The invention relates to a heat exchanger for a motor vehicle, and more particularly, to a header for coupling a fluid reservoir to a heat exchanger.
Heat exchangers are generally formed of a core configured to facilitate an exchange of thermal energy with a fluid passing therethrough. A header is disposed on at least one end of the core, and provides an interface between the core and a fluid reservoir, such as a tank or manifold. One common type of header is known as a recessed header, wherein a portion of the header is recessed to receive a portion of the fluid reservoir therein.
In modern heat exchangers, an integrated means for coupling the fluid reservoir to the header is desirable, as it allows the heat exchanger to be assembled without using independent fastening means, such as bolts and clips. By using an integrated means for coupling the headers and fluid reservoirs, manufacturing costs can be substantially reduced by minimizing assembly time and eliminating unnecessary components.
However, in recent years, increased performance requirements for heat exchangers have caused existing configurations of integrated coupling means to become insufficient. For example, modern heat exchangers operate at increased internal pressures. During operation at the increased internal pressures, the interface between the header and the fluid reservoir may warp or fracture as a result of pressure induced stresses, causing a failure of the heat exchanger.
In a common heat exchanger configuration, a fluid reservoir is coupled to a header by inserting a portion of the fluid reservoir into the header, and subsequently securing the fluid reservoir by a crimping process or deforming a plurality of tabs of the header over the inserted portion of the fluid reservoir. However, this configuration is prone to failure under the increased pressure conditions of modern heat exchangers. For example, as the pressure within the fluid reservoir increases, the fluid reservoir is biased apart from the header, and the inserted portion of the fluid reservoir applies a bending moment to the tabs of the header. The bending moment forces the tabs of the header outward, allowing the fluid reservoir to separate from the header. Further, deforming the tabs of the header creates residual stress concentrations in the header. Upon application of the increased pressures, the areas of the residual stress concentrations are prone to failure.
Additionally, modern heat exchangers are commonly integrated into rigid components of the vehicle. By rigidly mounting the heat exchanger within the vehicle, the heat exchanger is more susceptible to harmful vehicle vibrations. Accordingly, increased vibration of the heat exchanger further increases stresses in the interface between the header and the fluid reservoir.
In order to solve the problem of increased vibration, a strength, stiffness, and durability of the header is increased. By increasing the strength, stiffness, and durability of the header, an increased bending force is required to crimp or otherwise deform the plurality of tabs of the header over the fluid reservoir. The increased force causes the header to be more susceptible to distortion and deformations due to the residual stress concentrations therefrom. Additionally, some heat exchangers include heat exchanger tubes received by the header. The tubes minimize distortion of the header. However, other types of heat exchangers have headers that do not receive tubes, such as water-cooled charge air coolers, for example. The increased force applied to headers that do not receive the tubes escalates susceptibility of distortion to such headers.
Accordingly, there exists a need in the art for an improved means of coupling a fluid reservoir to a header of a heat exchanger, wherein the coupling means is integral to the heat exchanger assembly.
In concordance with the instant disclosure, an improved means of coupling a fluid reservoir to a header of a heat exchanger assembly, wherein the coupling means is integral in the heat exchanger assembly is surprisingly discovered.
In a first embodiment, a header for a heat exchanger includes a header frame defining an opening and including a base portion circumscribing a perimeter thereof. A mounting tab extends from the base portion. The mounting tab is configured to bend inwardly with respect to the header frame. A deformation featured is formed on one of an inner surface and an outer surface of the header frame and is configured to facilitate bending of the mounting tab
In another embodiment, a heat exchanger for a motor vehicle is disclosed. The heat exchanger includes a fluid reservoir having a base and a header receiving the base of the fluid reservoir. The header has a mounting tab configured to bend inwardly from a predisposed open position to a closed position. The mounting tab engages the fluid reservoir in the closed position. A deformation feature is formed in the header. The deformation feature minimizes a force required to bend the mounting tab from the predisposed open position to the closed position.
In yet another embodiment, a method of assembling a heat exchanger is disclosed. The method includes the step of providing a fluid reservoir and a header including a mounting tab configured to bend from an open position to a closed position. The method further includes the steps of forming a deformation feature on one of an inner surface and an outer surface of the header to facilitate bending of the mounting tab and inserting a portion of the fluid reservoir into the header. The method further includes the step of bending the mounting tabs inwardly from the open position to the closed position about a pivot point proximate to the deformation feature to engage the fluid reservoir.
The following detailed description and appended drawings describe and illustrate various embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.
