Coin processing systems, methods and devices

Information

  • Patent Grant
  • 9437069
  • Patent Number
    9,437,069
  • Date Filed
    Wednesday, March 5, 2014
    10 years ago
  • Date Issued
    Tuesday, September 6, 2016
    8 years ago
Abstract
Systems, methods and devices for processing coins are presented herein. A coin processing system is disclosed which includes a housing with a coin input area for receiving a batch of coins, a controller with a communication interface operatively attached to the housing, and a coin processing unit for counting, discriminating, and/or valuing coins received from the coin input area. The coin processing system also includes a mobile coin receptacle removably disposed within the housing and configured to receive coins from the coin processing unit. The mobile coin receptacle is configured to wirelessly communicate information to the communication interface of the controller. The mobile coin receptacle can include one or more electrical contacts that mate with one or more electrical contacts on the housing to wirelessly communicate the information.
Description
TECHNICAL FIELD

The present disclosure relates generally to systems, methods and devices for processing coins. In particular, aspects of this disclosure relate to coin processing machines and systems that utilize movable and/or removable coin receptacles.


BACKGROUND

Some businesses, particularly banks, are regularly faced with a large amount of coin currency which must be organized, counted, and recorded. To hand count and record large amounts of coins of mixed denominations requires diligent care and effort, and demands significant manpower and time that might otherwise be available for more profitable and less tedious activity. To make counting of coins less laborious, machines have been developed which automatically sort, by denomination, a mixed group of coins, and discharge the denominated coins into receptacles specific to the various denominations. For example, coin processing machines for processing large quantities of coins from either the public at large or private institutions, such as banks and casinos, have the ability to receive bulk coins from a user of the machine, count and sort the coins, and store the received coins in one or more coin receptacles, such as coin bins or coin bags.


A well-known device for processing coins is the disk-type coin sorter. In one exemplary configuration, the coin sorter, which is designed to process a batch of mixed coins by denomination, includes a rotatable disc that is driven by an electric motor. The lower surface of a stationary, annular sorting head is parallel to and spaced slightly from the upper surface of the rotatable disc. The mixed batch of coins is progressively deposited on the top surface of the rotatable disc. As the disc is rotated, the coins deposited on the top surface thereof tend to slide outwardly due to centrifugal force. As the coins move outwardly, those coins which are lying flat on the disk enter the gap between the disk and the guide plate. The lower surface of the sorting head is formed with an array of exit channels which guide coins of different denominations to different exit locations around the periphery of the disc. The exiting coins, having been sorted by denomination for separate storage, are counted by sensors packed along the exit channel. A representative disk-type coin sorting mechanism is disclosed in U.S. Pat. No. 5,009,627, to James M. Rasmussen, which is incorporated herein by reference in its entirety.



FIGS. 1a-1b show a coin processing device 10 having a pivoting coin input tray 12 configured to hold coins prior to inputting the coins into the coin processing device 10. The coin tray 12 pivots upwardly to cause coins deposited therein to move, under the force of gravity through a hopper, funnel, or chute, into a sorting mechanism (not shown) disposed within a cabinet. The sorting mechanism discharges sorted coins to a plurality of coin bags (see FIG. 1b) suspended within the cabinet 14, the bottoms of the bags may rest upon a platform 22, or may hang from bag holders 16 attached to a support member of a moveable bag receptacle station 18, which if configured (e.g., via casters 21, etc.) to travel into and out of the housing 14 to facilitate access to coin receptacle sleeves via door 20 by authorized personnel.



FIG. 2 shows an example wherein moveable receptacles 38 are disposed on glide units 31-35 that slide into and out of the of the housing 30 of the coin processing device. The moveable receptacles 38 comprise coin bag partitions that prevent coins bags disposed in the moveable receptacles from interfering with adjacent coin bags as the coin bags become filled.



FIG. 3 shows an example wherein a coin processing device includes a coin bin 44 disposed within the housing 40 and behind door 46, which is shown in an open position. In this configuration, all of the processed coins are commingled in the coin bin 44. The coin bin 44 is disposed on wheels and includes a handle 42 pivotally attached thereto for pulling the coin bin from within the housing.


U.S. Published Patent Application Serial No. US 2004/0256197, assigned to the assignee of the present disclosure, is incorporated herein by reference in its entirety. U.S. Pat. Nos. 7,188,720 B2, 6,996,263 B2, 6,896,118 B2, 6,892,871 B2, 6,810,137 B2, 6,755,730 B2, 6,748,101 B1, 6,731,786 B2, 6,724,926 B2, 6,678,401 B2, 6,637,576 B1, 6,609,604, 6,603,872 B2, 6,579,165 B2, 6,318,537 B1, 6,171,182 B1, 6,068,194, 6,042,470, 6,039,645, 6,021,883, 5,997,395, 5,982,918, 5,943,655, 5,905,810, 5,865,673, 5,743,373, 5,630,494, 5,564,974, 5,542,880, and 4,543,969, each of which is assigned to the assignee of the present disclosure, and also each of which is incorporated herein by reference in its respective entirety.


SUMMARY

According to some aspects of the disclosed concepts, a coin processing system is disclosed. The coin processing system includes one or more coin bags and a housing with a coin input area configured to receive a batch of coins. A coin processing unit is operatively coupled to the coin input area and configured to at least one of count, discriminate, sort, and value coins received from the coin input area. A wheeled trolley is removably disposed within the housing. The wheeled trolley includes a base, and a removable coin receptacle sleeve that is supported by the base and configured to receive at least some of the coins output from the coin processing unit. The removable coin receptacle sleeve has an upper portion with a first volume adjacent a lower portion with a second volume, at least the lower portion of the removable coin receptacle sleeve being configured to fit inside the coin bag, at least the upper portion of the removable coin receptacle sleeve being configured to extend out of the coin bag such that a full coin height to which coins can be fed into the removable coin receptacle sleeve is above a bag height of the coin bag


According to other aspects of the disclosed concepts, a mobile coin receptacle assembly for a coin processing system is presented. The coin processing system has a housing configured to receive a batch of coins, a coin processing unit operable to process coins received by the housing, a coin bag, and a controller with a communication interface. The mobile coin receptacle assembly includes a movable trolley configured to removably insert into the housing of the coin processing system. A coin receptacle sleeve is removably attached to the trolley and supported by the trolley's base. The coin receptacle sleeve is configured to receive through an opening in an upper portion thereof at least some of the coins output from the coin processing unit. The removable coin receptacle sleeve includes a lower portion adjacent the upper portion. At least the lower portion of the removable coin receptacle sleeve is configured to fit into to the coin bag, while the upper portion is configured to extend out of the coin bag such that a full coin height to which coins can be fed into the removable coin receptacle sleeve is above a bag height of the coin bag.


The above summary is not intended to represent each embodiment, or every aspect, of the present disclosure. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of the illustrated embodiments and best modes for carrying out the invention when taken in connection with the accompanying drawings and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a and 1b are alternate views of a representative coin processing machine employing conventional coin bags.



FIG. 2 is a perspective-view illustration of a representative coin processing machine unit employing moveable receptacles.



FIG. 3 is a perspective-view illustration of a representative coin processing machine unit employing a moveable coin bin.



FIG. 4 is a perspective-view illustration of an example of a cable-free bag trolley bearing coin receptacle sleeves in accord with aspects of the present concepts.



FIG. 5 is a perspective-view illustration of an example of a number of cable-free bag trolleys, in accord with FIG. 4, and a coin receptacle sleeve bag logic system with manifold spring contacts functionally interacting with contacts on the receptacle in accord with aspects of the present concepts.



FIGS. 6 and 7 are perspective-view illustrations of examples of manifold spring contacts in accord with aspects of the present concepts.



FIG. 8 is a perspective-view illustration of a representative coin processing device coin receptacle sleeve in accord with aspects of the present concepts, showing conductive members extending along an outside surface of the coin receptacle sleeve from the top to the bottom of the coin receptacle sleeve, on both sides.



FIG. 9 is an alternate perspective-view illustration of the coin receptacle sleeve of FIG. 8, showing a top portion of the conductive members extending along the outside of the coin receptacle sleeve, and further showing an internal handle with manifold spring contacts.



FIG. 10 is an alternate perspective-view illustration of a portion of the coin receptacle sleeve of FIG. 8, showing a deflector in accord with aspects of the present concepts.



FIG. 11 is a side-view illustration of the coin receptacle sleeve of FIG. 8, showing a lower portion of the coin receptacle sleeve having a smaller cross-sectional area that an upper portion of the coin receptacle sleeve.



FIG. 12 is a perspective-view illustration of a coin receptacle sleeve handle in accord with aspects of the present concepts having two exposed metal plates configured to make electrical contact with manifold contacts, such as those shown in FIGS. 6 and 7.



FIGS. 13a-13c illustrate a number of examples of coin receptacle sleeve handles, in accord with aspects of the present concepts, including different configurations (FIGS. 13a-13b) of the two exposed metal plates configured to make electrical contact with the manifold contacts, such as those shown in FIGS. 6-7.



FIG. 14 is a perspective-view illustration of a portion of the trolley base of FIG. 4, in accord with aspects of the present concepts, depicting a molded piece with a pair of spaced electrical contacts connected by a resistor.



FIG. 15 is an underside plan-view illustration of a variety of circuits in the manifold shown in FIG. 5, in accord with aspects of the present concepts.



FIG. 16 is a side cross-sectional view illustration of the manifold and circuits of FIG. 15.



FIG. 17 is a schematic diagram illustrating the logic of the electrical circuits shown in FIG. 15.



FIGS. 18a and 18b are alternate perspective-view illustrations of a coin receptacle sleeve cradle, in accord with aspects of the present concepts, which contacts a coin receptacle sleeve.



FIG. 19 is a perspective-view illustration of a representative configurable manifold component configured to divert coins from an input tube to one of four coin receptacle sleeve inputs in accord with aspects of the present concepts.



FIG. 20 is a perspective-view illustration of an example of a diverter tube in accord with aspects of the present concepts, the diverter tube being rotatably coupled relative to the configurable manifold component of FIG. 19.



FIG. 21 is a perspective-view illustration of a motor with a timing-belt-drive system configured to rotate the diverter tube of FIG. 20 relative to the configurable manifold component of FIG. 19.



FIG. 22 shows an enhanced view of the configurable manifold component of FIG. 19, the rotatably coupled diverter tube of FIGS. 20 and 21, and a limit switch activated by engagement of a limit switch roller with spaced apart recesses in the diverter tube.



FIG. 23 is a perspective-view illustration of an example of a bypass tube, in accord with aspects of the present concepts, that can be used for configurations in which all four stations of the configurable manifold component of FIG. 19 are not the same denomination.



FIG. 24 is a bottom perspective-view illustration of the representative configurable manifold component of FIG. 19, with the outer shell hidden to show two bypass tubes, such as that shown in FIG. 23, disposed in two positions.



FIG. 25 is a perspective-view illustration of the shell of the configurable manifold component of FIG. 19.



FIG. 26 is a perspective-view illustration of the base portion of the configurable manifold component of FIG. 19.



FIG. 27 is a top perspective-view illustration of the configurable manifold component of FIG. 19, showing an example of a path of rotation of the rotatably coupled diverter tube of FIGS. 20 and 21.



FIG. 28 is a top perspective-view illustration showing four adjacent configurable manifold component assemblies in accord with aspects of the present concepts.



FIG. 29 shows an example of a sorting head in accord with aspects of the present concepts.



FIG. 30 is a view of a portion of the sorting head of FIG. 29, shown in a first state with a first exit slot open in accord with aspects of the present concepts.



FIG. 31 is an alternate view of the portion of the sorting head shown in FIG. 30, showing the sorting head in a second state with a first exit slot closed in accord with aspects of the present concepts.



FIG. 32 is a perspective-view illustration of selected components of a representative coin processing system in accord with aspects of the present concepts.



FIG. 33 is a perspective-view illustration of an example of a cable-free coin bin in accord with aspects of the present concepts.



FIG. 34 is a perspective-view illustration of an example of a contact spring assembly in accord with aspects of the present concepts.



FIG. 35 is a schematic diagram illustrating the logic of the electrical contacts shown in FIGS. 32-34.



FIG. 36 is a perspective-view illustration of an exemplary coin tube in accord with aspects of the present concepts.



FIG. 37 is a perspective-view illustration of a pair of exemplary mounting brackets in accord with aspects of the present concepts.



FIG. 38 is a perspective-view illustration of an exemplary coin funnel in accord with aspects of the present concepts.





While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed.


DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

While this invention is susceptible of embodiment in many different forms, there are shown in the drawings and will herein be described in detail representative embodiments with the understanding that the present disclosure is to be considered an exemplification of the various aspects and principles of the invention, and is not intended to limit the broad aspects of the invention to the embodiments illustrated. To that extent, aspects and features that are presented, for example, in the Abstract, Summary, and Detailed Description of the Illustrated Embodiments sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise.


Referring now to the drawings, wherein like reference numerals refer to like features throughout the several views, FIG. 4 shows a trolley system 100 implementable with a bag logic system in accord with at least some aspects of the present concepts. As will be developed in further detail below, each cable-free trolley system (or “wheeled trolley”) 100 functions as a mobile coin receptacle for receiving coins from a coin processing device (represented herein by the manifold 140 portrayed in FIG. 5), which may include any of the disk-type coin sorters described above, the coin processing devices set forth in the patents incorporated herein by reference, or any other now known or hereinafter developed coin processing device. The trolley system 100 can also operate to stow and/or transport coins received from the coin processing device 140, which will also be developed further below. In accord with aspects of the present disclosure, a coin processing system is defined, at least in part, by the trolley system 100 and coin processing device 140. Although the trolley system 100 reflects one embodiment of the present concepts, the aspects described herein are implementable without a trolley and the provision of the trolley is not to be construed to be a limitation on the concepts disclosed herein.


