This application claims the benefit of priority under 35 U.S.C. §119 of Japan Patent Application JP-A-2006-192150 filed, Jul. 12, 2006, Japan Patent Application JP-A-2006-261399 filed, Sep. 26, 2006 and Japan Patent Application JP-A-2006-309609 filed, Nov. 15, 2006 filed, the entire contents of each of which are incorporated herein by reference.
The present invention pertains to a coin selector that performs a discrimination as to the real/fake status of a coin used in a gaming device such as a pachinko-slot machine or the like. The present invention relates to a coin selector that prevents an illegal action due to a coin sensor that makes a determination as to authenticity of a coin. The present invention more particularly relates to a small-sized and inexpensive coin selector that prevents improper or illegal actions toward a coin sensor. In particular, the present invention relates to a coin selector that can prevent such an event that a coin to be cancelled is received without cancelling the same.
The coin selector according to the present invention can be used in not only for gaming machines such as a pachinko-slot machine but also a game machine of a coin type or an automatic vending machine. In this text, the term “coin” is a collective term generally referring to any and all of coins, disks, disk-like medals, a token, or the like.
Japanese Patent No. 3649728 (FIG. 1 to FIG. 4, page 2 to page 5) shows conventional features known in the art including a coin selector which has a con passage provided along a guide rail and a diameter sorting unit that is a real/fake discriminating unit disposed in the coin passage. A diameter of a coin moving on the guide rail while rolling in the coin passage is selected by the diameter sorting unit. Only a coin having a predetermined diameter passes through the diameter sorting unit to be received as a real coin. A plurality of photoelectric sensors are disposed in the coin passage in order to detect reception of the real coin, and processing of signals from the coin sensors are devised to prevent illegal action.
JP-A-05-282514 (FIGS. 2 to 4, page 2 to page 4) is a second conventional arrangement known in the art. This reference discloses an apparatus where a fake coin is sorted in a sorting portion disposed in a route where a coin inserted from a slot port rolls in a coin passage. A coin is sorted to a receiving portion or a cancel passage by switching a passage switching portion disposed downstream of the sorting portion. A pass detecting portion is disposed between the sorting portion and the switching portion. A slotting detecting portion is disposed downstream of the switching portion. A detection signal of a coin is output only when a detection signal from the slotting detecting portion is received within a predetermine time period after a coin is detected at the pass detecting portion.
In recent years, a problem of illegal action regarding the coin selector according to Japanese Patent No. 3649728 arises wherein an erroneous determination is made as if a real coin has been detected by slotting a plate-like tool whose distal end is attached with an infrared light emitter from the coin slotting port of the game machine and properly causing the light emitter to emit light to cause the coin sensor to transmit a detection signal in a pseudo manner so that a coin(s) is acquired irregularly.
According to JP-A-05-282514, since the slotting detecting portion is disposed at a position where the coin passage forms a right angle, it is difficult to insert a tool for conducting illegal action so that security to illegal action is improved as compared with Japanese Patent No. 3649728. However, according to JP-A-05-282514, since the sorting portion, a direction changing portion (the passage switching portion), and the slotting detecting portion are arranged in series, the apparatus is increased in size, so that it may not installed in a predetermined range in the pachinko-slot machine.
A first object of the present invention is to provide a coin selector that prevents illegal access to a coin sensor for real coin detection.
A second object of the present invention is to provide a small-sized coin selector that prevents illegal access to a coin sensor.
A third object of the present invention is to provide a coin selector that prevents illegal access to a coin sensor, where a processing rate of coins is fast.
A fourth object of the present invention is to provide a coin selector that can cancel a coin reliably when a possibility is high that a coin to be cancelled cannot be cancelled.
In order to achieve the object, the coin selector according to the present invention is configured with a coin selector that detects passage of a coin based upon a signal from a coin sensor disposed downstream of a real/fake discriminating unit formed along a coin passage through which a coin moves. A coin moving direction changing unit is provided in the coin passage positioned downstream of the real/fake discriminating unit. A coin detecting passage positioned downstream of the moving direction changing unit is disposed on a plane different from a plane on which the moving direction changing unit is present.
The coin cancel unit may be disposed on the moving direction changing unit. The coin sensor may be disposed in the coin passage positioned downstream of the moving direction changing unit. The plains may be inclined to a horizontal line. A timing sensor may be disposed between the real/fake discriminating unit and the moving direction changing unit.