A fluid reservoir 10 is removably coupled to each of the headers 8 of the heat exchanger 2. In the illustrated embodiment, each of the headers 8 is similarly formed. Accordingly, any description with respect to the configuration of one of the headers 8 and one of the fluid reservoirs 10 will be understood to similarly apply to the other header 8 and the other fluid reservoir 10. In alternate embodiments, each of the headers 8 may be configured differently than the other.
Referring to
A plurality of first coupling features 20 is spaced along the base 14 of the fluid reservoir 10. In the illustrated embodiment, each of the first coupling features 20 is a protrusion extending outward from the base 14 adjacent the lip 16. A distal end 22 of each of the first coupling features 20 tapers outwardly from the fluid reservoir 10, wherein a distance from the distal end 22 to the base 14 increases as a distance from a terminal end 24 of the lip 16 increases. In alternate embodiments, the length of the first coupling feature 20 may be substantially constant.
An engaging surface 26 is formed on each of the first coupling features 20, opposite the terminal end 24 of the lip 16. In one embodiment, each of the engaging surfaces 26 of the first coupling features 20 are coplanar. However, the engaging surfaces 26 of the first coupling features 20 may also be offset from one another.
As shown in
Referring to
In the illustrated embodiment, a plurality of mounting tabs 30 extend from the base portion 28 of the header frame 9, wherein a single one of the mounting tab 30 spans each of the sides of the header 8. In alternate embodiments, each of the sides of the header 8 may include a plurality of separately formed mounting tabs 30.
A plurality of second coupling features 32 is spaced along each of the mounting tabs 30. A position of each of the second coupling features 32 corresponds to a position of a respective one of the first coupling features 20 of the fluid reservoir 10, wherein the second coupling features 32 are configured to engage the first coupling features 20 to secure the fluid reservoir 10 to the header 8. In the illustrated embodiment, each of the second coupling features 32 is an enclosed cavity configured to receive at least a portion of the respective of one of the first coupling features 20. The cavity is defined by a sidewall and an end wall 34.
The sidewall of the cavity defines a receiving surface 36 of the second coupling feature 32, which is configured to cooperate with the engaging surface 26 of the first coupling feature 20. In the illustrated embodiment, the receiving surface 36 is formed opposite the base portion 28. As shown in
In the illustrated embodiment, a depth of the second coupling features 32 tapers outwardly from the header 8 with respect to the axis (A), wherein a distance between the end wall 34 and the axis (A) increases as a distance from the base portion 28 increases. In alternate embodiments, the depth of the second coupling features 32 remains constant with respect to the distance from the base portion 28.
A plurality of reinforcement features 38 is formed in each of the mounting tabs 30, intermediate each of the plurality of the second coupling features 32. The reinforcement features 38 are configured to militate against a deflection of the receiving surface 36 of the second coupling features 32 when the compressive force is applied along the axis (A). The reinforcement features 38 are formed of a sidewall 40 extending from the base portion 28, and an inwardly formed shoulder 42 extending from the sidewall 40, wherein an inner profile of the mounting tabs 30 is configured to substantially correspond to an outer profile of the base 14 of the fluid reservoir 10. In alternative embodiments, the reinforcement features 38, the first coupling features 20, and the second coupling features 32 can be structurally configured as any type of interlocking features as desired. For example, the shapes of the coupling features 20, 32 can have alternate cross-sectional shapes instead of substantially rectangular, as illustrated, such as substantially circular, substantially ovular, and substantially triangular. Additionally, the reinforcement features 38 can include other reinforcement types features such as additional coupling features, rivets, protrusions, brackets, varying cross-sectional shapes or other features configured to militate against deflection of the receiving surface 36 of the second coupling features 32.
The header 8 includes deformation features 50 formed therein. The deformation features 50 are configured to cause plastic deformation of the header 8 to facilitate flexibility and bending during coupling of the header 8 to the fluid reservoir 10. Plastic deformation induces plastic flow on a localized portion of the header 8 where the deformation features 50 are formed. For example, each of the deformation features 50 is a coined deformation feature formed by a coining process, a stamping process, a swaging process, or similar processes, as desired.
Referring to the exemplary embodiments of
For example, in the embodiments illustrated, the deformation features 50 are formed at an interface of the mounting tabs 30 and the base portion 28 directly adjacent the second coupling features 32. Each of the deformation features 50 is formed in the sidewall 40 of the reinforcement features 38 and directly adjacent the second coupling features 32. However, the deformation features 50 can be formed at any position of the header 8 as desired to facilitate bending of the mounting tabs 30 during coupling of the header 8 to the fluid reservoir 10 during assembly.