The trolley system 100, when in at least one of a number of predetermined orientations, can wirelessly communicate information to a communication interface of a controller of the coin processing unit. As used herein, “wirelessly communicate” is inclusive of, but not exclusive to, the transmission of information signals between two devices without the use of connecting hardline or wired interfaces between the two devices. By way of example, and not limitation, the bag logic system of FIG. 4 utilizes a number of electrically conductive interfaces for communicating information between one or more mobile coin receptacles 100 (e.g., FIGS. 4 and 5) and a controller 150 of a coin processing system (e.g., FIG. 5). For instance, the wheeled trolley 100 can include at least one, and in some embodiments a (first) plurality of electrical contacts, which may comprise, singly and in any combination, electrical contacts 300 (also referred to herein as “first electrical contact(s)”) on the trolley base 110, as best seen in FIG. 14, electrical contacts 310 (also referred to herein as “third electrical contact(s)”) on the coin receptacle sleeve 120, as best seen in FIGS. 4, 5 and 8, and electrical contacts 320 (also referred to herein as “fourth electrical contact(s)”) on the coin receptacle sleeve handle 130, as shown in FIGS. 9 and 12-13c. The coin processing system, in turn, can also include at least one, and in some embodiments a (second) plurality of electrical contacts, which may comprise manifold springs 330 (also referred to herein as “second electrical contact(s)”) attached to a stationary manifold 140. The electrical contacts 320 on the coin receptacle sleeve handle 130 are packaged to electrically contact with the conductive manifold springs 330, which are best seen in FIGS. 5-7, 15-16 and 28. As an aside, the use of “first,” “second,” “third,” “fourth,” “fifth,” etc. in the specification and claims is not intended as limiting and therefore should not be construed as such.


Utilizing the arrangement shown in FIG. 4, the bag logic system can be configured to determine if one or more coin receptacle sleeves 120 are in the correct position (e.g., properly oriented to receive processed coins from a coin processing device), if a substantially non-conductive coin bag 170 (e.g., formed entirely or in part from cloth, such as canvas, or plastic and other polymers, such as vinyl and nylon, etc.) is disposed over or otherwise operatively attached to the coin receptacle sleeve 120, whether there are coins and/or a predetermined level of coins in the coin receptacle sleeve 120, or any combination thereof. All powered electronic components can therefore be located on the stationary manifold 140 or at other locations in the housing, while allowing the trolley module 110 to be electrical cable-free. In this vein, the various components disposed on the trolley 110 can be limited to only provide an electrical path when the trolley and components borne thereby are properly positioned. In this configuration, the coin bag containment system noted above and elsewhere herein, in combination with a coin bag disposed over the bottom portion of the coin receptacle sleeve 120, delivers all needed bag logic features while eliminating the need for a trailing cabling (e.g., ribbon cables, umbilicals, etc.) and batteries or other power sources for on-board electronic components.


In normal operation, each of the coin receptacle sleeves 120, or a predetermined portion thereof, is placed inside of a coin bag to keep coins within a designed volume during filling of the coin bag. In effect, the coin receptacle sleeve 120 acts as an internal armature, providing an otherwise non-rigid coin bag with a generally rigid internal geometry. By filling into a substantially constant or a constant geometry, bag storage efficiency has been determined to increase from 12 bags (e.g., 6 side-by-side trolleys) to 16 bags (e.g., 8 side-by-side trolleys) in the same sized cabinet (e.g., same footprint) that would normally house a single coin bin (which typically holds about the equivalent of about 9-10 coin bags) or a plurality of coin bags (typically about 6 coin bags). A “coin bag,” as used herein, may be defined to consist of a single, standard-size Federal Reserve coin bag. In some non-limiting examples, a standard-size Federal Reserve coin bag holds at least approximately $50.00 in pennies, at least approximately $200.00 in nickels, at least approximately $1000.00 in dimes, or at least approximately $1000.00 in quarters, such as is set forth in the Federal Reserve “Operating Circular 2,” issued Jan. 2, 1998, which is incorporated herein by reference in its entirety. Other non-limiting examples include coin bags which, when laid flat, are approximately 20″×16″, approximately 12″×19″, approximately 14″×28″, or approximately 9″×17.5″.


The coin receptacle sleeve 120 has optional features described herein which are used to notify the coin processing machine of fill errors, the presence of coins in the coin receptacle sleeve, etcetera. In at least one aspect, the coin receptacle sleeve omits these notification features. In alternative arrangements, the coin bag may be disposed inside of the coin receptacle sleeve 120 or may be affixed to the coin receptacle sleeve 120 in other manners and by other means.


The coin receptacle sleeves 120 prevent the coins from encroaching on adjacent coin bag space, thus allowing for more bags in a significantly smaller footprint. The coin receptacle sleeve 120 is designed, in some embodiments, to be able to hold coins above the height of the coin bag, so that a full bag of coins can fit into a shape determined to be more efficient. The coin receptacle sleeve 120 constrains coins to a predefined volume and a confined footprint and alleviates previous industry problems of bag overflows while simultaneously increasing coin storage capacity. In one embodiment, the sleeve is 2.75″ wide and 12.2″ deep at the top opening. In a trolley configuration, two such coin receptacle sleeves 120, in a tandem configuration, fit into a 3″ wide trolley, allowing for eight tandem trolleys to hold 16 sleeves (and 16 bags) in the same space that conventionally would holds 12 coin bags. When the coin receptacle sleeves 120 are full, or otherwise require removal, and the trolley 110 racked out to permit replacement of the full coin bag with an empty coin bag (e.g., when every mixed-coin coin bag in a mixed-denomination configuration is full and the machine needs to be removed from service), an authorized person may simply remove the coin receptacle sleeve 120 to release the coins into the bag. The coin receptacle sleeve 120 is also advantageously, but not necessarily, equipped with electrical contacts 310 which work with the bag logic system to determine correct sleeve placement, bag presence, coin presence, and coin overflow.


The concepts presented herein are not limited to the aforementioned 12 bag (i.e., 12 sleeve) configuration or 16 bag (i.e., 16 sleeve) configuration and may optionally be expanded to more than 16 bags if the height of the sleeve is further increased (thus correspondingly reducing the footprint). For instance, if the footprint of the machine is increased, additional trolleys 110, coin receptacle sleeves 120, coin bags, and combinations thereof, may be incrementally added (e.g., 18 bags/sleeves, 20 bags/sleeves, 22 bags/sleeves, etc.). Further, in at least some aspects of the present concepts, the bag logic system disclosed herein may be optionally implemented in combination with (e.g., side-by-side) conventional bag systems, bins, or other coin receptacles. In this vein, the bag logic systems presented herein may optionally be contracted in size to fewer than 12 or 16 bag configurations without departing from the scope and spirit of the present disclosure.


In some embodiments, approximately 16 coin bags can be stowed and filled in a footprint of approximately 6.25 sq. ft. or approximately 0.39 sq. ft. per bag. In other embodiments, approximately 16 coin bags can be stowed and filled within a footprint of approximately 4.67 sq. ft. or approximately 0.29 sq. ft. per bag. Other embodiments can include a 16 coin bag system with a bag storage footprint of approximately 3-8 sq. ft. or, in some embodiments, approximately 4-7 sq. ft. or, in some embodiments, 4.5-6.3 sq. ft. The overall cabinet footprint can be approximately 700-800 sq. in. or, in some embodiments, approximately 762 sq. in. In a 16 bag configuration, this would amount to approximately 43.75-50 sq. in. per coin bag or, in some embodiments, approximately 47.62 sq. in. per coin bag. In some embodiments, the coin sleeve has a top footprint of approximately 20-40 sq. in. or approximately 34.6 sq. in. and a bottom footprint of approximately 20-30 sq. in. or approximately 22.6 sq. in. By offering a greater number of coin bags in the same footprint, a higher return-on-investment can be offered to operators of the machine. For example, increasing the density of coin bags in a single machine allots for a higher total value of coins in a single machine. This, in turn, reduces the frequency of having an armored carrier out to service the machine, thus reducing the operator's expenses.



FIG. 11 shows an example of a coin receptacle sleeve 120 body, illustrating a lower part (or “first portion”) of the sleeve having a smaller cross-sectional area than an upper part (or “second portion”) of the sleeve 120 so that the sleeve 120 can fit inside of a standard coin bag 170. As indicated by the reference line labeled “Bag Height,” some coin bags are designed so as not to extend to the top of the coin receptacle sleeve 120 and, instead, only rise to a level of the transition of the cross-sectional area of the receptacle sleeve from the smaller cross-sectional area to the larger cross-sectional area. Above the height of the coin bag 170, the cross-sectional area increases to advantageously give additional coin fill volume to the level indicated by the reference line for “Full Coin Height”. At this point, as described below, the coins will complete an overflow circuit sufficient for a signal indicative of an overflow condition to be generated.



FIG. 10 shows a sleeve deflector 125 disposed inside of the top portion of the coin receptacle sleeve 120. The sleeve deflector 125, as illustrated, is attached to or otherwise integrated with the top portion of the sleeve 120, and includes an upper surface that is angled with respect to the opening at the top of the sleeve 120. The sleeve deflector 125 changes the trajectory of the coins during fill to ensure a more even coin height and to prevent coins from stacking into columns in the chalice area beneath the fill location, thereby accommodating a maximum coin volume.



FIG. 5, and more particularly FIGS. 15 and 28, show aspects of a bag logic system in accord with the presently disclosed concepts configured to determine a state of the bag module, the combination of the coin receptacle sleeve 120 and coin bag (not shown) disposed thereover, and annunciate the state of the bag module. The bag logic system, as noted above, monitors correct coin receptacle sleeve 120 position, coin bag presence, coin presence within the correct coin receptacle sleeve 120, and impending coin overflow from the correct coin receptacle sleeve. In this bag logic system, electrical contacts 330, 320, 310, and 300 on the manifold base 140, coin receptacle sleeve handle 130, coin receptacle sleeve 120, and trolley base 110, respectively, provide three possible circuits for electric current. Depending on the states of the three circuits, the state of the bag module is known.



FIG. 15 shows one configuration of manifold springs 330 (shown as contacts 330a, 330b and 330c), wherein there are three manifold springs per coin receptacle sleeve 120 position in the manifold base 140. These manifold springs 330 are fastened into the manifold 140, for example, using clamping members, such as integrated hinged clamps, to retain and provide a pre-load to the manifold springs. The manifold springs 330 are connected to a processor board (not shown) at one end (i.e., a fixed end) via a multiplexing interface board and are free to move vertically on the opposite end, as indicated by the dual-headed vertical arrow in FIG. 6. The middle manifold spring (e.g., spring 330b in FIG. 15) is at low electrical potential, while the other two manifold springs (e.g., springs 330a, 330c in FIG. 15) representing the bag state (e.g., bag-on, bag-off, and coin present) and sleeve position (front or back) originate at high electrical potential.


For each coin receptacle sleeve 120 position, there is a wire coil spring 340 that hangs down into the coin receptacle sleeve cavity. This wire coil spring 340, functioning as an overflow spring, is fastened around the manifold spring 330 contact 350, electrically connecting the wire coil spring 340 to the multiplexing interface board and processor board. The free end of the middle manifold spring (at low potential) rests on a lip of the manifold spring contact 350 (at high potential) in a no-sleeve condition (e.g., when a coin receptacle sleeve 120 is not in a proper position). When the coin receptacle sleeve 120 is present and properly positioned, the manifold spring 330 lifts from the manifold spring contact 350, by action of the coin receptacle sleeve 120 handle 130 and breaks the circuit. The circuit would be renewed when the coin receptacle sleeve 120 is removed (e.g., the handle 130 no longer upwardly biases the manifold spring 330) or coins contacting the wire coil spring 340 complete a circuit.



FIG. 9, as well as FIGS. 12 and 13a-13c, show views of embodiments of coin receptacle sleeve 120 handle 130. The handles 130 keep the top opening of the coin receptacle sleeve at a consistent width while making it easy to remove the sleeve from a full bag of coins and install into an empty coin bag. It also has contacts on its top surface which allow bag logic functionality. To this end, each coin receptacle sleeve 120 handle 130 has two exposed metal plates 320 which make electrical contact with the conductive manifold springs 330. On the underside (i.e., the side of the handle or bottom of the handle), these plates 320 are electrically connected to the coin receptacle sleeve 120 contacts 310, such as is shown in FIG. 12, that run down the sides of the coin receptacle sleeve. As shown in FIGS. 13a-13b, there are two embodiments of coin receptacle sleeve 120 handle 130 plates or contacts 320. One embodiment (FIG. 13a) is configured to substantially simultaneously electrically engage two contacts (bag state and low potential) and the other embodiment (FIG. 13b) is configured to substantially simultaneously electrically engage three contacts: low potential, bag state (bag-on, bag-off & coins present) and position—both at high electrical potential. Correspondingly, there are two embodiments of handle covers, a first embodiment configured to engage with two manifold springs 330 and the other configured to engage with three manifold springs. Correct bag position is verified by an open or closed circuit on the 3rd contact.



FIG. 8 shows the coin receptacle sleeve 120 contacts 310 that run down the sides of the coin receptacle sleeve. These coin receptacle sleeve 120 contacts 310 comprise, in the illustrated example, a thin steel strip that runs from the coin receptacle sleeve 120 handle 130, down the length of the coin receptacle sleeve, and hooks underneath the bottom edge of the coin receptacle sleeve 120 contacts 310 to wrap around and engage a bottom interior portion of the coin receptacle sleeve. These bottom portions of the coin receptacle sleeve 120 contacts 310 would, if not covered by a substantially non-conductive material (e.g., a coin bag), electrically contact the contacts 300 on the trolley 110 (see FIG. 14). The contacts 300 shown in the example of FIG. 14 depict the contacts passing through the molded piece, wherein they are electrically connected to one another by a bridge resistor 355. When the coin receptacle sleeve 120 is inserted into the trolley 110, the bridge resistor closes the circuit between the two sleeve contacts 310 if a sleeve is present without a coin bag.


In view of the above, when the trolley 110 is racked in with a coin receptacle sleeve 120 inserted, the coin receptacle sleeve handle 130 raises the middle manifold spring 330b off of the spring contact 350, opening circuit 1, represented in FIG. 15. With the trolley 110 and coin receptacle sleeve 120 racked in, two manifold springs 330 are in contact with the sleeve handle. If there is no coin bag on the coin receptacle sleeve 120, the coin receptacle sleeve contacts 310 touch the contacts 300 on the base 110 of the trolley 100, forming a circuit through the bridge resistor 355 and the known resistance provides a divided voltage on circuit 2. If there is a bag on the coin receptacle sleeve 120, however, the sleeve contacts 310 are insulated from the bridge contacts 300, and the circuit is open. Thus, if there is a coin bag on the coin receptacle sleeve 120, circuit 2 is open. When the coin receptacle sleeve 120 is filled with coins, the coins bridge the gap between the inside surfaces of the sleeve contacts, closing circuit 2. If the coin level reaches the overflow spring 340, the current from circuit 1 passes through the coins and into overflow spring 340, closing circuit 1.