A pullback preventing unit may be provided downstream of the moving direction changing unit. A coin passage of the moving direction changing unit and the coin detecting passage may be connected to each other through a displacement guiding unit. The displacement guiding unit may include an inclined guiding face inclined to the first plane. The displacement guiding unit is a guiding body that is movable between a standby position on extension of a coin guiding rail of the real/fake discriminating portion and a guiding position inclined downwardly toward the side of the coin detecting passage according to a weight of a coin. The guiding body can pivot about a pivoting shaft at the opposite side of the coin detecting passage. A cancel body that advances to and retracts from the coin passage positioned above the displacement guiding unit and has an inclined guiding edge inclined from the side of the coin detecting passage of the guiding body to the side of the pivoting shaft, and a side face guiding body that is positioned upstream of the cancel body and defines a side face of the coin passage on the opposite side of the cancel body may be provided.
The coin sensor may comprise a plurality of sensors, and the plurality of sensors may be sensors of a different type of detecting system. A shutter unit that closes the coin detecting passage except for a passing time of a coin may be disposed downstream of the coin sensor. The shutter unit may be held at a closing position of the coin passage due to its self-moment. The moving direction changing portion guiding body may move integrally with the cancel body, and may move in a direction of separating from the cancel body, and may be biased toward the side of the cancel body by a predetermined moment. The moving direction changing portion guiding body may be formed in an inverted L shape, a distal end portion of a horizontal portion is rotatably attached at an upper end of a stay extending from the cancel body upwardly, and a lower end of a guiding portion stands in a vertical manner of the moving direction changing portion guiding body is rotatable in a direction of separating from the cancel body and the moving direction changing portion guiding body is biased to the side of the cancel body by its self-weight.
With such a configuration, a coin rolls in a coin passage to reach the real/fake discriminating unit. In the real/fake discriminating unit, a fake coin is eliminated so that a moving direction of only a real coin is changed in the downstream moving direction changing unit. Since a rolling resistance of the real coin increases in the moving direction changing unit, a rolling velocity of the real coin is decelerated. The real coin that has passed through the moving direction changing unit is guided to the coin passage positioned on the plane different from the plane on which the moving direction changing unit is disposed. In other word, the real coin is guided to the coin detecting passage displaced to the coin passage of the moving detection changing unit. Therefore, the real coin moves from the coin passage to the coin detecting passage in a three-dimensional manner. The real coin moving in the coin detecting passage is detected by the coin sensor disposed in the coin detecting passage. The detecting signal is a real coin receiving signal.
When an illegal action is performed to the coin sensor disposed in the coin passage displaced downstream of the moving direction changing unit, an inserted tool for illegal action must be opposed to the coin sensor by causing the tool for illegal action to pass through the moving direction changing unit from the coin passage utilizing flexibility of the tool for illegal action and further causing the tool for illegal action to advance in the coin detecting passage. In other words, the tool for illegal action must be bent in a three-dimensional manner. It is considerably difficult to operate a base portion of the tool for illegal action bent in the three-dimensional manner to move a light emitting portion of a distal end of the tool for illegal action to an accessible position to the coin sensor. Therefore, it is substantially impossible to perform the illegal action to the coin sensor for real coin detection so that illegal action can be prevented.
Providing the cancel unit for cancelling reception of a real coin in the moving direction changing unit is advantageous. Since two devices of the moving direction changing unit and the cancel unit are disposed at one portion, the apparatus can be reduced in size.
Providing the coin sensor to be disposed in the coin detecting passage downstream of the moving direction changing unit is advantageous. A passage in which a coin rolls from the coin passage to the coin detecting passage is bent in the three-dimensional manner. Therefore, since the tool for illegal action must also be bent in a three-dimensional manner, it is considerably difficult to insert the tool for illegal action so as to be accessible to the coin sensor, so that illegal action using a tool for illegal action can be prevented.
Providing the coin passage inclined to a horizontal line, such that a coin moves while one face thereof and is guided by a lower face of the inclination is advantageous. A moving attitude of the coin is stabilized so that precision of real/fake discrimination can be increased.
Providing that the timing sensor is disposed between the real/fake discriminating unit and the moving direction changing unit, allows for an abnormality to be discriminated by discriminating occurrence timings between the timing sensor and the coin sensor.
With the pullback preventing unit disposed downstream of the moving direction changing unit, pullback performed by stringing can be prevented.
With the coin passage of the moving direction changing unit and the coin detecting passage connected to each other by the displacement guiding unit, a coin can smoothly move to the coin detecting passage displaced to the coin passage. Sorting of coins can be performed at a rate similar to that in the conventional art.
The displacement guiding unit comprising the inclined guiding face inclined to the first plane allows for a simple configuration to be achieved and manufacture is made possible at a low cost.
