Coined VCM tab to limit cover deflection under pinch load

Information

  • Patent Grant
  • 9019657
  • Patent Number
    9,019,657
  • Date Filed
    Wednesday, March 13, 2013
    11 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
A disk drive assembly including a disk drive enclosure including an enclosure main body forming an interior region, the interior region having a Voice Coil Motor (VCM) assembly receiving portion configured to hold a VCM assembly; and a cover member configured to engage the enclosure main body and cover the interior region of the enclosure main body, and expose at least a portion of the VCM Assembly receiving portion; and a VCM assembly disposed within the VCM assembly receiving portion of the enclosure main body, the VCM assembly comprising a cover supporting member configured to engage and support the cover member.
Description
FIELD

The present disclosure relates generally to information storage devices, and in particular to a disk drive storage device having a VCM supporting a portion of the drive cover.


BACKGROUND

Disk drives typically include a drive cover that attaches to a drive enclosure to enclose the drive components. However, with increasingly thinner HDD design, the thickness of the drive cover can increase the HDD thickness, which is disfavored. Further, as the drive cover becomes thinner, its rigidity may decrease and its ability to resist deflection under external load may be reduced. In such situations, an external load may cause deflection of the drive cover and damage to interior components of the drive may occur.


There is therefore a need for a drive enclosure that can reduce HDD thickness without sacrificing resistance to external load.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate implementations of the disclosure and not to limit the scope of the disclosure. Throughout the drawings, reference numbers are reused to indicate correspondence between referenced elements.



FIG. 1 is an exploded, perspective view generally illustrating a disk drive including a drive enclosure and cover according to related art.



FIG. 2 is a top view illustrating a cover and enclosure according to an implementation of the present application.



FIG. 3 is an enlarged perspective view illustrating the cover and enclosure according to the implementation of FIG. 2.



FIG. 4 is a sectional view of the cover and enclosure according to the implementation of FIG. 2.



FIG. 5 is a top view illustrating the cover and enclosure according to the implementation of FIG. 2 with an additional sealing member attached.





DETAILED DESCRIPTION

Referring to FIG. 1, a disk drive 100 according to related art is illustrated for comparison purposes. The disk drive 100 comprises a hub 102, a disk 104 physically contacting and supported by at least one mounting surface (not labeled in FIG. 1) of the hub 102, and a head 106 operable to write to and read from the disk 104. In one implementation, the hub 102 comprises a substantially cylindrical portion 108 which define a longitudinal axis L and a mounting surface (not labeled in FIG. 1) substantially normal to the longitudinal axis L, the mounting surface (not labeled in FIG. 1) extending radially outward.


As illustrated herein, the disk drive 100 comprises a magnetic disk drive, and the structures and methods described herein will be described in terms of such a disk drive. However, these structures and methods may also be applied to and/or implemented in other disk drives, including, e.g., optical and magneto-optical disk drives.


The disks 104 may comprise any of a variety of magnetic or optical disk media having a substantially concentric opening 114 defined there through. Of course, in other implementations, the disk drive 100 may include more or fewer disks. For example, the disk drive 100 may include one disk or it may include two or more disks. The disks 104 each include a disk surface 116, as well as an opposing disk surface not visible in FIG. 1. In one implementation, the disk surfaces 116 comprise a plurality of generally concentric tracks for storing data.


As illustrated, the hub 102 may be coupled to and support the disks 104. The hub 102 may also be rotatably attached to a motor base 118 of the disk drive 100, and may form one component of a motor 120 (e.g., a spindle motor). The motor 120 and the hub 102 may be configured to rotate the disks 104 about the longitudinal axis L.


Further, a disk clamp 140 may be coupled to the hub 102 to provide a downward clamping force to the disks 104. Specifically, the disk clamp 140 may be positioned above the disks 104 and attached to an upper surface of the hub 102. The interaction of the disk clamp 140 and the hub 102 to provide the downward clamping force is discussed in more detail below.


The disk drive 100 may also include a head stack assembly (“HSA”) 124 rotatably attached to the motor base 118. The HSA 124 may include an actuator 126 comprising an actuator body 128 and one or more actuator arms 130 extending from the actuator body 128. The actuator body 128 may further be configured to rotate about an actuator pivot axis.