Accordingly, the following circuit states are presently contemplated:

    • Circuit 1 Closed: No Sleeve Present
    • Circuit 1 Closed, Circuit 2 closed (at Voltage C—Coin Present): Overflow
    • Circuit 1 Open, Circuit 2 Open (Bag is insulator—Voltage A):
      • Sleeve Present, Bag On
    • Circuit 1 Open, Circuit 2 Closed (Known Resistance—Voltage B):
      • Sleeve Present, No Bag
    • Circuit 1 Open, Circuit 2 Closed (Short thru Coins—Voltage C):
      • Sleeve Present, Coins Present
    • Circuit 1 Open, Circuit 3 Open: Sleeve A Present
    • Circuit 1 Open, Circuit 3 Closed: Sleeve B Present



FIG. 16 is a side-view illustration of the manifold 140 of FIG. 15 shown in cross-section. FIG. 17 shows a schematic of the bag logic, wherein the “Type A” and “Type B” references on the left side of FIG. 17 relate to the two different embodiments of the coin receptacle sleeve 120 handle 130 plates or contacts 320 shown in FIGS. 13a and 13b. The reference of “Machine”, “Sleeve” and “Trolley” on the right side of FIG. 17 represent the coin processing machine, coin receptacle sleeve 120, and trolley 110, respectively.


The aforementioned bag logic system provides a new approach to determining the state of the mobile coin receptacle(s). In other aspects, the bag logic system may monitor, for example, coin receptacle sleeve 120 presence and each coin receptacle sleeve's unique ID using one of several technologies (e.g., presence and ID is determined by RFID, bar code, sonar, near field communication, Bluetooth, Hall Effect, etc.). For example, an RFID reader or reader/writer (hereinafter collectively “RFID reader” for brevity) (not shown) can be mounted toward the front of the coin processing machine and a RFID device or card (not shown) is fixed to a top portion of the coin receptacle sleeve 120. The RFID reader and device/card are aligned so that as a coin receptacle sleeve 120 is inserted or removed from the machine it passes adjacent the reader/writer to enable, for example, reading of the device/card. As a coin receptacle sleeve 120 passes by, the RFID reader indicates that a coin receptacle sleeve 120 has left the coin processing machine or entered the coin processing machine. The RFID reader also reads the coin receptacle sleeve's unique ID, allowing for generally tracking of a location of individual coin receptacle sleeves to provide an indication of a status of the machine. Alternatively, the RFID device/card may be disposed on one or more locations of each trolley, so as to, in combination with a stationary RFID reader, enable localization of the trolleys 110. In another aspects, such RFID device/card may be disposed on a coin bin, with location tracking being utilized at different points in the transportation of the coin bin from the coin processing machine to a final destination (e.g., the RFID device/card on a bin can be scanned when it is removed from the coin processing machine and again when it is loaded into an armored car). In a dual bin machine, an RFID reader may be centrally disposed at the front of the coin processing machine to allow it to scan both coin bins. In yet an additional variant, each coin receptacle sleeve 120 (or bin) has disposed thereon a unique barcode and a barcode scanner is utilized to read the barcode as the coin receptacle sleeve 120 is moved relative to the scanner. Thus, when a trolley bearing coin receptacle sleeves is removed from the coin processing machine (or a bin or bins are removed), the barcode is scanned and the coin processing machine tracks the changed status of the coin receptacle sleeves (or bins). In other optional configurations, an RFID tag can also or alternatively be incorporated into one or more of the individual bags. In this instance, the RFID tag can include data pertinent to each specific bag, such as the coin denomination of the bag, a bag serial number, a bag location and other tracking information, the customer name, the origin and destination, a time stamp, any abnormalities during the processing of the coins in the bag, the potential presence of counterfeit currency, etc. This feature is similarly applicable to coin bin implementations.


In at least some aspects, the tracking of the coin receptacle sleeves 120 (or bins) facilitates identification of specific coin receptacle sleeves (or bins) by an attendant attending to the coin processing machine. The intent is to eliminate or mitigate any confusion as to which coin sleeves/bags (or bins) need to be changed so that the attendant doesn't mistakenly change the wrong sleeves/bags (or bins). To this end, the coin receptacle sleeves 120 and/or trolley cradle elements 160 may be color-coded with the rear of the coin receptacle sleeves and/or trolley cradle elements being a different color than the front of the coin receptacle sleeves and/or trolley cradle elements. Further or alternatively, an LED printed circuit board (PCB) can be attached to each sleeve handle to indicate a full bag condition. The LED PCB may comprise a capacitor or battery to provide cable-less operation for relatively short periods of time (e.g., 10 minutes or more). The LEDs may too be color-coded or otherwise marked to indicate separately whether a front and/or rear coin receptacle sleeve 120 is full.


In yet other embodiments, a state of a coin receptacle is optionally determined using an acoustic (e.g., sonar) or electromagnetic (e.g., laser) emitter/receiver mounted in the coin processing machine above each coin receptacle sleeve 120 location (or bin location) and the sound/light used to measure the distance to the nearest object, such as a handle 130 of a coin receptacle sleeve 120, a coin bin cover if a coin bin is present (and the floor if a coin bin is not present), and/or even an upper level of coins disposed within the coin receptacle sleeve. In another example, Hall effect sensors are optionally mounted in the coin processing machine along a side of each coin bin location and a magnet mounted to or molded on the side of each coin bin provides a field that can be sensed by the Hall effect sensors to determine whether or not a coin bin is present. Alternatively, Hall effect sensors are optionally mounted in the manifold base 140 and magnets are mounted to or molded into the handles 130 of the coin receptacle sleeves 120 to determine whether or not a receptacle sleeves is present.



FIGS. 18a and 18b show aspects of trolley cradle elements 160, with FIG. 18a showing a front side of a representative trolley cradle element 160 that contacts the coin bag in which the coin receptacle sleeve 120 is disposed, and FIG. 18b showing a rear side of the trolley cradle element 160. The trolley cradle elements 160 (also referred to herein as “receptacle sleeve clamps”) give structural support to the coin receptacle sleeves 120 when the trolley is racked out of the machine to retain the coin receptacle sleeves in position. The geometry of the trolley cradle elements 160 permits flexibility for sleeve breakaway, if required, and facilitates and guides coin receptacle sleeve 120 insertion. In the illustrated examples, the trolley cradle elements 160 are snap-fit into the trolley 110 base to allow for quick assembly and change of parts as needed. Of course, other conventional mechanical connection devices may be used. The top of the trolley cradle elements 160 are tapered to help guide the coin receptacle sleeve 120 sleeve into the proper position when inserting an empty coin receptacle sleeve (and coin bag disposed thereabout) into the trolley 110. Conventionally, it is very difficult to install the coin bag and place the coin bag holders into the coin processing machine. The two ribs 161 along the back side of the trolley cradle elements 160 provide rigidity and stability in the longitudinal direction, thereby enabling the trolley cradle elements 160 to transmit a clamping force on the coin receptacle sleeve 120. As noted above, the geometry of the trolley cradle elements 160 allows these elements to rotate, giving the coin receptacle sleeve 120 the ability to breakaway from the cradle's grasp if hit from the side. This prevents damage from the trolley system in case an attendant accidentally bumps into a racked-out trolley.



FIG. 19 shows a “quad switcher” 500, a configurable manifold 140 component that can divert coins from one input tube to one of four sleeves. To maintain the three inch bag compartment needed for 8 linear bag stations, the quad switcher has a rectangular shape. This shape causes the diverter tube from one quad switcher to swing inside of an adjacent quad switcher by 0.21″ when rotating. However, the quad switcher 500 may assume other geometries if the three inch bag compartment constraint is altered.


The quad switcher 500 has a rotatably-disposed, motorized diverter tube 510 that can direct coins from another coin input tube (not shown) to up to 4 coin receptacle sleeve 120 positions (in the illustrated embodiment) for filling. Individual positions can also optionally bypass the diverter tube 510 for direct filling if necessary (e.g., through upper hold 525 and then lower hole 530 in FIG. 19). The quad switcher 500, in the illustrated configuration, is 5.93″ wide by 7.50″ deep, allowing four adjacent quad switchers 500 to mount to the manifold base 140 and cover 16 bag/sleeve stations. Because of this optional, but presently preferred, packaging requirement, the paths of the diverter tubes 510, shown by radius R in FIG. 27, overlap. To avoid contact between adjacent diverter tubes 510, the position of each diverter tube is controlled by the motor 540 (e.g., a DC motor, a stepper motor, etc.) and is determined by mechanical stops and a limit switch 520 that engages with features (e.g. recesses, protuberences, etc.) in the diverter tube at specific locations (e.g., specific angular offsets).


The diverter tube 510 rotates around inside the quad switcher 500 to fill different bags disposed within coin receptacle sleeves 120. The diverter tube 510 is connected to the motor 540 via a drive system, such as a pulley and belt drive 545 or a gear system. Features 515 in the top portion of the diverter tube 510, such as dimples on a top edge of the diverter tube, engage with a limit switch to determine an angular position of the diverter tube. The limit switch 520 is activated whenever the roller 522 engages with the dimple 515 in the diverter tube 510, which are spaced in approximately 90° (e.g., approximately 80-100°) intervals in the illustrated example. When the limit switch 520 is active, the diverter tube 510 is aligned correctly above a coin bag/sleeve station. Optionally, an encoder may be utilized to resolve the angular position of the diverter tube 510 relative to the manifold.


Bypass tubes 560, an example of which is shown in FIG. 23, are used for configurations in which all four stations are not the same denomination. For example, the diverter tube 510 can fill stations 1, 2, and 3 with pennies while a separate manifold tube feeds another station with another denomination. FIG. 24 shows an example wherein the quad switcher 500 includes bypass tubes 560 in positions 1 and 2.



FIG. 25 depicts a shell or housing 501 of the “quad switcher” 500, the structure of the housing 501 defining locations for the bypass tubes 560, defining a recess or station for the limit switch 520, and acting as an upper bearing for the diverter tube 510 rotationally disposed relative thereto. The housing 501 has five openings, in the version shown, that can receive manifold tubes—one for each of the four possible bypass tube locations and one in the center for the diverter tube. A base portion 502 of the “quad switcher” 500 is shown in FIG. 26. the base portion 502 comprises a generally flat, rigid part on which the motor 540, diverter tube 510, and housing 501 can be releasably mounted (e.g., through snap fittings, male/female connectors, etc.). Positioning holes may optionally be provided to facilitate assembly. As noted above, the distance from the axis of rotation to the edge of each filling hole is 3.175 inches, so the diverter tube 210 travels in an arc with a diameter greater than the width of the quad switcher 500. To account for this, openings 503 are defined in the side of the housing 501 to permit the diverter tubes 510 to freely rotate. The positional tracking of the diverter tube 510 further ensures that no two tubes are rotating through the same area at the same time.



FIGS. 29-31 show an example of a sorting head 600 that can direct mixed coin flow into one of two exit slots 605 by activating a motor-driven blocking pin 610 that blocks the first exit slot. The sorting head 600 utilizes, for example, upstream counting (e.g., via a sensor or sensors embedded in the sorting head along a coin path) so that the mixed coins do not have to be mechanically sorted. The first exit slot 605 the coins come to has a motorized pin 610 that can be extended into, or withdrawn from, the exit slot. If the blocking pin 610 is up (e.g., in a contracted non-blocking orientation), all of the coins leave through the first exit slot and, for example, into a designated bin or mixed bag. When the first bin or first half of the mixed bags is full, the blocking pin 610 is introduced into the exit slot (e.g., extended into a blocking orientation) to thereby deflect all of the coins to the second exit slot, which directs them, for example, into the second bin or second half of mixed bags. In alternative arrangements, the sorting head 600 can have greater or fewer than two exit slots. Optionally, each exit slot or only selected exit slots will include a respective blocking pin.


In accord with at least some concepts, a code (e.g., an alphanumeric code, etc.) is printed on consumer transaction receipts to convey machine status to attendants (e.g., cashiers, managers, etc.). If the machine doesn't itself provide currency to a customer in exchange for input coins, every customer would have to take their receipt from their transaction to a counter or designated machine to redeem it for cash, gift card, etc. On the bottom of the receipt, a code contains information about the status of the machine (e.g., a status of each bag, bag limits, machine errors, and other diagnostic issues), but this information can be deciphered only by an attendant, manager, or other employee that has been trained to read it. In this manner, the attendant can know the status of the machine every time a customer makes a transaction, eliminating the need for the attendant to go to the machine and enter queries into an attendant screen.


In at least some aspects, coins are counted before mechanical sorting. Exit slots can then be controlled to accept different coins, allowing a universal sorted machine. In current technology, a mix of coins is first sorted mechanically by diameter thickness in discrete exit slots, where the machine counts coins as they pass by a sensor. This requires accurate mechanical sorting, so a different head is needed for every coin set. In accord with aspects of the present concepts, such as the sorting head of FIGS. 29-31, when counting is performed upstream, sensors in the sorting head measure the diameter and eddy current of coins as they pass by. Using software, these sensors are able to determine what denomination each coin is before it enters an exit slot. Universal exit slots can then be programmed to accept denominations by diameter. The result is a single universal machine that can built and then programmed to accept any coin set without any mechanical changes.


Further, using such upstream counting technology to count coins may be used to avoid a need to sort the coins for a mixed coin output (mixed bag or bin). Again, using current technology, a mix of coins is first sorted mechanically by diameter and thickness in discrete exit slots, where the machine counts coins as they pass by a sensor. This requires accurate mechanical sorting, so a different head is needed for every coin set. For mixed output machines, the sorted coins are just mixed together again in the manifold. With the upstream counting disclosed herein, the coins are never sorted. Sensors in the sort head measure the diameter and eddy current of individual coins as they pass and software uses these measurements to determine the denomination each coin, which then exits through either a single exit slot (for single bin) or two exit slots (dual bin or mixed bag). Since the coins are not sorted, a single universal machine can be used for any coin set.