When the displacement guiding unit is a guiding body and coin does not ride on the guiding body, the guiding body is positioned on an extension of the coin guide rail in the real/fake discriminating unit. When a real coin has ridden on the guiding body, the guiding body is inclined downwardly toward the coin detecting passage due to a coin weight. Therefore, a real coin drops along the inclination of the guiding body and drops in the coin detecting passage so that it is detected. When a real coin is not received, the coin is deflected by the cancel body so that the guiding body is not moved to the guiding position. Therefore, the real coin is not guided to the coin detecting passage. The guiding body is moved to the guiding position inclined by the weight of the coin, and it is normally moved to a standby position by its self-moment. Therefore, since the guiding body does not require a driving source, it can be manufactured at a low cost. Further, since a coin is guided to the coin detecting passage according to the inclination of the guiding body, it is guided to the coin detecting passage smoothly.
When the cancel body is positioned in the coin passage, a real coin is moved to the side of a pivot shaft of the guiding body by a cancel edge of the cancel body to be deflected from the coin passage so that it is not guided to the coin detecting passage. Further, when the coin is guided to the coin detecting passage, a side face thereof is guided above the guiding body by the moving direction changing portion guiding body positioned laterally of the coin. Therefore, even if the coin becomes unstable on the guiding body, since the coin is guided by the moving direction changing portion guiding body, the coin can be guided to the coin detecting passage reliably without dropping from the guiding body. When a real coin is not received, the coin is deflected toward the pivot shaft of the guiding body by the cancel body. Therefore, even if the coin rides on the guiding body, a moment inclined downwardly toward the coin detecting passage does not act on the guiding body, the guiding body can be made from a weight so that inexpensive configuration can be achieved.
With the feature that the coin sensor comprises a plurality of sensors of different detecting systems, for an illegal action to be performed, a procedure must be conducted so as to cause erroneous detections in sensors of different types. As such it is difficult to perform an illegal action.
The feature of the shutter unit that closes the coin detecting passage disposed downstream of the coin sensor except for the passage of a coin provides advantages. This is particularly the coin detecting passage being positioned downstream of the sensor being put in a closed state by the shutter unit. In this case, even if insertion of a tool for illegal action from an outlet of the coin selector is tried, the insertion is prevented by the shutter unit; such that illegal action to the coin sensor cannot be performed.
With the shutter unit is held at a closing position of the coin passage by its self-moment, the shutter unit closes the coin detecting passage by the self-moment and it is moved by a coin when the coin passes through the coin detecting passage, so that the shutter unit does not obstruct to rolling of a coin. Further, since it is unnecessary to provide a driving device for the shutter unit, an inexpensive configuration can be achieved.
With the moving direction changing portion guiding body moving integrally with the cancel body, it can be moved in a direction of separation from the cancel body, and it is biased to the side of the cancel body by a predetermined moment. Therefore, the cancel body and the moving direction changing portion guiding body can be normally held in a predetermined distance relationship therebetween by a predetermined force. In a case that a plurality of coins are jammed between the cancel body and the moving direction changing portion guiding body, when pressure of the coins exceeds a predetermined value, the moving direction changing portion guiding body is moved in a direction of separation from the cancel body. Thereby, the coins are deflected from the coin passage by the cancel body, so that they can be cancelled. Therefore, an event in which a plurality of coins are jammed between the cancel body and the moving direction changing portion guiding body and they can not move can be prevented.
With the moving direction changing portion guiding body formed in an inverted L shape, a distal end portion of a horizontal portion is rotatably attached at an upper end of a stay extending from the cancel body upwardly, and a lower end of a guiding portion stands in a vertical manner of the moving direction changing portion guiding body is rotatable in a direction of separating from the cancel body and the moving direction changing portion guiding body is biased to the side of the cancel body by its own weight. Since the moving direction changing portion guiding body has the inverted L shape, the moving direction changing portion guiding body is caused to approach the cancel body by a predetermined force caused by moment due to the its own weight of the moving direction changing portion guiding body. Therefore, as described above, in a case that a plurality of coins are jammed between the cancel body and the moving direction changing portion guiding body, when pressure of the coins exceeds a predetermined value, the moving direction changing portion guiding body is moved in a direction of separating from the cancel body. Thereby, the coins are deflected from the coin passage by the cancel body, so that they can be cancelled. Therefore, event that a plurality of coins are jammed between the cancel body and the moving direction changing portion guiding body and they can not move can be prevented. Further, since the moving direction changing portion guiding body is biased to the cancel body by the predetermined force caused by moment due to the its own weight of the moving direction changing portion guiding body, it is unnecessary to use a weight or a spring, so that an inexpensive configuration can be achieved.