One or two head gimbal assemblies (“HGA”) 132 may be attached to a distal end of each actuator arm 130. Each HGA 132 includes a head 106 operable to write to and read from a corresponding disk 104. The HSA 124 may further include a coil 134 through which a changing electrical current is passed during operation. The coil 134 interacts with one or more magnets 136 that are attached to the motor base 118 to form a voice coil motor (“VCM”) 142 for controllably rotating the HSA 124. The VCM 142 also includes a top plate (yoke) 144 and a bottom plate (yoke) 146.


The head 106 may comprise any of a variety of heads for writing to and reading from a disk 104. In magnetic recording applications, the head 106 may include an air bearing slider and a magnetic transducer that includes a writer and a read element. The magnetic transducer's writer may be of a longitudinal or perpendicular design, and the read element of the magnetic transducer may be inductive or magneto resistive. In optical and magneto-optical recording applications, the head may include a mirror and an objective lens for focusing laser light on to an adjacent disk surface.


The disk drive 100 may further include a printed circuit board (“PCB”) (not shown). The PCB may include, inter alia, a disk drive controller for controlling read and write operations and a servo control system for generating servo control signals to position the actuator arms 130 relative to the disks 104.


The disk drive 100 may further include a cover 122, which, together with the motor base 118, may house all of the above discussed components of the disk drive. In the related art, the motor base 118 has a substantially rectangular shape. Further, the cover 122 also has a substantially rectangular shape, which covers all components of the hard disk drive 100.



FIG. 2 is a top view illustrating a cover 222 and enclosure 248 according to an implementation of the present application. Further, FIG. 3 is an enlarged perspective view illustrating the cover 222 and enclosure 248 according to the implementation of FIG. 2. As illustrated in FIGS. 2 and 3, the drive enclosure is configured to have a recessed, interior area 252 in which the drive components are received. The attachment of the cover 222 to the enclosure 248 is not particularly limited, and may include attachment by screw members 300, bolts, rivets or any other attachment mechanisms as would be apparent to a person of ordinary skill in the art.


Unlike the cover of the disk drive according to related art, the cover 222 in this implementation covers many of the components housed in the recessed, interior area 252 of the enclosure 248, but does not cover the VCM assembly 242. Instead, the side walls 254 of the enclosure 248 extend upward to a height substantially equal to the VCM assembly 242 and wrap around the VCM assembly 242 on at least two sides to form a VCM receiving area. The attachment of the VCM assembly 242 to the enclosure 248 is not particularly limited, and may include attachment by screw members 302, bolts, rivets or any other attachment mechanisms as would be apparent to a person of ordinary skill in the art. Further, the VCM assembly 242 includes a top plate 256 that supports the cover 222 as best shown in FIG. 4.


More specifically, in one implementation, the top plate 256 includes a cover supporting tab 258 that extends outward from the VCM assembly 242 is formed to receive and support a supported portion 260 of the cover 222. The cover supporting tab 258 may be configured to extend from the VCM top plate 256 on a side of the VCM assembly 242 nearest the pivot point of an actuator arm (not shown in FIGS. 2 and 3) disposed in the recessed, interior area 252 of the enclosure 248. The structure of the cover supporting tab 258 is discussed in greater detail with respect to FIG. 4 below.


In addition to the features discussed above, in some implementations, the VCM top plate 256 may also include a tab 262 extending horizontally from VCM assembly 242 to cover or partially cover a latch mechanism 272 of an actuator arm disposed in the recessed, interior area 252 of the enclosure 248. In such implementations, the tab 262 may provide an upper limit on the vertical motion of the latch mechanism 272.



FIG. 4 provides a sectional view of the cover 222 and enclosure 248 according to the implementation shown in FIGS. 2 and 3. As discussed above, the enclosure 248 has a recessed, interior area 252 (labeled in FIGS. 2 and 3) that houses the components of the drive. Further, the cover 222 covers many of the disposed within the recessed, interior area 252 (labeled in FIGS. 2 and 3), but the VCM assembly 242 is exposed and not covered by the cover 222. As shown, the VCM assembly 242 includes a top plate 256 that has a cover supporting tab 258 extending horizontally from the VCM assembly 242. The shape of this cover supporting tab 258 is not particularly limited and may be rectangular, curved, or any other shape as would be apparent to a person of ordinary skill in the art. Further, the cover supporting tab 258 is not particularly limited to a single tab, and may include two or more tabs configured to support a portion of the cover 222.