Other aspects of the present disclosure may be directed to a trolley-less coin processing system that is implementable with a bag logic system, such as the bag logic system described above with respect to FIGS. 4 and 5, for example. This coin processing system includes one or more portable coin receptacles for receiving coins from a coin processing device (represented herein by the manifold 140 portrayed in FIG. 5), which may include any of the disk-type coin sorters described above, the coin processing devices set forth in the patents incorporated herein by reference, or any other now known or hereinafter developed coin processing device. In this regard, the trolley-less system can be functionally and operably configured similar to the embodiments of FIGS. 4 and 5, for example, to wirelessly communicate information to a controller of a coin processing unit, unless otherwise logically prohibited.


In one optional configuration, the trolley-less coin processing system includes one or more coin receptacle sleeves, which may be similar in function and design and, thus, can include any of the options and alternatives of the coin receptacle sleeves 120 of FIGS. 4, 5 and 8-11. In this embodiment, however, at least one of the coin receptacle sleeves (and, in some embodiments, at least eight sleeves) is movable into and out of the coin processing system housing without a wheeled trolley. For example, the coin receptacle sleeve(s) may not be designed to be operatively supported on or moved via a wheeled trolley. Alternatively, the coin receptacle sleeve(s) may only be designed to be operatively supported on or moved via a wheeled trolley once removed from the coin processing system's housing. Rather, in some embodiments, the coin receptacle sleeves are configured to be carried or otherwise manually transported, e.g., via one or more handles, shoulder straps, etc. In this regard, the manifold or other portion of the coin processing system or housing may be configured to receive, stow and/or operably support each of the coin receptacle sleeves. Some non-limiting examples include configurations with a housing that incorporates one or more channels, guide rails, conveyors, stanchions, locking mechanisms, support structures, etc., singly and in any combination, to receive, support, guide and/or secure the coin receptacle sleeves relative to the output(s) (e.g., configurable manifold 140 component) of the coin processing device. In at least some aspects of the present concepts, the coin receptacle sleeves are configured to permit removal from the housing by sliding the coin receptacle sleeves, and respective coin bag, out of the housing without the benefit of any external devices, such as wheels or rollers, to effectuate the movement of the coin receptacle sleeves and their respective coin bags. It may be desirable, in some embodiments, for the housing to include a base fabricated, at least in part, from acetal resins, such as Delrin®, or similar materials that provide high stiffness, low friction and excellent dimensional stability.


In at least one optional embodiment, the coin processing machine is motion activated, or otherwise is configured to start or respond to a person that passes within or enters a certain zone relative to a user interface device (e.g., one or more lasers, a pressure sensitive pad, etc.).


The display device for the coin processing device advantageously may comprise a 3-D display, and more specifically an autostereoscopic display utilizing autostereoscopic 3D imaging, such as those manufactured by Dimensional Technologies, Inc. of Rochester, N.Y. As another alternative, the display device for the coin processing device may comprise a haptic touch screen display.


In another aspect, the display device may display for the customer a barcode that may then be scanned by the customer using their own cell phone or personal electronic device, where it may then be stored as a virtual gift/loyalty card or optionally sent to someone else. For example, once a 2D barcode is stored in the customers cell phone, and optionally separately logged into a computer system monitoring redemption activities, a retailer may then use a bar code reader to read the bar code from the customer's cell phone at the point of sale. Thus, a customer at a coin processing machine may elect to redeem their input funds (coins, bills, etc.), value cards, store cards, etc., for a selected gift card (e.g., a Target Gift Card), which they then scan into their cell phone (e.g., using a camera application, using a near field communication, etc.) and that virtual Target Gift Card is then stored in their cell phone. The customer then brings their virtual GiftCard to the store, presents their cell phone display showing the relevant barcode at a point-of-sale location, and the desired amount is applied to the transaction. In another example, the barcode may be used by the customer, when surfing the web on his or her cell phone, to order a product from a company website, and have it shipped to a designated address.


In yet other aspects, the coin processing machine may be optionally equipped for voice communication, via voice-enabled technology, to permit audible instructions in English, Spanish, or any number of other languages, to users who cannot view information on the display device or who would otherwise prefer to interact with the coin processing device using audible cues. Audio jacks may optionally be employed in combination with headsets to enhance a degree of privacy and security to those users desiring audible communication with the coin processing machine.


Turning next to FIG. 32, a representative coin processing system, designated generally at 700, is illustrated in accordance with aspects of the present disclosure. The coin processing system 700 is portrayed herein by a number of representative parts, including first and second wheeled bins 710A and 710B, respectively, which are removably lodged in complementary bin stations 730A and 730B. Each bin station 730A, 730B includes a respective floating funnel system 732A and 732B that is mounted to a housing, which is represented herein by a pair of support columns 734A and 734B. The features of the present disclosure are not limited to the two-bin implementation presented in FIG. 32; rather, these features are similarly amenable to coin processing systems with greater or fewer than two wheeled bins and corresponding bin stations. In this regard, only selected components of the coin processing system 700 have been shown and will be described in detail herein. Nevertheless, the coin processing system 700 can include numerous additional components, such as a coin processing mechanism, security doors, input devices, such as a computer-based user interface, a variety of output devices, such as display screens, lighting elements, and audio speakers, many of which are described in the various patents and patent publications already incorporated herein by reference. Seeing as these components are well known in the art, they will not be described in further detail herein.


The wheeled bins 710A, 710B function generally as mobile coin receptacles—receiving coins from a coin processing device, such as the disk-type coin sorter described above, and transporting the received coins to another location. Each wheeled bin 710A, 710B includes a respective box-shaped coin container 712A and 712B with a security lid 714A and 714B that extends across and covers the container 712A, 712B. The coin containers 712A, 712B and security lids 714A, 714B can be fabricated from a variety of rigid and robust materials, including synthetic polymers, such as medium density polyethylene, and metallic materials, such as aluminum or steel. The coin containers 712A, 712B are each supported for movement thereof on a respective pair of laterally spaced casters or wheels 716A and 716B, located at a forward end of the container 712A, 712B. A pair of laterally spaced support stanchions 718A, 718B, are located at a rearward end of the container 712A, 712B on the opposite side of the casters 716A, 716B. In alternative configurations, the wheeled bins 710A, 710B may include greater of fewer than two casters or wheels each. Moreover, the bins 710A, 710B can be designed without wheels and moved via alternative means, such as air bearings, fork lifts, moving dollies, etcetera.


In the illustrated embodiment, the first and second wheeled bins 710A, 710B of FIG. 32 are substantially structurally identical; thus, for brevity and conciseness, additional features of the bins 710A, 710B will be described with respect to the wheeled bin 710A portrayed in FIG. 33. The lid 714A of the wheeled bin 710A includes a centrally located hole 720A through which coins received from the funnel system 732A pass into the coin container 712A. Leading and trailing guide ramps 715A and 717A, respectively, are integrally formed in the lid 714A, disposed on opposing sides of the central hole 720A. Hinged to a forward peripheral edge of the container 712A, the lid 714A can be swung open to provide access to the inside of the container 712, for example, to simplify removal of the contents of the container 712. Conversely, the lid 714A can be swung closed and locked shut, for example, via an optional security latch 722A for securing the contents of the container 712A.


The lid 712A can also be provided with optional structural features for securely supporting another wheeled bin on top of the wheeled bin 710A. In the illustrated embodiment, these features comprise four recessed stacking platforms: a pair of recessed wheel platforms 728A at a forward end of the lid 714A for nesting the wheels of another bin, and a pair of recessed stanchion platforms 728C at a rearward end of the lid 714A for nesting the support stanchions of another bin. The recessed platforms 728A, 728C allow for another wheeled bin, such as the second wheeled bin 710B, to be generally immobilized and securely stacked on top of the first wheeled bin 710A. The lid 714A can also be provided with an optional RFID reader or transmitter/receiver for wirelessly communicating, receiving and storing information, as developed in detail above. Moreover, a clean sleeve 729A for holding and displaying a receipt is situated on the top of the lid 714A adjacent the coin hole 720A.


The wheeled bin 710A is designed to be quickly and easily moved into and out of the bin station 730A. A socket 724A projects downward from a hitch chassis 726A which projects from the rear side of the coin container 712A. A complementary socket-ball of a cantilevered dolly (not shown) can be inserted into the socket 724A. The cantilevered dolly provides a mechanical advantage (e.g., 10:1) for lifting the rear end of the container 712A. By inserting the socket-ball into the socket 724A and applying a downward force to the opposite end of the cantilevered dolly, a moment arm is applied to the coin container 712A causing the wheeled bin 710A to pitch slightly forward off of the support stanchions 718A, placing the weight of the bin 710A on the casters 716A and cantilevered dolly. This allows for the wheeled bin 710A to be readily wheeled in and out of the bin station 730A. To prevent damage to sensitive electronics and other equipment in the bin station 730A, the housing 734A, 734B and/or bin 710A can be provided with means (e.g., a bracket) for limiting the height to which the wheeled bin 710A can be raised. The aforementioned wheel-and-stanchion arrangement, in combination with the use of the cantilevered dolly, helps to minimize the height of the wheeled bin 710A in comparison to its conventional counterparts.


The wheeled bins 710A, 710B, when properly lodged inside their respective bin stations 730A, 730B, can wirelessly communicate information to the housing 734A, 734B of the coin processing system 700. By way of non-limiting example, the bin logic system of FIG. 32 utilizes a number of electrically conductive interfaces for wirelessly communicating information. These electrically conductive interfaces are exemplified in the drawings by two contact blocks 750A and 750B (each of which is also referred to herein as “fifth electrical contact(s)”) that are connected to respective bin stations 730A, 730B, and two sets of contact plates 760A and 760B (each of which is also referred to herein as “sixth electrical contact(s)”) that are connected to respective bins 710A, 710B.


In the embodiment illustrated in FIG. 34, the contact block 750A includes three electrical contacts—i.e., first, second and third electrically conductive leaf-type contact springs 752A, 754A, and 756A, respectively. The set of contact plates 760A exemplified in FIG. 33, on the other hand, includes first and second electrically conductive contact plates 762A, 764A. As seen in FIG. 32, the contact plates 760A, 760B are each located at a lower, forward portion on a side wall of a respective coin container 712A such that when the wheeled bins 710A, 710B are functionally lodged inside their respective bin stations 730A, 730B, the contact plates 760A, 760B align with and electrically couple to a corresponding contact block 750A, 750B. In other words, as the first wheeled bin 710A is moved into the first bin station 730A, the contact plates 760A contemporaneously engage the contact block 750A, sequentially pressing against and deflecting the contact springs 752A, 754A, and 756A. It should be readily recognized that the location and orientation of the contact blocks 750A, 750B and contact plates 760A, 760B can be varied from what is shown in the drawings. By way of non-limiting example, the contact plates 760A could be located on the top of the wheeled bins 710A, 710B (e.g., on the lids 714A, 714B) to electrically mate with contact blocks 750A, 750B located on a corresponding section of the bin stations 730A, 730B, such as a bottom surface of one of the floating funnel systems 732A, 732B. It is also contemplated that alternative configurations can switch the attachment points of the contact blocks 750A, 750B and contact plates 760A, 760B, i.e., the contact blocks 750A, 750B are attached to the wheeled bins 710A, 710B and the contact plates 760A, 760B are attached to the bin stations 730A, 730B.



FIG. 35 is a schematic diagram illustrating the logic of the electrical contacts presented in FIGS. 32-34. As previously noted, the contact plates 760A are designed to press against and electrically connect with one or more of the contact springs 752A, 754A, 756A when the wheeled bin 710A is properly positioned inside the bin station 730A underneath the funnel system 732A to receive therefrom processed coins. Once conductively coupled, these electrically conductive interfaces are operable to communicate information to the bin station 730A. In this arrangement, described further below, the bin logic system can determine, singly or in combination, whether a wheeled bin 710A is present inside the bin station 730A and the coin container 712A is in the correct position (e.g., properly oriented to receive processed coins from a coin processing device), whether there are coins in the container 712A, and if there is an overflow of coins out of the coin container 712A.


With continued reference to FIG. 35, the bin logic system can determine that a wheeled bin 710A is present inside (or absent from) the bin station 730A and, in some embodiments, whether the coin container 712A is in the correct position for receiving processed coins. This can be accomplished, for example, through synchronous engagement between the first and second contact springs 752A, 754A and the first contact plate 762A. In particular, when the bin 710A is functionally received by the bin station 730A, the first contact plate 762A short circuits (i.e., completes an electrical path between) the first and second contact springs 752A, 754A whereby an electrical signal (illustrated as a 5V current) is passed from the first contact spring 752A to the second contact spring 754A, which is ground. As indicated in the chart of FIG. 35, a zero voltage across V1 is indicative of a bin being present, whereas a voltage signal (e.g., 5V) across V1 is indicative of a bin being absent from the bin station 730A. As an aside, the first and second contact plates 762A, 764A are illustrated in FIG. 35 as each comprising a tripartite construction with opposing inside and outside bin plates that are attached by electrically conductive fasteners. It should be noted, however, that this arrangement is not critical the functionality of the bin logic system; as such, each of the contact plates 762A, 764A of FIG. 35 could just as easily be replaced with a single piece, integrally formed contact plate.


The illustrated bin logic system is also operable to determine whether there are coins present inside the coin container 712A or, alternatively, whether a predetermined number of coins have been received by the coin container 712A. This is accomplished, for example, through synchronous engagement between the second and third contact springs 754A, 756A and the first and second contact plates 762A, 762B. Specifically, when a minimum number of coins (e.g., 500-1000) are present inside the container 712A (which is portrayed in FIG. 35 for explanatory purposes as “Conductive Coin Mass”) an electrical path is formed such that an electrical signal (illustrated as a 5V current) is passed from the third contact spring 756A, through the second contact plate 764A to the first contact plate 762A via the coins, and grounded through the second contact spring 754A. As indicated in the chart of FIG. 35, a zero voltage across V2 is indicative of coins being present inside the coin container 712A.