Referring to
It is understood, other configurations of the header 8 can be contemplated, as desired, without departing from the scope of the disclosure. In the embodiments illustrated, the header 8 is substantially rectangular shaped. However, the header can be any shape as desired and pre-formed in such manner that the mounting tabs 30 extend the entire sides of or are the entire sides of the header 8. In such an embodiment, the entire sides of the header 8 can be bent inwardly.
During assembly, the fluid reservoir 10 is secured to the header 8 of the heat exchanger 2 by inserting the base 14 of the fluid reservoir 10 into the base portion 28 of the header 8.
In a first step, shown in
Although the mounting tabs 30 of the instant disclosure are predisposed in the open position or the intermediate position during stamping or forming of the header 8, it will be appreciated that the mounting tabs 30 may be actively bent to the open position or the intermediate position immediately prior to or during assembly of the heat exchanger 2.
In a second step, shown in
The mounting tabs 30 are bent inwards towards the fluid reservoir 10, from the open position to the closed position, by applying the force FC to the mounting tabs 30 to couple the header 8 to the fluid reservoir 10. The mounting tabs 30 are bent about a pivot point proximate to the deformation features 50. It is understood proximate to mean at, nearly accurate, almost, or next to but very near. In one exemplary embodiment, the mounting tabs 30 can be bent inwardly by an elastic force of the mounting tabs 30 when the base 14 is positioned within the base portion 28. In another exemplary embodiment, the mounting tabs 30 can be manually bent inwards during an assembly process such as crimping, welding, brazing, laser forming, or similar processes. It will be understood that a combination of the elastic force and manual bending may be utilized to move the mounting tabs 30 to the closed position. As the force FC is applied to the mounting tabs 30, the deformation features 50 minimize an amount of the force FC required to bend the mounting tabs 30 without affecting the rigidity and integrity of the mounting tabs 30 during operation. It is understood, the deformation features 50 can be formed prior to assembly or during assembly of the heat exchanger 2.
In the closed position, the engaging surfaces 26 of the first coupling features 20 cooperate with the receiving surfaces 36 of the second coupling features 32 to secure the base 14 of the fluid reservoir 10 to the base portion 28 of the header 8, and to maintain the compressive force on the sealing element 44. Accordingly, the first coupling feature 20 is compressed against the second coupling feature 32. When each of the engaging surfaces 26 and each of the receiving surfaces 36 are inclined, the compressive force causes the receiving surfaces 36 of the second coupling features 32 to be biased inward by the engaging surfaces 26 of the first coupling features 20, further securing the fluid reservoir 10 by preventing the mounting tab 30 from bending outward.
The deformation features 50 formed in the header 8 according to the disclosure facilitate bending the mounting tabs 30 during coupling of the header 8 to the fluid reservoir 10 without reducing a strength and rigidity of the header 8 or fluid reservoir 10. The deformation features 50 pre-determine and sufficiently control the bending of the mounting tabs 30. With the deformation features 50, a desired thickness and a desired material of the header 8 can be maintained to militate against damage during operation, while still permitting the mounting tabs 30 to be bent with less force. Particularly, undesired stress concentrations, deformations, and distortions are limited in the header 8 according the present disclosure.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
Number | Name | Date | Kind |
---|---|---|---|
4461348 | Toge | Jul 1984 | A |
4649628 | Allemandou | Mar 1987 | A |
4651815 | Logic | Mar 1987 | A |
5944095 | Fukuoka | Aug 1999 | A |
5947196 | Halm et al. | Sep 1999 | A |
20080308263 | Kolb | Dec 2008 | A1 |
20150129188 | Frankiewicz | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2703528 | Aug 1978 | DE |
102013217689 | Mar 2015 | DE |
2499234 | Aug 1982 | FR |
2614408 | Oct 1988 | FR |
10160383 | Jun 1998 | JP |
2014173909 | Oct 2014 | WO |
Entry |
---|
AZoM—Coining Metallurgical Processes.pdf. |
DE 2703528 A1—English Machine Translation.pdf. |
FR 2499234 A1—English Machine Translation.pdf. |
JP 10160383 A—English Machine Translation.pdf. |
DE 102013217689 A1—English Machine Translation.pdf. |
FR 2614408 A1—English Machine Translation.pdf. |
Number | Date | Country | |
---|---|---|---|
20170363372 A1 | Dec 2017 | US |