According to the invention, a coin selector is provided that detects the passage of a coin based upon a signal from a coin sensor disposed downstream of a real/fake discriminating unit formed along a coin passage through which a coin moves. A moving direction changing unit that changes the moving direction of the coin to downward is provided in the coin passage positioned downstream of the real/fake discriminating unit. A coin detecting passage positioned downstream of the moving direction changing unit is disposed on a plane different from another plane on which the moving direction changing unit is present. The planes are inclined to a horizontal line, the coin sensor is disposed in the coin passage, a coin cancel unit is disposed in the moving direction changing unit, and a timing sensor is disposed between the real/fake discriminating unit and the moving direction changing unit.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings in particular, in
The main body 102 is first explained. The main body 102 has a function of guiding one face of a coin C. Therefore, the main body 102 can be replaced by one having a similar function. The main body 102 in the first embodiment has a flat plate shape, and it is attached in a state that it has been inclined at an angle of about 15° to a vertical line in a clockwise direction, as shown in
The guide rail 104 has the function of supporting a peripheral face of the coin C guided to the main body 102 and the second main body 138, and supporting the rolling coin C. The guide rail 104 in the embodiment is attached to lower ends of the main body 102 and the second main body 138, it has approximately the same width as a thickness of the coin C, and it is inclined to fall forward (fall rightward in
The coin passage 106 is a passage through which a coin C inserted in a slot 118 moves. In first the embodiment, the coin passage 106 is defined by the main body 102 and the guide rail 104, and it has an L shape curved rightward, as shown in
The real/fake discriminating unit 108 has the function of discriminating a real/fake status of an inserted coin to exclude a fake coin. The real/fake discriminating unit 108 in the embodiment is a diameter sorting unit 110 and it is disposed on the inclined portion 126. The diameter sorting unit 110 is a rectangular opening 128 formed in the main body 102 such that an upper end edge 127 has a predetermined distance to the guide rail 104. In the inclined portion 126, an upper end edge of a small-diameter coin whose lower peripheral face is supported by the guide rail 104 and which rolls while its lower face is being supported by the main body 102 is positioned below the upper edge 127. Therefore, since the upper end edge of the small-diameter coin is not guided to the main body 102, the coin falls in the opening 128 to drop from the guide rail 104 so that the coin cannot pass through the diameter sorting unit 110. In other word, when a small-diameter coin SC whose diameter is smaller than a predetermined value is used, a lower end of the small-diameter coin SC is deviated from the guide rail 104 and is dropped to be sorted out in the diameter sorting unit 110. The dropped small-diameter coin SC is returned to a returning port (not shown) through a passage (not shown). When a coin C is larger than an allowable coin, it is stopped at the slot 118 so that it is sorted out. Accordingly, only a coin C whose diameter has a predetermined value, namely, only a real coin can pass through the diameter sorting unit 110.
Next, the moving direction changing unit 112 will be explained. The moving direction changing unit 112 has the function of deflecting a coin C moving on the inclined portion 126 from an extension line of the inclined portion 126. The “deflecting a coin from an extension line” in this text includes the case that a direction of a coin is changed downwardly as shown in the first embodiment and a case that a direction of a coin is changed in a right direction to the coin passage 106 (in a downward direction on a figure plane in
The coin detecting passage 114 has the function of guiding a real coin C that has passed through the real/fake discriminating unit 108 and the moving direction changing unit 112. The coin detecting passage 114 is disposed so as to be displaced to the coin passage 106. The term “disposed so as to be displaced” means that the coin passage 106 is positioned on a second plane 136 different from the first plane 134 on which the coin passage 106 is positioned. In the first embodiment, the coin detecting passage 114 comprises a second main body 138 positioned below the main body 102 and disposed in parallel with the main body 102, and a partition wall 142 whose thickness exceeds a thickness of a coin C and which is disposed to be spaced by a distance equal to or less than twice the thickness of a coin. In other words, the second plane 136 on which the coin detecting passage 114 is positioned is parallel with the first plane 134 in the first embodiment and it is deviated from the first plane 134 by a distance in a range of the thickness of the coin C to equal to or less than twice the thickness of the coin or less. The second plane 136 may not be parallel to the first plane 134, but when the second plane 136 is parallel to the first plane 134, easy manufacturing can be achieved. The real coin C moves from the moving direction changing unit 112 to the coin detecting passage 114 via the displacement guiding unit 144. Therefore, since the real coin C is moved laterally (in a right direction in
The displacement guiding unit 144 guides a real coin C smoothly from the moving direction changing unit 112 to the coin detecting passage 114. The displacement guiding unit 144 has an inclined guiding face 146 inclined with an angle of about 45° to the second main body 138 formed at an upper end of the partition wall 142. In other words, the inclined guiding face 146 is inclined with an angle of about 45° to the first plane 134. An upper end of the inclined guiding face 146 is formed in an arc face 148 extending outwardly. Therefore, a coin C guided by the changing guide 132 in the moving direction changing unit 112 moves within the first plane 134 downwardly and a lower end peripheral edge thereof collides against the inclined guiding face 146. Thereby, a lower end of the coin C receives a reaction force acting toward the second main body 138, and the lower end is guided toward the second main body 138. Thereby, the coin C is guided to the coin detecting passage 114 smoothly. When an attitude of a coin C is not stabilized and a lower end of the coin C is deviated to the arc face 148, the coin C is guided to the an upper side of the partition wall 142 by the outward arc face 148, so that it is not guided to the coin detecting passage 114. It is preferable that the inclined guiding face 146 against which a coin C collides is covered with metal such as stainless plate or the like in order to prevent wearing of the inclined guiding face 146 due to collision.
