. 2, pp. 105-120, 1994. |
Drews, C.; Pestoni, F.; “Virtual jukebox: reviving a classic,” Proceedings of the 35th Annual Hawaii International Conference System Sciences, pp. 887-893, Jan. 7-10, 2002. |
Fachbuch, “Unterhaltungselektronic von A-Z” gfu 1, VDE-Verlag GmbH, pp. 12-13, 1983-1984. |
“Foobar 2000 Evaluation Updated,” MonkeyBiz, Aug. 3, 2008, 4 pages (with partial English translation). http://monkeybizinfo.blogspot.jp/2008/08/foobar2000.html. |
Gallardo et al., “Tangible Jukebox: back to palpable music”, ACM TEI, pp. 199-202, 2010. |
Hewlett-Packard Development Co; HP Open View Storage Data Protector Admin's Guideline Manual Edition; May 2003; Copyright 2003, 60 pages http://h20000.www2.hp.com/bc/docs/support/SupportManual/c006637931/c00663793.pdf. |
IBM Technical Disclosure Bulletin, vol. 41, No. 1, Jan. 1998, “Safe Mechanism for Installing Operating System Updates with Applications,” pp. 557-559. |
Johnny Rockets Name That Tune [online], [retrieved Mar. 7, 2002]. Retrieved from the Internet: <http://www.johnnyrockets.com/docs/funstuff.html>. |
Kraiss et al., “Integrated document caching and prefetching in storage hierarchies based on Markov chain predictions”, The VLDB Journal, vol. 7, issue 3, pp. 141-162, 1998. |
Ludescher et al., “File Storage Management for TFTF physics data”, IEEE, pp. 856-859, 1992. |
Merriam Webster's Collegiate Dictionary, Ninth Edition, Merriam Webster, Inc., p. 1148, 1986 (definition of “Stand”). |
Mickey B's Jukebox Revue—Name That Tune! [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://mickeyb.com/tune/>. |
Peter Pawlowski, “Basic Player Whose Appearance and Functions can be Customized Freely ‘Foobar 2000’ v1.0 is Unveiled,” Windows Forest, Japan, Jan. 12, 2010, 3 pages (with partial English translation). http://forest.impress.co.jp/docs/news/20100112_341870.html. |
Pohlmann, “Principles of Digital Audio”, Third Edition, 1995. |
PR Newswire, Press Release, “MusicMatch Announces Commercial Availability of Meta Trust Certified MusicMatch jukebox”, New York; Nov. 15, 1999, extracted from Internet, http://proquest.umi.com on Sep. 17, 2002. |
Rollins et al., “Pixie: A jukebox architecture to support efficient peer content exchange”, ACM Multimedia, pp. 179-188, 2002. |
Sprague et al., “Music selection using the party vote democratic Jukebox”, ACM AVI, pp. 433-436, 2008. |
Stewart, “Ecast Deploys Marimba's Castanet to Power an Internet-Based, Entertainment Management System for the Out-of-Home Market”, Marimba, Press Release, 3 pages, www.marimba.com/news/releases/ecast.dec13.html, Dec. 13, 1999. |
Strauss et al.,“Information Jukebox A semi-public device for presenting multimedia information content”, Pers. Ubiquit Comput, 7, pp. 217-220, 2003. |
Tom & Liz's Name That Tune [online], [retrieved Jul. 23, 2001]. Retrieved from the Internet: <http://home.att.net/˜tomnliz/Music.html>. |
Yuki Murata, iTunes no ‘Kankyo Settei’ Catalog & Tips 10 Sen, Mac People, ASCII Corporation, Oct. 1, 2007. |
“Darts Revolution Again”, Replay Magazine, Mar. 1991, pp. 146-148. |
“Ecast Forges Landmark International Technology Partnership”, Business Wire at www.findarticles.com/cf_0/m0EIN/2000_July_25/63663604/print.jhtml, 2 pages, Jul. 25, 2000. |
“Ecast Selects Viant to Build Siren Entertainment System (TM)”, ScreamingMedia, PR Newswire San Francisco, industry.java.sum.com/javanews/stories/story2/0,1072,17618,00.html, 3 pages, Aug. 3, 1999. |
Bonczek et al, “The DSS Development System”, 1983 National Computer Conference, Anaheim, California, May 16-19, 1983, pp. 441-455. |
Derfler et al., “How Networks Work”, Millennium Ed., Que Corporation, Jan. 2000. |
Gralla, “How the Internet Works”, Millennium Ed., Que Corporation, Aug. 1999. |
Hicks et al., “Dynamic software updating”, ACM PLDI, pp. 13-23, 2001. |
IBM Technical Disclosure Bulletin, vol. 30, No. 5, Oct. 1987, “Method for Automated Assembly of Software Versions”, pp. 353-355. |
IBM Technical Disclosure Bulletin, vol. 32, No. 9A, Feb. 1990, “Robotic Wafer Handling System for Class 10 Environments” pp. 141-143. |
IBM Technical Disclosure Bulletin, vol. 33, No. 12, May 1991, “High-speed Opens and Shorts Substrate Tester”, pp. 251-259. |
ITouch 27 New Games brochure, JVL Corporation, 2005, 2 pages. |