In the implementation shown in FIG. 4, the cover supporting tab 258 may be configured to extend underneath and support at least a portion of the cover 222 (the supported portion 260 of the cover) forming an overlapping region 264. In some implementations, the overlapping region may have a length of 200 or more microns in some implementations. In some implementations, the cover supporting tab 258 may have a recessed portion such that the supported portion 260 of the cover 222 has a height substantially equal to the height of the VCM top plate 256 of the VCM assembly 242. Additionally, the cover supporting tab 258 may be configured to extend over the head stack assembly (HSA) 224.


In some implementations, a gap 266 may be formed between the supported portion 260 of the cover 222 and the cover supporting portion 258 of the VCM top plate 256 such that the cover 222 and the VCM top plate 256 only contact when deflected under an exterior force applied by to the drive. Alternatively, in some implementations, the cover 222 and the cover supporting portion of the VCM top plate 256 may be contacting even when no exterior force is applied to the drive.



FIG. 5 provides a top view illustrating the cover and enclosure according to the implementation of FIGS. 2 and 3 with an additional sealing member attached. In some implementations, a sealing member 268 may also be provided to create a hermetic seal within the drive. This sealing member 268 is not particularly limited, and may include a thin-film having adhesive applied to one side such that the sealing member to 268 conforms to features of the cover 222, the VCM assembly 242, and the enclosure 248. Further, the sealing member 268 may have a pre-cut widow 270 placed to allow clearance such that features of the cover 222 may protrude upward through the sealing member 268 while maintaining a hermetic seal. However, the sealing member 268 is not limited to this configuration and may include a thick sealing member have a rigid structure that is attached via screws or any other attachment mechanism as would be apparent to a person of ordinary skill in the art.


The foregoing detailed description has set forth various implementations of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one implementation, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, the implementations disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more programs executed by one or more processors, as one or more programs executed by one or more controllers (e.g., microcontrollers), as firmware, or as virtually any combination thereof.


While certain implementations have been described, these implementations have been presented by way of example only, and are not intended to limit the scope of the protection. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the protection. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection.