The bin logic system of FIG. 35 can further determine if there is an overflow situation in the coin container 712A, for example, through the shorting of an “overflow circuit.” This can include, for example, the synchronous engagement between the first contact plate 642A, the second contact spring 754A, and an overflow contact plate 766A mounted proximate the hole 720A of the lid 714A. By way of clarification, when the coin container 712A is filled to capacity, coins will begin to flow out of the hole 720A in the lid 714A and eventually touch the overflow contact plate 766A, which is located, in some embodiments, on a bottom surface of the funnel 740A of the floating funnel system 732A. In so doing, the overflowing coins short circuit (i.e., form an electrical path between) the overflow contact plate 766A and the first contact plate 762A whereby an electrical signal (illustrated as a 5V current) is passed from the overflow contact plate 766A and grounded through the second contact spring 754A. As indicated in the chart of FIG. 35, a zero voltage across V3 is indicative of coins overflowing out of the container 712A. As an optional feature, the second contact spring 754A also acts as an electrostatic discharge (ESD) path for grounding static electricity generated by the coins as they discharge into the coin container 712A.


Turning next to FIG. 32, with collective reference to FIGS. 33 and 36-38 as well, each of the bin stations 730A and 730B includes a coin manifold (not shown) with an optional floating funnel system 732A and 732B that hangs downwardly therefrom. Each of the floating funnel systems 732A, 732B comprises a respective coin funnel 740A and 740B that is movably mounted to the coin manifold and configured to direct coins received from the coin processing unit into the coin containers 712A, 712B (e.g., via the opening 720A in the lid 714A) of the wheeled bins 710A, 710B. In the illustrated embodiment, a metal bracket 742A and 742B is utilized to movably mount each of the coin funnels 740A, 740B to the coin manifold, as developed in further detail hereinbelow. A stationary tube 744A and 744B directs coins from a coin processing unit (not shown) via the coin manifold to a respective coin funnel 740A and 740B. A first “upper” end of each stationary tube 744A, 744B is rigidly fastened or otherwise mechanically attached to the coin manifold. On the opposite side of the tube 744A, 744B, the second “lower” end is aligned with, but not directly attached to the coin funnel 740A, 740B. In some embodiments, the diameter of funnel hole 738A is larger than diameter of the second end of the stationary tube 744A, but smaller than the opening 720A in the lid 714A.


In the illustrated embodiment, each of the coin funnels 740A, 740B has at least one degree of translational freedom and at least one degree of rotational freedom. For instance, the coin funnel 740A illustrated in FIG. 38 has a pair of tabs 741A and 743A, each of which projects transversely from and extends generally vertically along a respective side of the funnel 740A. These tabs 741A, 743A are each received in a complementary elongated guide slot 745A and 747A, respectively, that is formed through a corresponding support plate 746A and 748A of the bracket 740A. The aforementioned guide slots 745A, 747A extend vertically such that the coin funnel 740A can translate up and down, as indicated by the vertically oriented dual-headed arrow in FIG. 32. In addition, as seen in FIG. 37, the width of the guide slots 745A, 747A—i.e., narrows from top to bottom, such that the tabs 741A, 743A can pivot inside the guide slots 745A, 747A and, thus, the coin funnel 740A can pitch forward and backward, as indicated by the arcuate dual-headed arrow in FIG. 32. The limits of translation and rotation are defined by the geometry of the translating funnel tracks. The floating funnel systems 732A, 732B may also be provided with an optional swivel mechanism which would allow the funnel 740A, 740B to rotate about a vertical axis.


As mentioned above, leading and trailing guide ramps 715A, 717A are integrally formed in the lid 714A of the bin 710A, each of which is disposed on an opposing side of the central hole 720A. When the wheeled bin 710A is moved into or out of the bin station 730A, the lid 714A will come into contact with the floating funnel system 732A, and one of the guide ramps 715A, 717A will slidably press against and direct the coin funnel 740A to the opening 720A. This contact will cause the translating coin funnel 740A to rise and pivot as needed to clear the top of the bin 710A. The vertically oriented sidewalls of the guide ramps 715A, 717A act as guiding surfaces to ensure that the coin funnel 740A properly aligns with the opening 720A. In addition, the coin funnel's 740A ability to pivot (i.e., pitch backward and forward) ensures that the angle of the guide ramps 715A, 717A complements the underside surface of the coin funnel 740A. In optional arrangements, biasing members, such as helical compression springs, can be employed to bias the coin funnels 740A, 740B downwards. Otherwise, the coin funnels 740A, 740B naturally translate downwards under the force of gravity. When the bin 710A is lowered off the dolly to a final position, the translating coin funnel 740A will lower as well. The rotational freedom of the coin funnel 740A about a lateral axis will permit a surface to surface seal between the funnel 740A and the lid 714A, minimizing or otherwise preventing coin leakage. This rotational freedom helps to ensure a seal that will compensate for a reasonable difference between the angle of the coin processing system 700 and the angle of the bin 710A.


As to some aspects of the disclosed concepts, the spirit of maintaining a wireless connection between the trolley/bin and manifold system is a key element of design. Even though some of the illustrated embodiments do not use wiring that allows for feedback when the trolley/bin is pulled out of the processing machine, that does not preclude the use of wireless sensors (such as intelligent sensors and devices employing spread spectrum signal hopping, such as Bluetooth, to allow for networking of the devices). For instance, an RFID tag can be utilized to provide, for example, a tracking number for managing the trolleys/bins and, in some embodiments, to provide a mechanism for a Close Loop Settlement process, whereby the Coin Processing machine can write the Coin Count Totals and Date and Time to an internal memory of the RFID tag for use at the coin processing center to provide additional levels of coin transfer integrity in the coin processing settlement process.


While many preferred embodiments and best modes for carrying out the present disclosure have been described in detail above, those familiar with the art to which this disclosure relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.

Claims
  • 1. A coin receptacle system for a coin processing machine having a coin input area and a coin processing unit for processing and outputting coins received by the coin input area, the coin receptacle system comprising: a flexible coin bag configured to stow processed coins output from the coin processing unit, the coin bag having an expanded bag height and an opening at a top of the coin bag; anda generally rigid coin receptacle sleeve having an interior cavity, the sleeve being configured to releasably attach to the coin processing machine, the coin receptacle sleeve being configured to receive and hold processed coins output from the coin processing unit within the interior cavity of the sleeve, the coin receptacle sleeve comprising upper and lower sleeve portions and having a sleeve height greater than the expanded bag height, wherein the lower sleeve portion of the coin receptacle sleeve seats inside the coin bag and constrains the coin bag to a predetermined footprint;wherein the sleeve is configured such that when the coin bag is positioned around the sleeve the top of the coin bag is positioned around the lower sleeve portion; andwherein the upper portion of the sleeve has an interior cavity having a first maximum cross-sectional area and the lower portion of the sleeve has an interior cavity having a second maximum cross-sectional area smaller than the first maximum cross-sectional area.
  • 2. The coin receptacle system of claim 1, wherein the lower sleeve portion of the coin receptacle sleeve extends approximately the entirety of the expanded bag height.
  • 3. The coin receptacle system of claim 1, wherein the upper sleeve portion of the coin receptacle sleeve projects out of the coin bag such that a full coin height to which coins can be fed into the coin receptacle sleeve is above the expanded bag height of the coin bag.
  • 4. The coin receptacle system of claim 1, wherein the lower sleeve portion constrains the coin bag to a restricted width while coins are directed into the coin bag via the upper sleeve portion, and wherein, upon removal of the lower sleeve portion from the coin bag after coins are directed thereto, the coin bag expands to an unrestricted width.
  • 5. The coin receptacle system of claim 1, wherein the coin processing machine includes a wheeled trolley with a base, the coin receptacle sleeve being configured to seat on, readily attach to and readily detach from the base of the wheeled trolley.
  • 6. The coin receptacle system of claim 5, wherein the wheeled trolley includes opposing sleeve clamps, the coin receptacle sleeve being configured to mate with the opposing sleeve clamps and thereby attach to the base and seat on the base in an upright position.
  • 7. The coin receptacle system of claim 1, wherein the upper sleeve portion of the coin receptacle sleeve includes a sleeve deflector configured to change a trajectory of the coins received from the coin processing unit.
  • 8. The coin receptacle system of claim 1, wherein the coin receptacle sleeve includes a handle extending across an opening in the upper sleeve portion of the coin receptacle sleeve, the handle being configured to maintain the opening at a constant width.
  • 9. The coin receptacle system of claim 1, wherein the volume of the cavity of the sleeve is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 10. A coin receptacle sleeve for a coin processing machine with a housing having an input area for receiving a batch of coins, a coin processing unit disposed within the housing and operable to process coins received via the input area, and a non-rigid coin bag with an expanded bag height for stowing processed coins, the coin receptacle sleeve comprising: a generally rigid and elongated tubular body having an interior cavity for receiving and holding processed coins from the coin processing machine, the tubular body having adjacent upper and lower portions collectively defining a sleeve height that is greater than the expanded bag height of the coin bag, the lower portion of the tubular body being configured to fit inside the coin bag and constrain the coin bag to a confined footprint, and the upper portion of the tubular body being configured to extend out of the coin bag and the tubular body being configured to receive processed coins from the coin processing machine in its interior cavity and hold coins therein such that a full coin height to which coins can be fed into the coin receptacle sleeve is above the expanded bag height of the coin bag.
  • 11. The coin receptacle sleeve of claim 10, wherein the lower portion of the coin receptacle sleeve extends approximately the entirety of the expanded bag height.
  • 12. The coin receptacle sleeve of claim 10, wherein the lower portion constrains the coin bag to a restricted width and length while coins are directed into the coin bag via the upper portion, and wherein, upon removal of the lower portion from the coin bag after coins are directed thereto, the coin bag expands to an unrestricted width and length.
  • 13. The coin receptacle sleeve of claim 10, wherein the upper portion has a first cross-sectional area and the lower portion has a second cross-sectional area smaller than the first cross-sectional area.
  • 14. The coin receptacle sleeve of claim 10, wherein the upper portion of the coin receptacle sleeve includes a sleeve deflector configured to change a trajectory of the coins received from the coin processing unit.
  • 15. The coin receptacle sleeve of claim 10, wherein the coin receptacle sleeve includes a handle extending across an opening in the upper portion of the coin receptacle sleeve, the handle being configured to maintain the opening at a constant width.
  • 16. The coin receptacle sleeve of claim 10, wherein the volume of the cavity of the tubular body is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 17. A coin receptacle sleeve for a coin processing machine configured to receive and process a batch of coins and deposit at least some of the coins into the sleeve having a non-rigid coin bag disposed about a portion of the sleeve, the coin bag having an opening at a top of the coin bag, the coin receptacle sleeve comprising: a generally rigid and elongated tubular body having an interior cavity for receiving and holding processed coins from the coin processing machine, the tubular body having an upper sleeve portion and a lower sleeve portion, the sleeve being configured such that when the coin bag is positioned around the sleeve the top of the coin bag is positioned around the lower sleeve portion adjacent a bag height level, the lower portion of the tubular body being configured to fit inside the coin bag, and the sleeve being configured constrain coins received within the interior cavity of the sleeve up to a full coin height level to which coins can be fed into the coin receptacle sleeve, the full coin height level being located in the upper sleeve portion and being above the top of the coin bag.
  • 18. The coin receptacle sleeve of claim 17, wherein the volume of the cavity is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 19. The coin receptacle sleeve of claim 18, wherein the volume of the cavity below the bag height level is such that it is too small to accommodate a Federal Reserve standard-size number of US coins of a single denomination.
  • 20. A coin receptacle sleeve for a coin processing machine configured to receive and process a batch of coins and deposit at least some of the coins into the sleeve having a non-rigid coin bag disposed about a portion of the sleeve, the coin bag having an opening at a top of the coin bag, the coin receptacle sleeve comprising: a generally rigid and elongated tubular body for receiving and holding processed coins from the coin processing machine, the tubular body having an interior cavity and having an upper sleeve portion and a lower sleeve portion, the lower sleeve portion having a maximum outer circumference, the upper sleeve portion having a maximum outer circumference which is greater than the maximum outer circumference of the lower sleeve portion.
  • 21. The coin receptacle sleeve of claim 20, wherein the sleeve has a sleeve height and the lower sleeve portion has a height that is approximately 65% of the sleeve height.
  • 22. The coin receptacle sleeve of claim 20, wherein the lower sleeve receptacle has a bag height level near which the top of the coin bag is to be positioned when coins are to be received in the interior cavity of the tubular body and wherein the upper sleeve has a full coin height level representing a level to which coins are to rise when coins are to be received in the interior cavity of the tubular body and wherein accordingly the full coin height level is above the bag height level such that coins are filled into the cavity of the tubular body above the top of the bag and wherein the cross-sectional area of the cavity increases above the bag height level.
  • 23. The coin receptacle sleeve of claim 20, wherein the lower sleeve portion has a height and has substantially vertical walls and a substantially uniform horizontal cross-sectional area throughout its height.
  • 24. The coin receptacle sleeve of claim 23, wherein the substantially uniform horizontal cross-sectional area of the lower sleeve portion has a generally rectangular shape.
  • 25. The coin receptacle sleeve of claim 24, wherein the circumference of the sleeve increases in transitioning from the lower sleeve portion to the upper sleeve portion.
  • 26. The coin receptacle sleeve of claim 24, wherein the sleeve has a height and a left side and a generally parallel right side and a front side and a rear side, wherein the left and right sides are generally parallel throughout the height of the sleeve and wherein the front and rear sides flare out away from each other in transitioning from the lower sleeve portion to the upper sleeve portion.
  • 27. The coin receptacle sleeve of claim 26, wherein the degree to which the front and rear sides flare out away from each other is initially larger in a lower portion of the upper sleeve portion and then is less in an upper portion of the upper sleeve portion as the front and rear sides approach a more vertical angle in the upper portion of the upper sleeve portion.
  • 28. The coin receptacle sleeve of claim 26, wherein the sleeve has a width as measured from the left side to the right side not exceeding 3 inches.
  • 29. The coin receptacle sleeve of claim 26, wherein the sleeve has a width as measured from the left side to the right side of approximately 2.75 inches.
  • 30. The coin receptacle sleeve of claim 29, wherein the sleeve has a maximum depth as measured from the front side to the rear side of approximately 12.2 inches.
  • 31. The coin receptacle sleeve of claim 30, wherein the volume of the cavity is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 32. The coin receptacle sleeve of claim 26, wherein the volume of the cavity is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 33. The coin receptacle sleeve of claim 32, wherein the volume of the cavity is such that it accommodates $50 of US pennies.
  • 34. The coin receptacle sleeve of claim 32, wherein the volume of the cavity is such that it accommodates $200 of US nickels.
  • 35. The coin receptacle sleeve of claim 32, wherein the volume of the cavity is such that it accommodates $1000 of US quarters or $1000 of US dimes.
  • 36. A mobile coin receptacle assembly for a coin processing system having a housing configured to receive a batch of coins, a coin processing unit operable to process coins received by the housing, the mobile coin receptacle assembly comprising: a movable trolley configured to removably insert into the housing of the coin processing system, the trolley having a base, the trolley having a footprint; anda plurality of coin receptacle sleeves removably attached to the trolley and supported by the base, each coin receptacle sleeve being configured to receive through an opening in an upper portion thereof at least some of the coins output from the coin processing unit;wherein each sleeve has a generally rigid and elongated tubular body having an interior cavity for receiving processed coins from the coin processing machine, each tubular body having an upper sleeve portion and a lower sleeve portion, each sleeve is configured such that when a coin bag having an opening at a top of the coin bag is positioned around a respective sleeve the top of the coin bag is positioned around the lower sleeve portion of the respective sleeve, the lower portion of the tubular body of the respective sleeve being configured to fit inside the coin bag; andwherein each sleeve having a coin bag positioned therearound constrains coins received within the interior cavity of the sleeve up to a full coin height level to which coins can be fed into the coin receptacle sleeve, the full coin height level being located in the upper sleeve portion and being above the top of the coin bag.
  • 37. The mobile coin receptacle assembly of claim 36, wherein the lower portion of the tubular body of each sleeve is configured to fit inside a coin bag and wherein the volume of the cavity of each sleeve is such that it accommodates a Federal Reserve standard-size number of US coins of a single denomination.
  • 38. The mobile coin receptacle assembly of claim 37, wherein the sleeves are dimensioned and arranged on the trolley to provide a bag density not exceeding ½ square foot per bag.
  • 39. The mobile coin receptacle assembly of claim 37, wherein the sleeves are dimensioned and arranged on the trolley to provide a bag density not exceeding approximately 0.44 square foot per bag.
  • 40. The mobile coin receptacle assembly of claim 37, wherein the sleeves are dimensioned and arranged on the trolley to provide a bag density not exceeding approximately 0.39 square foot per bag.
  • 41. The mobile coin receptacle assembly of claim 37, wherein the sleeves are dimensioned and arranged on the trolley to provide a bag density not exceeding approximately 0.28 square foot per bag.
  • 42. The mobile coin receptacle assembly of claim 37, wherein the plurality of sleeves comprise 16 sleeves and the trolley has a footprint not exceeding approximately 6.25 square feet.
  • 43. The mobile coin receptacle assembly of claim 37, wherein the plurality of sleeves comprise 16 sleeves and the trolley has a footprint not exceeding approximately 4.67 square feet.
  • 44. The mobile coin receptacle assembly of claim 37, wherein the lower sleeve portion of each tubular body has a maximum outer circumference and wherein the upper sleeve portion of each tubular body has a maximum outer circumference which is greater than the maximum outer circumference of the corresponding lower sleeve portion.
  • 45. The mobile coin receptacle assembly of claim 37, wherein each sleeve has a height and a left side and a generally parallel right side and a front side and a rear side, wherein the left and right sides are generally parallel throughout the height of the sleeve and wherein the front and rear sides flare out away from each other in transitioning from the lower sleeve portion to the upper sleeve portion.
CROSS-REFERENCE AND CLAIM OF PRIORITY TO RELATED APPLICATIONS