ITouch 8 Plus brochure, JVL Corporation, 2005, 2 pages. |
Kozierok, The PC Guide, Site Version 2.2.0, http://www.pcguide.com, Apr. 17, 2001. |
Liang et al., “Dynamic class loading in the Java virtual machine”, ACM OOPSLA, pp. 36-44, 1998. |
Look and iTouch brochure, JVL Corporation, 2004, 2 pages. |
Megatouch Champ brochure, Merit Industries, Inc., 2005, 2 pages. |
Melnik et al., “A mediation infrastructure for digital library services”, ACM DL, pp. 123-132, 2000. |
Mod Box Internet brochure, Merit Entertainment, 2006, 2 pages. |
Newsome et al., “Proxy compilation of dynamically loaded java classes with MoJo”, ACM LCTES, pp. 204-212, 2002. |
Outlaw, Computer Technology Review, “Virtual Servers Offer Performance Benefits for Network Imaging”, 1993. |
Schneier, “Applied Cryptography”, Second Edition, John Wiley & Sons, Inc. New York, 1996. |
Vortex Brochure, JVL Corporation, 2005, 2 pages. |
Waingrow, “Unix Hints & Hacks”, Que Corporation, Indianapolis, IN, 1999. |
White, “How Computers Work”, Millennium Ed., Que Corporation, Indianapolis, IN, Sep. 1999 (Sep. 22, 1999). |
European Search Report issued for European Application No. 08000845.1-1238/1962251, dated Apr. 3, 2009. |
Canadian Office Action Application No. 2,881,533 dated Aug. 30, 2016. |
Examiner's Report in related Canadian Application No. 2,881,503 dated Mar. 17, 2016. |
Office Action in related U.S. Appl. No. 11/902,658 dated Jun. 29, 2016. |
Office Action in related U.S. Appl. No. 12/929,466 dated Apr. 14, 2016. |
European Examination Report dated Aug. 17, 2016 in European Appln No. 12 075 107.8. |
Japanese Office Action in JP Appln. No. 2015-165266 dated Oct. 18, 2016. |
Dion, et al., Office Action dated Mar. 10, 2017, issued in parent U.S. Appl. No. 14/861,304, filed Sep. 22, 2015. |
U.S. Appl. No. 15/485,427, filed Apr. 12, 2017, 2017/0216730, Coin Operated Entertainment System. |
U.S. Appl. No. 12/076,761, filed Mar. 21, 2009, 2006/0239887 U.S. Pat. No. 9,953,481, Jukebox With Associated Video Server. |
U.S. Appl. No. 14/311,511, filed Jun. 23, 2014, 2014-0304117, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 13/336,866, filed Dec. 23, 2011, 2012-0095910 U.S. Pat. No. 10,089,613, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 14/729,267, filed Jun. 3, 2015, 2015-0312532, Digital Jukebox Device With Improved User Interfaces, and Associated Methods. |
U.S. Appl. No. 11/624,008, filed Jan. 17, 2007, 2008/0171594 U.S. Pat. No. 9,330,529, Coin Operated Game Terminal. |
U.S. Appl. No. 14/854/426, filed Sep. 15, 2015, 2016/0005103 U.S. Pat. No. 9,430,797, Digital Downloading Jukebox System With User-Tailored Music Management, Communications, and Other Tools. |
U.S. Appl. No. 14/857,864, filed Sep. 18, 2015, 2016/0007072 U.S. Pat. No. 9,513,774, Digital Downloading Jukebox System With User-Tailored Music Management, Communications, and Other Tools. |
U.S. Appl. No. 14/861,304, filed Sep. 22, 2015, 2016/0012677, Coin Operated Entertainment System. |
U.S. Appl. No. 14/883,885, filed Oct. 15, 2015, 2016/0034873, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 14/918,819, filed Oct. 21, 2015, 2016/0048273 U.S. Pat No. 9,436,356, Digital Downloading Jukebox System With User-Tailored Music Management, Communications, and Other Tools. |
U.S. Appl. No. 10/661,811, filed Sep. 15, 2003, 2005/0060405 U.S. Pat. No. 9,646,339, Digital Downloading Jukebox System With Central and Local Music Servers. |
U.S. Appl. No. 13/887,645, filed May 6, 2013, 2013/0318441, Jukebox With Customizable Avatar. |
U.S. Appl. No. 11,902,658, filed Sep. 24, 2007, 2008/0086379, Digital Downloading Jukebox With Enhanced Communication Features. |
U.S. Appl. No. 11/902,790, filed Sep. 25, 2007, 2008/016887 U.S. Pat. No. 9,171,419, Coin Operated Entertainment System. |
Number | Date | Country | |
---|---|---|---|
20190206187 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11902790 | Sep 2007 | US |
Child | 14861304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15485427 | Apr 2017 | US |
Child | 16351551 | US | |
Parent | 14861304 | Sep 2015 | US |
Child | 15485427 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11624008 | Jan 2007 | US |
Child | 11902790 | US |