Claims
  • 1. A disk drive enclosure comprising an enclosure main body forming an interior region, the interior region having a Voice Coil Motor (VCM) assembly receiving portion configured to hold a VCM assembly;at least one cover member configured to engage the enclosure main body and cover the interior region of the enclosure main body, and expose at least a portion of the VCM assembly receiving portion;wherein the cover member is configured to engage and be supported by an upper yoke of the VCM assembly disposed in the VCM assembly receiving portion of the enclosure main body; anda conformal sealing member configured to cover substantially all of: the VCM assembly, including the upper yoke, the cover member and the enclosure main body to substantially seal the disk drive enclosure,wherein the VCM assembly receiving portion of the enclosure main body comprises a side wall configured to extend upward to have a height substantially equal to the height of the VCM assembly on at least one side of the VCM assembly.
  • 2. The drive enclosure of claim 1, wherein the cover member is configured to be supported by the VCM assembly at a location nearest a pivot point of an actuator arm disposed within the interior region of the disk drive enclosure.
  • 3. The drive enclosure of claim 1, wherein the cover member is configured to be supported by a tab extending from a top plate of the VCM assembly, the tab at least partially covering a portion of a head stack assembly disposed adjacent to the VCM assembly.
  • 4. The drive enclosure of claim 3, wherein the cover member comprises a tab extending toward the VCM assembly configured to engage the tab extending from the VCM assembly.
  • 5. The drive enclosure of claim 4, wherein the cover member is configured to be received in a recess formed in the tab extending from the top plate of the VCM assembly.
  • 6. The drive enclosure of claim 1, wherein the side wall of the VCM assembly receiving portion is configured to extend upward to have a height substantially equal to the height of the VCM assembly on at least two sides of the VCM assembly.
  • 7. The drive enclosure of claim 1, wherein the sealing member is a thin-film member and is adhesively attached to the drive enclosure.
  • 8. The drive enclosure of claim 1, wherein the VCM assembly comprises a top plate having a tab that extends from the VCM assembly to at least partially cover a latch mechanism for an actuator arm disposed within the interior region of the disk drive enclosure.
  • 9. A disk drive assembly comprising: a disk drive enclosure comprising an enclosure main body forming an interior region, the interior region having a Voice Coil Motor (VCM) assembly receiving portion configured to hold a VCM assembly; anda cover member configured to engage the enclosure main body and cover the interior region of the enclosure main body, and expose at least a portion of the VCM Assembly receiving portion;a VCM assembly disposed within the VCM assembly receiving portion of the enclosure main body, the VCM assembly comprising an upper yoke formed by an upper plate, the upper yoke forming at least one cover supporting member configured to engage and support the cover member; anda conformal sealing member configured to cover substantially all of: the VCM assembly, including the upper yoke, the cover member and the enclose enclosure main body to substantially seal the disk drive assembly,wherein the VCM assembly receiving portion of the enclosure main body comprises a side wall configured to extend upward to have a height substantially equal to the height of the VCM assembly on at least one side of the VCM assembly.
  • 10. The drive assembly of claim 9, wherein the cover supporting member is disposed on a side of the VCM assembly nearest a pivot point of an actuator arm disposed within the interior region of the disk drive enclosure.
  • 11. The drive assembly of claim 9, wherein the cover supporting member of the VCM assembly comprises a tab extending from a top plate of the VCM assembly to at least partially cover a portion of a head stack assembly disposed adjacent the VCM assembly.
  • 12. The drive assembly of claim 11, wherein the cover member comprises a tab extending toward the VCM assembly configured to engage the tab of the cover supporting member of the VCM assembly.
  • 13. The drive assembly of claim 12, wherein the cover supporting member comprises a recess formed in the tab extending from the top plate of the VCM assembly, the recess configured to receive the tab of the cover member.
  • 14. The drive assembly of claim 9, wherein the side wall of the VCM assembly receiving portion is configured to extend upward to have a height substantially equal to the height of the VCM assembly on at least two sides of the VCM assembly.