This application is a Divisional of U.S. patent application Ser. No. 13/942,892, which was filed on Jul. 16, 2013, now allowed, as a Divisional of U.S. patent application Ser. No. 13/327,900, which was filed on Dec. 16, 2011, now U.S. Pat. No. 8,545,295, and claims the benefit of priority to U.S. Provisional Patent Application No. 61/506,852, which was filed on Jul. 12, 2011, and U.S. Provisional Patent Application No. 61/424,549, which was filed on Dec. 17, 2010, all of which are incorporated herein by reference in their respective entireties.

US Referenced Citations (488)
Number Name Date Kind
1099706 Lindeen Jun 1914 A
2570920 Clough et al. Oct 1951 A
2669998 Buchholz Feb 1954 A
2750949 Kulo et al. Jun 1956 A
2835260 Buchholz May 1958 A
2865561 Rosapepe Dec 1958 A
3132654 Adams May 1964 A
3376970 Roseberg Apr 1968 A
3771583 Bottemiller Nov 1973 A
3778595 Hatanaka et al. Dec 1973 A
3851755 Hull et al. Dec 1974 A
3916922 Prumm Nov 1975 A
3998237 Kressin Dec 1976 A
3998379 Myers et al. Dec 1976 A
4050218 Call Sep 1977 A
4059122 Kinoshita Nov 1977 A
4075460 Gorgens Feb 1978 A
4124111 Hayashi Nov 1978 A
4150740 Douno Apr 1979 A
4166945 Inoyama et al. Sep 1979 A
4172462 Uchida et al. Oct 1979 A
4179685 O'Maley Dec 1979 A
4179723 Spencer Dec 1979 A
4184366 Butler Jan 1980 A
4197986 Nagata Apr 1980 A
4208549 Polillo et al. Jun 1980 A
4228812 Marti Oct 1980 A
4232295 McConnell Nov 1980 A
4234003 Ristvedt et al. Nov 1980 A
4249552 Margolin et al. Feb 1981 A
4251867 Uchida et al. Feb 1981 A
4286703 Schuller et al. Sep 1981 A
RE30773 Glaser et al. Oct 1981 E
4310885 Azcua et al. Jan 1982 A
4317957 Sendrow Mar 1982 A
4341951 Benton Jul 1982 A
4355369 Garvin Oct 1982 A
4360034 Davila et al. Nov 1982 A
4369442 Werth et al. Jan 1983 A
4380316 Glinka et al. Apr 1983 A
4383540 DeMeyer et al. May 1983 A
4385285 Horst et al. May 1983 A
4412292 Sedam et al. Oct 1983 A
4416299 Bergman Nov 1983 A
4417136 Rushby et al. Nov 1983 A
4423316 Sano et al. Dec 1983 A
4434359 Watanabe Feb 1984 A
4436103 Dick Mar 1984 A
4454414 Benton Jun 1984 A
4474197 Kinoshita et al. Oct 1984 A
4488116 Plesko Dec 1984 A
4531531 Johnson et al. Jul 1985 A
4543969 Rasmussen Oct 1985 A
4549561 Johnson et al. Oct 1985 A
4556140 Okada Dec 1985 A
4558711 Yoshiaki et al. Dec 1985 A
4564036 Ristvedt Jan 1986 A
4570655 Raterman Feb 1986 A
4594664 Hashimoto Jun 1986 A
4602332 Hirose et al. Jul 1986 A
4607649 Taipale et al. Aug 1986 A
4620559 Childers et al. Nov 1986 A
4641239 Takesako Feb 1987 A
4674260 Rasmussen et al. Jun 1987 A
4681128 Ristvedt et al. Jul 1987 A
4705154 Masho et al. Nov 1987 A
4718218 Ristvedt Jan 1988 A
4731043 Ristvedt et al. Mar 1988 A
4733765 Watanabe Mar 1988 A
4749074 Ueki et al. Jun 1988 A
4753624 Adams et al. Jun 1988 A
4753625 Okada Jun 1988 A
4765464 Ristvedt Aug 1988 A
4766548 Cedrone et al. Aug 1988 A
4775353 Childers et al. Oct 1988 A
4775354 Rasmussen et al. Oct 1988 A
4778983 Ushikubo Oct 1988 A
4803347 Sugahara et al. Feb 1989 A
4804830 Miyagisima et al. Feb 1989 A
4812629 O'Neil et al. Mar 1989 A
4839505 Bradt et al. Jun 1989 A
4840290 Nakamura et al. Jun 1989 A
4844369 Kanayachi Jul 1989 A
4848556 Shah et al. Jul 1989 A
4863414 Ristvedt et al. Sep 1989 A
4883158 Kobayashi et al. Nov 1989 A
4884212 Stutsman Nov 1989 A
4900909 Nagashima et al. Feb 1990 A
4908516 West Mar 1990 A
4921463 Primdahl et al. May 1990 A
4936435 Griner Jun 1990 A
4953086 Fukatsu Aug 1990 A
4954697 Kokubun et al. Sep 1990 A
4964495 Rasmussen Oct 1990 A
4966570 Ristvedt et al. Oct 1990 A
4970655 Winn et al. Nov 1990 A
4971187 Furuya et al. Nov 1990 A
4988849 Sasaki et al. Jan 1991 A
4992647 Konishi et al. Feb 1991 A
4995848 Goh Feb 1991 A
5009627 Rasmussen Apr 1991 A
5010238 Kadono et al. Apr 1991 A
5010485 Bigari Apr 1991 A
5011455 Rasmussen Apr 1991 A
5022889 Ristvedt et al. Jun 1991 A
5025139 Halliburton, Jr. Jun 1991 A
5026320 Rasmussen Jun 1991 A
5031098 Miller et al. Jul 1991 A
5033602 Saarinen et al. Jul 1991 A
5039848 Stoken Aug 1991 A
5055086 Raterman et al. Oct 1991 A
5055657 Miller et al. Oct 1991 A
5064999 Okamoto et al. Nov 1991 A
5080633 Ristvedt et al. Jan 1992 A
5091713 Horne et al. Feb 1992 A
5104353 Ristvedt et al. Apr 1992 A
5105601 Horiguchi et al. Apr 1992 A
5106338 Rasmussen et al. Apr 1992 A
5111927 Schulze May 1992 A
5114381 Ueda et al. May 1992 A
5120945 Nishibe et al. Jun 1992 A
5123873 Rasmussen Jun 1992 A
5129205 Rasmussen Jul 1992 A
5135435 Rasmussen Aug 1992 A
5140517 Nagata et al. Aug 1992 A
5141443 Rasmussen et al. Aug 1992 A
5141472 Todd et al. Aug 1992 A
5145455 Todd Sep 1992 A
5146067 Sloan et al. Sep 1992 A
5154272 Nishiumi et al. Oct 1992 A
5163866 Rasmussen Nov 1992 A
5163867 Rasmussen Nov 1992 A
5163868 Adams et al. Nov 1992 A
5167313 Dobbins et al. Dec 1992 A
5175416 Mansvelt et al. Dec 1992 A
5176565 Ristvedt et al. Jan 1993 A
5179517 Sarbin et al. Jan 1993 A
5183142 Latchinian et al. Feb 1993 A
5184709 Nishiumi et al. Feb 1993 A
5194037 Jones et al. Mar 1993 A
5197919 Geib et al. Mar 1993 A
5205780 Rasmussen Apr 1993 A
5207784 Schwartzendruber May 1993 A
5209696 Rasmussen et al. May 1993 A
5236071 Lee Aug 1993 A
5243174 Veeneman et al. Sep 1993 A
5251738 Dabrowski Oct 1993 A
5252811 Henochowicz et al. Oct 1993 A
5253167 Yoshida et al. Oct 1993 A
5263566 Nara et al. Nov 1993 A
5265874 Dickinson et al. Nov 1993 A
5268561 Kimura et al. Dec 1993 A
5277651 Rasmussen et al. Jan 1994 A
5282127 Mii Jan 1994 A
5286226 Rasmussen Feb 1994 A
5286954 Sato et al. Feb 1994 A
5291003 Avnet et al. Mar 1994 A
5291560 Daugman Mar 1994 A
5293981 Abe et al. Mar 1994 A
5297030 Vassigh et al. Mar 1994 A
5297598 Rasmussen Mar 1994 A
5297986 Ristvedt et al. Mar 1994 A
5299977 Mazur et al. Apr 1994 A
5324922 Roberts Jun 1994 A
5326104 Pease et al. Jul 1994 A
5370575 Geib et al. Dec 1994 A
5372542 Geib et al. Dec 1994 A
5374814 Kako et al. Dec 1994 A
5379344 Larson et al. Jan 1995 A
5379875 Shames et al. Jan 1995 A
5382191 Rasmussen Jan 1995 A
5390776 Thompson Feb 1995 A
5401211 Geib et al. Mar 1995 A
5404986 Hossfield et al. Apr 1995 A
5410590 Blood et al. Apr 1995 A
RE34934 Raterman et al. May 1995 E
5425669 Geib et al. Jun 1995 A
5429550 Mazur et al. Jul 1995 A
5440108 Tran et al. Aug 1995 A
5443419 Adams et al. Aug 1995 A
5450938 Rademacher Sep 1995 A
5453047 Mazur et al. Sep 1995 A
5468182 Geib Nov 1995 A
5470079 LeStrange et al. Nov 1995 A
5474495 Geib et al. Dec 1995 A
5474497 Jones et al. Dec 1995 A
5480348 Mazur et al. Jan 1996 A
5489237 Geib et al. Feb 1996 A
5500514 Veeneman et al. Mar 1996 A
5501631 Mennie et al. Mar 1996 A
5507379 Mazur et al. Apr 1996 A
5514034 Jones et al. May 1996 A
5520577 Rasmussen May 1996 A
5531309 Kloss et al. Jul 1996 A
5538155 Hoekstra Jul 1996 A
5538468 Ristvedt et al. Jul 1996 A
5542880 Geib et al. Aug 1996 A
5542881 Geib Aug 1996 A
5553320 Matsuura et al. Sep 1996 A
5559887 Davis et al. Sep 1996 A
5564546 Molbak et al. Oct 1996 A
5564974 Mazur et al. Oct 1996 A
5564978 Jones et al. Oct 1996 A
5570465 Tsakanikas Oct 1996 A
5573457 Watts et al. Nov 1996 A
5584758 Geib Dec 1996 A
5592377 Lipkin Jan 1997 A
5602933 Blackwell et al. Feb 1997 A
5620079 Molbak Apr 1997 A
5623547 Jones et al. Apr 1997 A
5625562 Veeneman et al. Apr 1997 A
5630494 Strauts May 1997 A
5641050 Smith et al. Jun 1997 A
5650605 Morioka et al. Jul 1997 A
5650761 Gomm et al. Jul 1997 A
5652421 Veeneman et al. Jul 1997 A
5665952 Ziarno Sep 1997 A
5679070 Ishida et al. Oct 1997 A
5684597 Hossfield et al. Nov 1997 A
5696366 Ziarno Dec 1997 A
5743373 Strauts Apr 1998 A
5746299 Molbak et al. May 1998 A
5774874 Veeneman et al. Jun 1998 A
5782686 Geib et al. Jul 1998 A
5799767 Molbak Sep 1998 A
5813510 Rademacher Sep 1998 A
5823315 Hoffman et al. Oct 1998 A
5830054 Petri Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5842188 Ramsey et al. Nov 1998 A
5842916 Gerrity et al. Dec 1998 A
5850076 Morioka et al. Dec 1998 A
5854581 Mori et al. Dec 1998 A
5865673 Geib et al. Feb 1999 A
5880444 Shibata et al. Mar 1999 A
5892211 Davis et al. Apr 1999 A
5892827 Beach et al. Apr 1999 A
5909793 Beach et al. Jun 1999 A
5909794 Molbak et al. Jun 1999 A
5913399 Takemoto et al. Jun 1999 A
5918748 Clark et al. Jul 1999 A
5940623 Watts et al. Aug 1999 A
5944162 Filiberti Aug 1999 A
5944600 Zimmermann Aug 1999 A
5951476 Beach et al. Sep 1999 A
5957262 Molbak et al. Sep 1999 A
5988348 Martin et al. Nov 1999 A
5995949 Morioka et al. Nov 1999 A
5997395 Geib et al. Dec 1999 A
6017270 Ristvedt et al. Jan 2000 A
6021883 Casanova et al. Feb 2000 A
6032859 Muehlberger et al. Mar 2000 A
6039644 Geib et al. Mar 2000 A
6039645 Mazur Mar 2000 A
6042470 Geib et al. Mar 2000 A
6047807 Molbak Apr 2000 A
6047808 Neubarth et al. Apr 2000 A
6056104 Neubarth et al. May 2000 A
6080056 Karlsson Jun 2000 A
6082519 Martin et al. Jul 2000 A
6086471 Zimmermann Jul 2000 A
6095313 Molbak et al. Aug 2000 A
6116402 Beach et al. Sep 2000 A
6131625 Casanova et al. Oct 2000 A
6139418 Geib et al. Oct 2000 A
6142285 Panzeri et al. Nov 2000 A
6145738 Stinson et al. Nov 2000 A
6154879 Pare, Jr. et al. Nov 2000 A
6168001 Davis Jan 2001 B1
6171182 Geib et al. Jan 2001 B1
6174230 Gerrity et al. Jan 2001 B1
6196371 Martin et al. Mar 2001 B1
6196913 Geib et al. Mar 2001 B1
6202006 Scott Mar 2001 B1
6213277 Blad et al. Apr 2001 B1
6230928 Hanna et al. May 2001 B1
6264545 Magee et al. Jul 2001 B1
6308887 Korman et al. Oct 2001 B1
6318536 Korman et al. Nov 2001 B1
6318537 Jones et al. Nov 2001 B1
6349972 Geiger et al. Feb 2002 B1
6412620 Imura Jul 2002 B1
6431342 Schwartz Aug 2002 B1
6438230 Moore Aug 2002 B1
6456928 Johnson Sep 2002 B1
6471030 Neubarth et al. Oct 2002 B1
6474548 Montross et al. Nov 2002 B1