The coin sensor 116 has the function of detecting a real coin C moving in the coin detecting passage 114 to output a detection signal. The coin sensor 116 may be used that is a sensor having the function provided by a photoelectric sensor of a transmission type or a reflection type, a magnetic sensor, a contact-type sensor, or the like.
The timing sensor 152 has the function of detecting a coin C that has passed through the real/fake discriminating unit 108 and to output a detection signal. In the first embodiment, the timing sensor 152 is disposed between the real/fake discriminating unit 108 and the moving direction changing unit 112 so as to face the coin passage 106, and if a sensor can detect a coin C moving in the coin passage 106, a type thereof is not limited like the coin sensor 116.
The discriminating device 154 has the function of receiving at least a detection signal from the coin sensor 116 to output a passage signal PS of a real coin C. In the first embodiment, the coin sensor 116 and the timing sensor 152 are connected to the discriminating device 154. Based upon an input order of detection signals from the coin sensor 116 and the timing sensor 152 and generation timings of these signals, the discriminating device 154 discriminates truth/false of these signals, and if the signals are normal, the discriminating device 154 outputs a passage signal PS, while it outputs an error signal ES in the case that the signals are abnormal. That is, even if the discriminating device 154 receives detection signals from the coin sensor 116 and the timing sensor 152, when the output order of these signals or an output interval between these signals is abnormal, the discriminating device 154 discriminates such a state as abnormality. Specifically, as shown in
The coin cancel unit 162 is used when the coin sensor 116 is not caused to detect a real coin C. In other words, the coin cancel unit 162 has a function of excluding a coin C before the coin C reaches the coin sensor 116 when a device positioned downstream of the coin selector 100 is not in a receivable state of the coin C. In the first embodiment, the coin cancel unit 162 protrudes a deflecting body 164 that pushes a face of a coin C in the coin passage 106 of the moving direction changing unit 112 by a solenoid 166. That is, after a coin C is detected by the timing sensor 152, the coin cancel unit 162 excites the solenoid 166 to protrude the deflecting body 164 into the coin passage 166 and push a side face of the coin C after a predetermined time, thereby pushing the coin C from the moving direction changing unit opening 135 to exclude the coin C from the coin passage 106.