6484863 Molbak Nov 2002 B1
6484884 Gerrity et al. Nov 2002 B1
6494776 Molbak Dec 2002 B1
6499277 Warner et al. Dec 2002 B1
6503138 Spoehr et al. Jan 2003 B2
6520308 Martin et al. Feb 2003 B1
6522772 Morrison et al. Feb 2003 B1
6547131 Foodman et al. Apr 2003 B1
6552781 Rompel et al. Apr 2003 B1
6554185 Montross et al. Apr 2003 B1
6579165 Kuhlin et al. Jun 2003 B2
6581042 Pare, Jr. et al. Jun 2003 B2
6602125 Martin Aug 2003 B2
6609604 Jones et al. Aug 2003 B1
6612921 Geib et al. Sep 2003 B2
6637576 Jones et al. Oct 2003 B1
6640956 Zwieg et al. Nov 2003 B1
6644696 Brown et al. Nov 2003 B2
6652380 Luciano Nov 2003 B1
6655585 Shinn Dec 2003 B2
6659259 Knox et al. Dec 2003 B2
6662166 Pare, Jr. et al. Dec 2003 B2
6663675 Blake et al. Dec 2003 B2
6666318 Gerrity et al. Dec 2003 B2
6755730 Blake et al. Jun 2004 B2
6758316 Molbak Jul 2004 B2
6761308 Hanna et al. Jul 2004 B1
6766892 Martin et al. Jul 2004 B2
6783452 Hino et al. Aug 2004 B2
6783785 Raghavan et al. Aug 2004 B1
6786398 Stinson et al. Sep 2004 B1
6854581 Molbak Feb 2005 B2
6854640 Peklo Feb 2005 B2
6863168 Gerrity et al. Mar 2005 B1
6892871 Strauts et al. May 2005 B2
6896118 Jones et al. May 2005 B2
6928546 Nanavati et al. Aug 2005 B1
6950810 Lapsley et al. Sep 2005 B2
6953150 Shepley et al. Oct 2005 B2
6957746 Martin et al. Oct 2005 B2
6966417 Peklo et al. Nov 2005 B2
6976570 Molbak Dec 2005 B2
6988606 Geib et al. Jan 2006 B2
6991530 Hino et al. Jan 2006 B2
7004831 Hino et al. Feb 2006 B2
7014029 Winters Mar 2006 B2
7014108 Sorenson et al. Mar 2006 B2
7017729 Gerrity et al. Mar 2006 B2
7018286 Blake et al. Mar 2006 B2
7028827 Molbak et al. Apr 2006 B1
7036651 Tam et al. May 2006 B2
7083036 Adams Aug 2006 B2
7113929 Beach et al. Sep 2006 B1
7131580 Molbak Nov 2006 B2
7149336 Jones et al. Dec 2006 B2
7152727 Waechter Dec 2006 B2
7158662 Chiles Jan 2007 B2
7188720 Geib et al. Mar 2007 B2
7213697 Martin et al. May 2007 B2
7243773 Bochonok et al. Jul 2007 B2
7269279 Chiles Sep 2007 B2
7303119 Molbak Dec 2007 B2
7331521 Sorenson et al. Feb 2008 B2
7337890 Bochonok et al. Mar 2008 B2
7427230 Blake et al. Sep 2008 B2
7438172 Long et al. Oct 2008 B2
7464802 Gerrity et al. Dec 2008 B2
7500568 Cousin Mar 2009 B2
7520374 Martin et al. Apr 2009 B2
7551764 Chiles et al. Jun 2009 B2
7552810 Mecklenburg Jun 2009 B2
7580859 Economy Aug 2009 B2
7654450 Mateen et al. Feb 2010 B2
7658270 Bochonok et al. Feb 2010 B2
7735125 Alvarez et al. Jun 2010 B1
7743902 Wendell et al. Jun 2010 B2
7778456 Jones et al. Aug 2010 B2
7819308 Osterberg et al. Oct 2010 B2
7874478 Molbak Jan 2011 B2
7886890 Blake et al. Feb 2011 B2
7931304 Brown et al. Apr 2011 B2
7946406 Blake et al. May 2011 B2
7963382 Wendell et al. Jun 2011 B2
7980378 Jones et al. Jul 2011 B2
8023715 Jones et al. Sep 2011 B2
8042732 Blake et al. Oct 2011 B2
8229821 Mennie et al. Jul 2012 B2
8393455 Blake et al. Mar 2013 B2
8443958 Blake et al. May 2013 B2
RE44252 Jones et al. Jun 2013 E
8523641 Kuykendall et al. Sep 2013 B2
8545295 Blake et al. Oct 2013 B2
8602200 Blake Dec 2013 B2
8607957 Blake et al. Dec 2013 B2
8616359 Bochonok et al. Dec 2013 B2
RE44689 Wendell et al. Jan 2014 E
20010034203 Geib et al. Oct 2001 A1
20010048025 Shinn Dec 2001 A1
20020065033 Geib et al. May 2002 A1
20020069104 Beach et al. Jun 2002 A1
20020074209 Karlsson Jun 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020107738 Beach et al. Aug 2002 A1
20020126885 Mennie et al. Sep 2002 A1
20020130011 Casanova et al. Sep 2002 A1
20020147588 Davis et al. Oct 2002 A1
20020151267 Kuhlin et al. Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020179401 Knox et al. Dec 2002 A1
20030004878 Akutsu et al. Jan 2003 A1
20030013403 Blake et al. Jan 2003 A1
20030042110 Wilfong Mar 2003 A1
20030081824 Mennie et al. May 2003 A1
20030127299 Jones et al. Jul 2003 A1
20030168309 Geib et al. Sep 2003 A1
20030168310 Strauts et al. Sep 2003 A1
20030182217 Chiles Sep 2003 A1
20030190882 Blake et al. Oct 2003 A1
20030230464 Deaville et al. Dec 2003 A1
20030234153 Blake et al. Dec 2003 A1
20040021898 Ashizaki Feb 2004 A1
20040055902 Peklo Mar 2004 A1
20040092222 Kowalczyk et al. May 2004 A1
20040153406 Alarcon-Luther et al. Aug 2004 A1
20040153421 Robinson Aug 2004 A1
20040154899 Peklo et al. Aug 2004 A1
20040173432 Jones Sep 2004 A1
20040188221 Carter Sep 2004 A1
20040199924 Ganesh et al. Oct 2004 A1
20040200691 Geib et al. Oct 2004 A1
20040256197 Blake et al. Dec 2004 A1
20050006197 Wendell et al. Jan 2005 A1
20050035140 Carter Feb 2005 A1
20050040007 Geib et al. Feb 2005 A1
20050040225 Csulits et al. Feb 2005 A1
20050045450 Geib et al. Mar 2005 A1
20050067305 Bochonok et al. Mar 2005 A1
20050077142 Tam et al. Apr 2005 A1
20050086140 Ireland et al. Apr 2005 A1
20050087425 Peklo Apr 2005 A1
20050096986 Taylor et al. May 2005 A1
20050098625 Walker et al. May 2005 A1
20050108165 Jones et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050121507 Brown et al. Jun 2005 A1
20050124407 Rowe Jun 2005 A1
20050150740 Finkenzeller et al. Jul 2005 A1
20050156318 Douglas Jul 2005 A1
20050205654 Carter Sep 2005 A1
20050205655 Carter Sep 2005 A1
20050228717 Gusler et al. Oct 2005 A1
20050256792 Shimizu et al. Nov 2005 A1
20060037835 Doran et al. Feb 2006 A1
20060054455 Kuykendall et al. Mar 2006 A1
20060054457 Long et al. Mar 2006 A1
20060060363 Carter Mar 2006 A2
20060064379 Doran et al. Mar 2006 A1
20060065717 Hurwitz et al. Mar 2006 A1
20060069654 Beach et al. Mar 2006 A1
20060148394 Blake et al. Jul 2006 A1
20060149415 Richards Jul 2006 A1
20060151285 String Jul 2006 A1
20060154589 String Jul 2006 A1
20060175176 Blake Aug 2006 A1
20060182330 Chiles Aug 2006 A1
20060196754 Bochonok et al. Sep 2006 A1
20060205481 Dominelli Sep 2006 A1
20060207856 Dean et al. Sep 2006 A1
20060219519 Molbak et al. Oct 2006 A1
20060283685 Cousin Dec 2006 A1
20070051582 Bochonok et al. Mar 2007 A1
20070071302 Jones et al. Mar 2007 A1
20070108015 Bochonok et al. May 2007 A1
20070119681 Blake et al. May 2007 A1
20070181676 Mateen et al. Aug 2007 A1
20070187494 Hanna Aug 2007 A1
20070221470 Mennie et al. Sep 2007 A1
20070269097 Chiles et al. Nov 2007 A1
20080033829 Mennie et al. Feb 2008 A1
20080044077 Mennie et al. Feb 2008 A1
20080090508 Skoog et al. Apr 2008 A1
20080220707 Jones et al. Sep 2008 A1
20090018959 Doran et al. Jan 2009 A1
20090236200 Hallowell et al. Sep 2009 A1
20090236201 Blake et al. Sep 2009 A1
20090239459 Watts et al. Sep 2009 A1
20090242626 Jones et al. Oct 2009 A1
20090320106 Jones et al. Dec 2009 A1
20100038419 Blake et al. Feb 2010 A1
20100198726 Doran et al. Aug 2010 A1
20100261421 Wendell et al. Oct 2010 A1
20100276485 Jones et al. Nov 2010 A1
20100327005 Martin et al. Dec 2010 A1
20110098845 Mennie et al. Apr 2011 A1
20110099105 Mennie et al. Apr 2011 A1
20110270695 Jones et al. Nov 2011 A1
20120067950 Blake Mar 2012 A1
20120156976 Blake et al. Jun 2012 A1
20130178139 Hallowell et al. Jul 2013 A1
20130199890 Blake Aug 2013 A1
20130205723 Blake et al. Aug 2013 A1
Foreign Referenced Citations (109)
Number Date Country
2235925 Nov 1995 CA
2189330 Dec 2000 CA
2143943 Mar 2003 CA
06 60 354 May 1938 DE
30 21 327 Dec 1981 DE
0 351 217 Jan 1990 EP
0 667 973 Jan 1997 EP
0 926 634 Jun 1999 EP
1 104 920 Jun 2001 EP
1 209 639 May 2002 EP
1 528 513 May 2005 EP
2042254 Feb 1971 FR
2035642 Jun 1980 GB
2175427 Nov 1986 GB
2198274 Jun 1988 GB
2458387 Sep 2009 GB
2468783 Sep 2010 GB
49-058899 Jun 1974 JP
52-014495 Feb 1977 JP
52-071300 Jun 1977 JP
56-040992 Apr 1981 JP
57-117080 Jul 1982 JP
59-079392 May 1984 JP
60-016271 Feb 1985 JP
62-134168 Aug 1987 JP
62-182995 Aug 1987 JP
62-221773 Sep 1987 JP
62-166562 Oct 1987 JP
64-035683 Feb 1989 JP
64-042789 Feb 1989 JP
64-067698 Mar 1989 JP
01-118995 May 1989 JP
01-307891 Dec 1989 JP
02-050793 Feb 1990 JP
02-252096 Oct 1990 JP
03-012776 Jan 1991 JP
03-063795 Mar 1991 JP
03-092994 Apr 1991 JP
03-156673 Jul 1991 JP
04-085695 Mar 1992 JP
04-175993 Jun 1992 JP
05-046839 Feb 1993 JP
05-217048 Aug 1993 JP
05-274527 Oct 1993 JP
06-035946 Feb 1994 JP
06-103285 Apr 1994 JP
09-251566 Sep 1997 JP
2002-117439 Apr 2002 JP
2003-242287 Aug 2003 JP
2004-213188 Jul 2004 JP
44 244 Sep 1988 SE
WO 8500909 Feb 1985 WO
WO 9106927 May 1991 WO
WO 9108952 Jun 1991 WO
WO 9112594 Aug 1991 WO
WO 9118371 Nov 1991 WO
WO 9208212 May 1992 WO
WO 9220043 Nov 1992 WO
WO 9220044 Nov 1992 WO
WO 9222044 Dec 1992 WO
WO 9300660 Jan 1993 WO
WO 9309621 May 1993 WO
WO 9406101 Mar 1994 WO
WO 9408319 Apr 1994 WO
WO 9423397 Oct 1994 WO
WO 9502226 Jan 1995 WO
WO 9504978 Feb 1995 WO
WO 9506920 Mar 1995 WO
WO 9509406 Apr 1995 WO
WO 9513596 May 1995 WO
WO 9519017 Jul 1995 WO
WO 9523387 Aug 1995 WO
WO 9530215 Nov 1995 WO
WO 9607163 Mar 1996 WO
WO 9607990 Mar 1996 WO
WO 9612253 Apr 1996 WO
WO 9627525 Sep 1996 WO
WO 9627859 Sep 1996 WO
WO 9722919 Jun 1997 WO
WO 9725692 Jul 1997 WO
WO 9824041 Jun 1998 WO
WO 9824067 Jun 1998 WO
WO 9848383 Oct 1998 WO
WO 9848384 Oct 1998 WO
WO 9848385 Oct 1998 WO
WO 9851082 Nov 1998 WO
WO 9859323 Dec 1998 WO
WO 9900776 Jan 1999 WO
WO 9906937 Feb 1999 WO
WO 9916027 Apr 1999 WO
WO 9933030 Jul 1999 WO
WO 9941695 Aug 1999 WO
WO 9948057 Sep 1999 WO
WO 9948058 Sep 1999 WO
WO 0048911 Aug 2000 WO
WO 0065546 Nov 2000 WO
WO 0163565 Aug 2001 WO
WO 02071343 Sep 2002 WO
WO 03052700 Jun 2003 WO
WO 03079300 Sep 2003 WO
WO 03085610 Oct 2003 WO
WO 03107280 Dec 2003 WO
WO 2004044853 May 2004 WO
WO 2004109464 Dec 2004 WO
WO 2005041134 May 2005 WO
WO 2005088563 Sep 2005 WO
WO 2006086531 Aug 2006 WO
WO 2007035420 Mar 2007 WO
WO 2007120825 Oct 2007 WO
Non-Patent Literature Citations (86)
Entry
Amid Industries: AI-1500 ‘Pulsar’ High Performance Sorting and Bagging Machine, 13 pages (date unknown, but prior to Dec. 14, 2000).