The pullback preventing unit 172 has the function of preventing illegal actions from being performed by connecting a string to a coin C and reciprocating the coin between the coin passage 106 and the coin detecting passage 114 to cause the coin sensor 116 to detect the coin C illegally. In the embodiment, the pullback unit 172 is disposed on an upstream side of the coin sensor 116 in the coin detecting passage 114. The pullback preventing unit 172 includes a blocking body 174. The blocking body 174 is a plate attached to a supporting shaft 145 so as to be pivotally moved and it is biased in a counterclockwise direction in
Next, an operation of the coin selector 100 will be explained also referring to
When real coins C are inserted in the slot consecutively, the coins C roll on the guide rail 104 in the inclined portion 126 without clearance to reach the moving direction changing unit 112. A leading coin C is turned downward in the moving direction changing unit 112 while it is being decelerated by the changing guiding unit 132, and it collides against the inclined guiding face 146, so that moving rate of the leading coin C is decelerated and the following coin C rides on an upper end of the leading coin C. Thereby, the following coin C is not guided to the guide rail 104 but it passes through the moving direction changing unit opening 135 to jump from the coin passage 106 and drop. In other words, the coins C can be prevented from rolling in the coin detecting passage 114 without clearance. Accordingly, since coins C do not pass through the coin passage 133 in the moving direction changing unit 112 continuously, a coin C which should not be passed can be excluded from the coin passage reliably, as described later. That is, when a downstream apparatus is not in a coin receivable state, the coin C is detected by the timing sensor 152, the solenoid 166 is excited for a predetermined time after a predetermined time where the coin C just reaches the moving direction changing unit 112 elapses, and the deflecting body 164 is made to protrude into the coin passage 106 in the moving direction changing unit for a moment. Thereby, as shown in
When an illegal action is performed to the count sensor 116 using a flexible tool for illegal action, a distal end of the tool for illegal action must be caused to reach the coin sensor 116 via the timing sensor 152. In this case, such an operation must be adopted that, after the tool for illegal action is acutely bent in the moving direction changing unit 112, it is bent laterally to an extension direction of the tool in the displacement guiding unit 144, and it is then detected by the coin sensor 116 disposed in the coin detecting passage 114. Therefore, it is considerably difficult to bend the tool for illegal action in this manner. It is remarkably difficult to move the tool for illegal action from the timing sensor 152 to the coin sensor 116 within the predetermined time T2 after the predetermined time T1 elapses to cause the coin sensor 116 to output a detection signal DS2. When a tool for illegal action preliminarily attached with an access unit to such sensors as light emitters corresponding to the coin sensor 116 and the timing sensor 152 is used, it is unnecessary to move the tool for illegal action, but it is difficult to operate the bent tool for illegal action to position the respective light emitters to be accessible to the coin sensor 116 and the timing sensor 152 in the coin passage 106 and the coin detecting passage 114 which have been bent in a three-dimensional manner.
When a tool for illegal action relative to the coin sensor 116 and a tool for illegal action relative to the timing sensor 152 are constituted independently of each other, it is relatively easy to dispose the tool for illegal action to the timing sensor 152 at a position accessible to the timing sensor 152. However, it is extremely difficult to position the tool for illegal action relative to the coin sensor 116 at an access position to the coin sensor 116 because the tool for illegal action is bent in a three-dimensional manner. Accordingly, the present invention has features such that an illegal output indicating detection of a real coin C of the coin selector using the tool for illegal action can be prevented.
A coin selector 300 according to the third embodiment includes a main body 302, a guide rail 304, a coin passage 306, a diameter sorting unit 310 which has a real/fake discriminating portion 308 disposed in an intermediate portion of the coin passage 306, a moving direction changing unit 312, a coin detecting passage 314 positioned downstream of the moving direction changing unit 312, a second main body 318 defining the coin detecting passage 314, a coin sensor 316 disposed in the coin detecting passage 314, a cancel unit 318, and a shutter unit 320.
The main body 302 will be explained with reference to
The guide rail 304 will be explained with reference to
The third main body 326 will be explained with reference to
The coin passage 306 has a function where a coin C inserted in the slot port 334 rolls on the guide rail 304 to be guided to the moving direction changing unit 312. The coin passage 306 has a rectangular sectional shape defined by the guide face 354 of the guide wall 322, the guide rail 304, the guide face 327 of the third main body 326, and the diameter sorting body 356, it is a passage curved rightward in
The diameter sorting unit 310 has a function of rejecting a small-diameter fake coin FC rolling on the coin passage 306. The diameter sorting unit 310 includes a deflecting body 372 and a biasing unit 374. In the deflecting body 372, both ends of an upper end shaft 378 thereof are rotatably attached to a third bearing 376L and a fourth bearing 376R provided at an upper end portion of a back face of the guide wall 322 (see
The moving direction changing unit 312 is disposed downstream of the coin passage 306, and it has a function of changing a moving direction of a coin C to a different direction to the coin passage 306. According to the third embodiment, a coin C is guided to the coin detecting passage 314 disposed so as to be displaced to the coin passage 306 by the moving direction changing unit 312. As described below, the coin detecting passage 314 is displaced rearward to the coin passage 306 (on the side of the back face of the guide wall 322), and it is positioned within the second plane inclined obliquely. The moving direction changing unit 312 includes a guiding body 386. The guiding body 386 is formed in a slender rectangular plate shape, it is disposed on an extension line of the guide rail 304, it is inclined rightward downwardly in
Next, the coin detecting passage 314 will be explained with reference to
Next, the coin sensor 316 will be explained with reference to
Next, the cancel unit 318 will be explained with reference to
Next, the shutter unit 320 will be explained with reference to
As shown in
Next, the operation of the third embodiment will be explained. When a game machine attached with the coin selector 300 is not in a state for receiving a coin C, since the rotary solenoid 426 is put in a demagnetized state, the cancel body 422 is rotated in a clockwise direction by attraction of the incorporated magnet so that the cancel body 422 is held at the cancel position CP where it has advanced to the coin passage 306. When a real coin C is inserted in the slot 334, the coin C rolls on the guide rail 304 while both side faces thereof are being guided by the guide face 354, the main body 326, and the diameter sorting unit 356, and it reaches the cancel body 422. The coin C is guided by the guide edge 453 of the cancel body 422 crossing the coin passage 306 before it rides on the guiding body 386 to be deflected to the side of the supporting shaft 392 of the guiding body 386 so that the coin C drops in the cancel passage 456.
Next, a case that the coin selector 300 is put in a state for receiving a coin C will be explained. In other words, as shown in
Next, a case that a small-diameter fake coin SC has been inserted will be explained. In the real/fake discriminating unit 310, an upper end side face of a small-diameter fake coin SC is not guided by the diameter sorting body 356. Therefore, since an upper end portion of the small-diameter fake coin SC is pushed out to the drop opening 352 by a pushing force of the deflecting body 372 acting in a lateral direction of the coin C, the coin C turns cartwheels to drop from the guide rail 304 to the reject passage 385 to be rejected.
Next, a case that a large-diameter fake coin has been inserted will be explained. A large-diameter fake coin is sandwiched between a periphery of the mounting portion 358 and the guide rail 304 so that it cannot roll on the coin passage 306. In this case, the third main body 326 is rotated about the first shaft 338 and the second shaft 342 by pushing and moving the piece to be moved 353. Thereby, since a clearance larger than the thickness of the coin C is formed between the end face of the guide rail 304 of the third main body 326 and the guide face 354 and an upper face of the guide rail 304 is inclined downwardly, the coin C which cannot move drops to be rejected.
Next, a case that a tool for illegal action has been inserted in the slot 334 will be explained. Even if a tool for illegal action is inserted along the coin passage 306, it is necessary to advance the tool for illegal action into the coin detecting passage 314 positioned on the different plane disposed so as to displaced from the plane on which the coin passage 306 is disposed. However, it is difficult to advance the tool for illegal action to the displaced coin detecting passage 314 in a narrow range and the tool for illegal action cannot be advanced substantially. Therefore, it is impossible to perform an illegal action to the coin sensor 316 by using a tool for illegal action inserted from the slot 334. Even if turning-ON and turning-OFF of the coin sensor 316 are tried by utilizing a real coin C connected with a string, when the coin C is pulled up, the coin is caught by the guiding body 386 to rotate the guiding body 386 in a counterclockwise direction in
Next, a case that a tool for illegal action has been inserted into the exit 414 will be explained. When a tool for illegal action has been inserted into the exit 414, the shutter body 462 is pushed by the tool and the distal end thereof is rotated only in a direction in which it pushes the guide wall. Therefore, an illegal action to the coin sensor 316 cannot be conducted by the tool for illegal action inserted into the exit 414.
Since the fourth embodiment has a constitution that the cancel body 422 and the moving direction changing portion guiding body 458 have been modified in the third embodiment, only a modified portion will be explained.