AUI: Coinverter—“No More Lines . . . Self-Serve Cash-Out,” by Cassius Elston, 1995 World Games Congress/Exposition Converter, 1 page (dated prior to 1995).
Brandt: 95 Series Coin Sorter Counter, 2 pages (1982).
Brandt: Model 817 Automated Coin and Currency Ordering System, 2 pages (1983).
Brandt: Model 920/925 Counter, 2 pages (date unknown, prior to Jul. 2011, possibly prior to Mar. 17, 1997).
Brandt: System 930 Electric Counter/Sorter, “Solving Problems, Pleasing Customer, Building Deposits,” 1 page (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 940-6 High Speed Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: System 945 High-Speed Sorter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 952 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 954 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 957 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 958 Coin Sorter/Counter, 5 pages ( © 1982).
Brandt: Model 960 High-Speed Coin Sorter & Counter, 2 pages (1984).
Brandt; Model 966 Microsort™ Coin Sorter and Counter, 4 pages, (1979).
Brandt: Model 970 Coin Sorter and Counter, 2 pages (1983).
Brandt: Model 1205 Coin Sorter Counter, 2 pages (1986).
Brandt: Model 1400 Coin Sorter Counter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 8904 Upfeed—“High Speed 4-Denomination Currency Dispenser,” 2 pages (1989).
Brandt: Mach 7 High-Speed Coin Sorter/Counter, 2 pages (1992).
Case ICC Limited: CDS Automated Receipt Giving Cash Deposit System, 3 pages (date unknown, prior to Nov. 15, 2000).
Cash, Martin: Newspaper Article “Bank Blends New Technology With Service,” Winnipeg Free Press, 1 page (Sep. 4, 1992).
Childers Corporation: Computerized Sorter/Counter, “To coin an old adage, time is money . . . ,”3 pages (1981).
CTcoin: CDS602 Cash Deposit System, 1 page (date unknown, prior to Jan. 15, 2001).
Cummins: Cash Information and Settlement Systems (Form 023-1408), 4 pages (date Dec. 1991).
Cummins: The Universal Solution to All Coin and Currency Processing Needs (Form 13C1218 3-83), 1 page (Mar. 1983).
Cummins: JetSort® High Speed Sorter/Counter Kits I & J—Operating Instructions (Form 022-7123-00) 12 pages (1994).
Cummins: JetSort® Coin Sorter Counter/CA-130XL Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—Fifth-Third, “6,000 Coin Per Minute Counter/Sorter Keeps pace With Fifth-Third Bank's Money Processing Needs,” (Form 13C1180), 2 pages (Nov. 1981).
Cummins: JetSort®, “Venders Love JetSort,” (13C1255), 1 page (Mar. 1987).
Cummins: JetSort® “High Speed Coin Sorter & Counter for Payphone Applications,” “CTOCS Ready” (Form 023-1365), 2 pages (Mar. 1989).
Cummins: JetSort® mailer, “One moving part simplicity,” “Vendors—Are validators changing your coin and currency needs?” (Form 023-1297), 3 pages (Apr. 1987).
Cummins: JetSort® Series V High Speed Coin Sorter/Counter, (Form 023-1383), 2 pages (Sep. 1990).
Cummins: JetSort® “Time for a Change, Be a smashing success!,” (Form 023-1328), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change—JetSort® vs. Brandt X,” (Form 023-1330), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change—No Coins Sorted After 3:00 or on Saturday,” (Form 023-1327), 1 page (Aug. 1988).
Cummins: JetSort®, “What do all these Banks have in Common . . . ?”, JetSort, CA-130XL coin wrapper, CA-118 coin wrapper, CA-4000 JetCount, (13C1203), 3 pages (Aug. 1982).
Cummins: JetSort® 700-01/CA-118 Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—University State Bank, “Cummins Money Processing System Boosts Teller Service at University State Bank,” (Form 13C1192), 2 pages (Mar. 1982).
Cummins: JetSort® 700-01, Cummins Automated Money Systems (AMS) Case Study—First State Bank of Oregon, “JetSort® Gives Bank Coin Service Edge,” (Form 13C1196), 2 pages (Apr. 1982).
Cummins: JetSort® 700-01 Coin Sorter/Counter, Operating Instructions, 14 pages (1982).
Cummins: JetSort® 701, Cummins Automated Money Systems (AMS) Case Study—Convenco Vending, “High Speed Coin Sorter increases coin processing power at Convenco Vending,” (Form 13C1226), 2 pages (Jul. 1983).
Cummins: JetSort Models 701 and 750 , “State-of-the-art coin processing comes of age,” 2 pages (Feb. 1984).
Cummins: JetSort® Model CA-750 Coin Processor (Item No. 50-152), 1 page (Jul. 1984).
Cummins: JetSort® Model CA-750 Coin Sorter/Counter and CA-4050 JetCount currency counter, “Money Processing Made Easy,” (Form 13C1221) 2 pages (Jun. 1983).
Cummins: JetSort® Model 1701 with JetStops, Operating Instructions Manual (Form 022-1329-00), 16 pages (1984).
Cummins: JetSort® Model 1760 brochure, (Form 023-1262-00), 2 pages (Jul. 1985).
Cummins: JetSort® Models 1770 and 3000, Communication Package specification and operating instructions, 10 pages (uncertain, possibly Nov. 1985).
Cummins: JetSort® Model 1770, “JetSort® Speed and Accuracy, Now with Communications!”, (Form 023-1272) 1 page (Oct. 1986).
Cummins: JetSort® 2000 Series High Speed Coin Sorter/Counter (Form 023-1488), 2 pages (Oct. 2000).
Cummins: JetSort® 3000 Series High Speed Coin Sorter (Form 023-1468 Rev 1), 2 pages (Feb. 1995).
Cummins: JetSort® 3000 Series Options, “Talking JetSort 3000,” (Form 023-1338-00), 1 page (between Jan. 1989-Feb. 1989).
Cummins: JetSort® 3000, “3,000 Coins per Minute!,” (Form 023-1312), 1 page (date unknown, est. 1987).
Cummins: JetSort® 3200, Enhanced electronics for the JetSort® 3200 (Form 023-1350), 1 page (Apr. 1987).
De La Rue: CDS 500 Cash Deponier System, 6 pages (date unknown, p. 5 has date May 1994, p. 6 has date Dec. 1992) (German).
De La Rue: CDS 5700 and CDS 5800 Cash Deponier System (German) and translation, 7 pages (date unknown, prior to Aug. 13, 1996).
Diebold: Merchant MicroBranch, “Merchant MicroBranch Combines ATM After-Hour Depository Rolled-Coin Dispenser,” Bank Technology News, 1 page (Nov. 1997).
Fa. GBS-Geldbearbeitungssysteme: GBS9401SB Technical Specification, 24 pages (date unknown, prior to Nov. 10, 2010).
Frisco Bay: Commercial Kiosk, “Provide self-service solutions for your business customers,” 4 pages (date unknown, prior to Mar. 2, 2011, p. 4 has date 1996).
Glory: AMT Automated Merchant Teller, 4 pages (date unknown, prior to Jan. 15, 2001).
Glory: CRS-8000 Cash Redemption System, 2 pages (1996).
Hamilton: Hamilton's Express Banking Center, in Less Space Than a Branch Manager's Desk, 4 pages (date unknown, prior to Jan. 15, 2001).
Intellectual Australia Pty. Ltd.: Microbank, “From down under: Microbank,” “hand-held smart card terminal that combines smart card functions and telephone banking,” 2 pages (Feb. 1996).
ISH Electronic: ISH I2005/500 Coin Counter (with translation), 4 pages (date unknown, prior to Aug. 1996).
ISH Electronic: ISH I2005/501 Self-Service Unit (with translation), 4 pages (date unknown, prior to Aug. 1996).
Namsys, Inc.: Namsys Express, Making currency management . . . more profitable, 2 pages (date unknown, prior to Jan. 15, 2001).
NGZ Geldzahlmaschinengesellschaft: NGZ 2100 Automated Coin Depository, 4 pages (date unknown, prior to Sep. 1996).
Perconta: Contomat Coin Settlement Machine for Customer Self Service, 2 pages (date unknown, prior to Apr. 2003).
Prema GmbH: Prema 405 (RE) Self Service Coin Deposit Facility, 2 pages (date unknown, prior to Apr. 2003).
Reis Eurosystems: CRS 6501/CRS 6510 Cash Receipt Systems for Self-Service Area, 3 pages (date unknown, prior to Aug. 13, 1996, maybe Feb. 1995).
Reis Eurosystems: CRS 6520/ CRS 6525 Standard-Class Coin Deposit Systems, 1 page (date unknown, prior to Apr. 2003).
Reis Eurosystems: CS 3510 Disc-Sorter, 1 page (date unknown, prior to Apr. 2003).
Royal Bank: Hemeon, Jade, “Royal's Burlington drive-in bank provides customers 24-hour tellers,” The Toronto Star, 1 page (Aug. 21, 1991).
Royal Bank: Leitch, Carolyn, “High-Tech Bank Counts Coins,” The Globe and Mail, 2 pages (Sep. 19, 1991).
Royal Bank: Oxby, Murray, “Royal Bank Opens ‘Super Branch,’” The Gazette Montreal, 2 pages (Sep. 14, 1991).
Royal Bank: SuperBranch, “Experience the Ultimate in Convenience Banking,” 2 pages (Feb. 1992).
Scan Coin: International Report, 49 pages (Apr. 1987).
Scan Coin: Money Processing Systems, 8 pages (date unknown, prior to Apr. 2003).
Scan Coin: World, 2 pages (Feb. 1988).
Scan Coin: CDS Cash Deposit System, 6 pages (date unknown, prior to Apr. 2003) [SC 0369].
Scan Coin: CDS Coin Deposit System—Technical Referens Manual, 47 pages (1989).
Scan Coin: CDS 600 User's Manual, 14 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS 600 & CDs 640 Cash Deposit System—Technical Manual, 45 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS MK 1 Coin Deposit System—Technical Manual, 32 pages (1991).
Scan Coin: SC 102 Value Counter Technical Manual, 28 pages (date unknown, prior to Apr. 2003).
Pay by Touch: Secure ID News, “Piggly Wiggly Extends Biometric Payments Throughout the Southeast U.S.,” 2 pages, (Dec. 14, 2005).
ESD, Inc: Smartrac Card System, “Coinless laundry makes quarters obsolete; Smartrac Card System really makes a change in laundry industry,” Business Wire, 2 pages (Feb. 23, 1996).
Meece, Mickey: Article “Development Bank of Singapore Gets Cobranding Edge with Smart Cards,” American Banker, New York, NY, vol. 159, Iss. 195, p. 37, 2 pages (Oct. 10, 1994).
Scan Coin: Coin Sachet System brochure, 4 pages (last page marked “© Scan Coin / Jun. 2007”).
Provisional Applications (2)
Number Date Country
61424549 Dec 2010 US
61506852 Jul 2011 US
Divisions (2)
Number Date Country
Parent 13942892 Jul 2013 US
Child 14197847 US
Parent 13327900 Dec 2011 US
Child 13942892 US