In the cancel body 502 in the fourth embodiment, the output shaft 428 of the rotary solenoid 426 is inserted into a boss hole 504 at one end and it is fixed by a set screw (not shown). The cancel body 502 has a plate-shaped base portion 505 on the side of the boss hole 504, and an upper cancel piece 502A and a lower cancel piece 502U are provided in a relationship of an upper part and a lower part on a portion of the cancel body 502 extending from an intermediate portion to a distal end at a predetermined interval narrower than the diameter of the coin C. It is preferable that the interval is about ⅓ of the diameter of the coin C in order to push one face of the coin C reliably. The upper cancel piece 502A and the lower cancel piece 502U have predetermined lengths along the coin passage 306 above the guiding body 386 along the coin passage 306, and they are provided so as to freely advance to and retract from the coin passage 306 from an upper through-hole 506A and a lower through-hole 506U formed in the guide wall 322. An upper guide edge 508A and a lower guide edge 508U of the upper cancel piece 502A and the lower cancel piece 502U which guide a coin C are formed in an arc shape, as shown in
According to the fourth embodiment, the cancel body 502 is biased so as to be rotated in a clockwise direction (a projecting direction into the coin passage 306) in
The moving direction changing portion guiding body 522 is a downward vertical standing portion of an inverted L-shaped body 524. Bearings 528A and 528B formed at an end portion of a horizontal portion 526 of the inverted L-shaped body 524 at a predetermined interval are rotatably fitted on shafts 534A and 534B formed sideways at an upper end of a stay 532 vertically standing from the base portion 505. Since the inverted L-shaped body 524 generates self-moment without requiring a weight or a spring, it is preferable that the inverted L-shaped body 524 is made from resin or it is manufactured by working resin to obtain a predetermined biasing force. A guide position engaging piece 536 extending from a bearing 528A to a front face side of the stay 532 projects. The guide position engaging piece 536 is stopped by a stopper face 538 on the side of the coin passage 306 of the stay 532, and it is held at a guide position GP parallel with the stay 532. A rotation restricting piece 542 extends from the bearing 528B to a back face side of the stay 532, the rotation restricting piece 542 is engaged with a stopper face 540 on the back face of the stay 532 at a position where the inverted L-shaped body 534 has been rotated a predetermined angle, so that rotation of the inverted L-shaped body 534 is stopped. In other words, when the moving direction changing portion guiding body 522 is separated from the cancel pieces 502A and 502U by a predetermined distance, movement of the moving direction changing portion guiding body 522 is stopped by the rotation restricting piece 542 (shown by a two-dotted chain line in
Since the inverted L-shaped body 524 generates self-moment in a counterclockwise direction about the shafts 534A and 534B in
Next, the operation of the fourth embodiment will be explained with reference to
When the coin selector 300 is put in a state that it can receive a coin C, since the rotary solenoid 426 is excited, the cancel body 502 is rotated in a counterclockwise direction, as shown in
Next, a case that a real coin C is cancelled will be explained. When a real coin C is cancelled, since the rotary solenoid 426 is demagnetized, the engaging portion 507 is rotated at a high speed by an attracting force of the magnet incorporated in the cancel body 502 and a spring force of the spring 510 until advance of the engaging portion 507 is blocked by a back face of the guide wall 322, and it is held at the cancel position CP shown in
Next, in the case that a real coin C is cancelled, a case that the coin C has reached the guiding body 386 in the course of movement of the upper cancel piece 502A and the lower cancel piece 502U to the cancel position CP will be explained. The movement of the coin C to the coin detecting passage 314 is blocked by the upper cancel piece 502A and the lower cancel piece 502U in the course of movement to the cancel position CP just after the guiding body 386 slightly rotates due to a weight of the coin C and the coin C starts to drop to the side of the coin detecting passage 314 in a sliding manner, so that the coin C is pushed to the side of the cancel passage 456. Thereby, since an upper end portion of the coin C is pushed laterally about a lower end of the coin C placed on the guiding body 386 serving as a fulcrum, the coin C falls down to the cancel passage 456 from its upper end side, and the coin C is caused to roll laterally such that its upper end is inverted to a lower end thereof so that the coin C is cancelled.
Next, a case that three coins C have reached the guiding body 386 in a state that they are strung together like beads in the course of movement of the upper cancel piece 502A and the lower cancel piece 502U to the cancel position CP will be explained. In this case, before the first coin C rolls to the cancel passage 456, the next coin C reaches the cancel passage 456, so that a plurality of coins C, for example, three coins are jammed between the upper cancel piece 502A and the lower cancel piece 502U, and the moving direction changing portion guide body 522. In this case, the moving direction changing portion guide body 522 is rotated in a clockwise direction in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
2006-192150 | Jul 2006 | JP | national |
2006-261399 | Sep 2006 | JP | national |
2006-309609 | Nov 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2073949 | Scofield | Mar 1937 | A |
2230566 | Hakanson | Feb 1941 | A |
2453437 | Hokanson | Nov 1948 | A |
2816639 | Miller | Dec 1957 | A |
3586146 | Heirbaut et al. | Jun 1971 | A |
4960196 | Kanehara et al. | Oct 1990 | A |
5441447 | Okada | Aug 1995 | A |
6193045 | Ishida et al. | Feb 2001 | B1 |
6398001 | Hutchinson et al. | Jun 2002 | B1 |
6425471 | Guindulain Vidondo | Jul 2002 | B1 |
6499581 | Yoshida et al. | Dec 2002 | B2 |
20010008831 | Mori et al. | Jul 2001 | A1 |
Number | Date | Country |
---|---|---|
5-282514 | Oct 1993 | JP |
2005-312818 | Nov 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080011578 A1 | Jan 2008 | US |