  • 15. The drive assembly of claim 9, wherein the sealing member is a thin-film member and is adhesively attached to the drive assembly.
  • 16. The drive assembly of claim 9, wherein the VCM assembly comprises a top plate having a tab that extends from the VCM assembly to at least partially cover a latch mechanism for an actuator arm disposed within the interior region of the disk drive enclosure.
US Referenced Citations (318)
Number Name Date Kind
5235482 Schmitz Aug 1993 A
5315464 Tsujino May 1994 A
5315466 Nishimoto et al. May 1994 A
5636091 Asano Jun 1997 A
5650895 Koizumi et al. Jul 1997 A
6046889 Berding et al. Apr 2000 A
6052890 Malagrino, Jr. et al. Apr 2000 A
6061206 Foisy et al. May 2000 A
6101876 Brooks et al. Aug 2000 A
6125016 Lin Sep 2000 A
6147831 Kennedy et al. Nov 2000 A
6151189 Brooks Nov 2000 A
6151197 Larson et al. Nov 2000 A
6185067 Chamberlain Feb 2001 B1
6185074 Wang et al. Feb 2001 B1
6208486 Gustafson et al. Mar 2001 B1
6215616 Phan et al. Apr 2001 B1
6288866 Butler et al. Sep 2001 B1
6292333 Blumentritt et al. Sep 2001 B1
6304421 Brown Oct 2001 B1
6344950 Watson et al. Feb 2002 B1
6347023 Suwa Feb 2002 B1
6349464 Codilian et al. Feb 2002 B1
6388873 Brooks et al. May 2002 B1
6417979 Patton, III et al. Jul 2002 B1
6421208 Oveyssi Jul 2002 B1
6441998 Abrahamson Aug 2002 B1
6462914 Oveyssi et al. Oct 2002 B1
6466398 Butler et al. Oct 2002 B1
6469871 Wang Oct 2002 B1
6502300 Casey et al. Jan 2003 B1
6519116 Lin et al. Feb 2003 B1
6529345 Butler et al. Mar 2003 B1
6529351 Oveyssi et al. Mar 2003 B1
6535358 Hauert et al. Mar 2003 B1
6545382 Bennett Apr 2003 B1
6549379 Kazmierczak et al. Apr 2003 B1
6549381 Watson Apr 2003 B1
6560065 Yang et al. May 2003 B1
6571460 Casey et al. Jun 2003 B1
6574073 Hauert et al. Jun 2003 B1
6577474 Kazmierczak et al. Jun 2003 B2
6580574 Codilian Jun 2003 B1
6594111 Oveyssi et al. Jul 2003 B1
6603620 Berding Aug 2003 B1
6618222 Watkins et al. Sep 2003 B1
6624966 Ou-Yang et al. Sep 2003 B1
6624980 Watson et al. Sep 2003 B1
6624983 Berding Sep 2003 B1
6628473 Codilian et al. Sep 2003 B1
6654200 Alexander et al. Nov 2003 B1
6657811 Codilian Dec 2003 B1
6661597 Codilian et al. Dec 2003 B1
6661603 Watkins et al. Dec 2003 B1
6674600 Codilian et al. Jan 2004 B1
6690637 Codilian Feb 2004 B1
6693767 Butler Feb 2004 B1
6693773 Sassine Feb 2004 B1
6697213 Lofstrom et al. Feb 2004 B2
6697217 Codilian Feb 2004 B1
6698286 Little et al. Mar 2004 B1
6700736 Wu et al. Mar 2004 B1
6704167 Scura et al. Mar 2004 B1
6707637 Codilian et al. Mar 2004 B1
6707641 Oveyssi et al. Mar 2004 B1
6710980 Hauert et al. Mar 2004 B1
6710981 Oveyssi et al. Mar 2004 B1
6721128 Koizumi et al. Apr 2004 B1
6728062 Ou-Yang et al. Apr 2004 B1
6728063 Gustafson et al. Apr 2004 B1
6731470 Oveyssi May 2004 B1
6735033 Codilian et al. May 2004 B1
6741428 Oveyssi May 2004 B1
6751051 Garbarino Jun 2004 B1
6754042 Chiou et al. Jun 2004 B1
6757132 Watson et al. Jun 2004 B1
6759784 Gustafson et al. Jul 2004 B1
6781780 Codilian Aug 2004 B1
6781787 Codilian et al. Aug 2004 B1
6781791 Griffin et al. Aug 2004 B1
6790066 Klein Sep 2004 B1
6791791 Alfred et al. Sep 2004 B1
6791801 Oveyssi Sep 2004 B1
6795262 Codilian et al. Sep 2004 B1
6798603 Singh et al. Sep 2004 B1
6801389 Berding et al. Oct 2004 B1
6801404 Oveyssi Oct 2004 B1
6816342 Oveyssi Nov 2004 B1
6816343 Oveyssi Nov 2004 B1
6825622 Ryan et al. Nov 2004 B1
6826009 Scura et al. Nov 2004 B1
6831810 Butler et al. Dec 2004 B1
6839199 Alexander, Jr. et al. Jan 2005 B1
6844996 Berding et al. Jan 2005 B1
6847504 Bennett et al. Jan 2005 B1
6847506 Lin et al. Jan 2005 B1
6847507 Wang et al. Jan 2005 B2
6856491 Oveyssi Feb 2005 B1
6856492 Oveyssi Feb 2005 B2
6862154 Subrahmanyam et al. Mar 2005 B1
6862156 Lin et al. Mar 2005 B1
6862176 Codilian et al. Mar 2005 B1
6865049 Codilian et al. Mar 2005 B1
6865055 Ou-Yang et al. Mar 2005 B1
6867946 Berding et al. Mar 2005 B1
6867950 Lin Mar 2005 B1
6876514 Little Apr 2005 B1
6879466 Oveyssi et al. Apr 2005 B1
6888697 Oveyssi May 2005 B1
6888698 Berding et al. May 2005 B1
6891696 Ou-Yang et al. May 2005 B1
6898052 Oveyssi May 2005 B1
6900961 Butler May 2005 B1
6906880 Codilian Jun 2005 B1
6906897 Oveyssi Jun 2005 B1
6908330 Garrett et al. Jun 2005 B2
6912105 Morita et al. Jun 2005 B1
6922308 Butler Jul 2005 B1
6930848 Codilian et al. Aug 2005 B1
6930857 Lin et al. Aug 2005 B1
6934126 Berding et al. Aug 2005 B1
6937444 Oveyssi Aug 2005 B1
6940698 Lin et al. Sep 2005 B2
6941642 Subrahmanyam et al. Sep 2005 B1
6947251 Oveyssi et al. Sep 2005 B1
6950275 Ali et al. Sep 2005 B1
6950284 Lin Sep 2005 B1
6952318 Ngo Oct 2005 B1
6954329 Ojeda et al. Oct 2005 B1
6958884 Ojeda et al. Oct 2005 B1
6958890 Lin et al. Oct 2005 B1
6961212 Gustafson et al. Nov 2005 B1
6961218 Lin et al. Nov 2005 B1
6963469 Gustafson et al. Nov 2005 B1
6965500 Hanna et al. Nov 2005 B1
6967800 Chen et al. Nov 2005 B1
6967804 Codilian Nov 2005 B1
6970329 Oveyssi et al. Nov 2005 B1
6972924 Chen et al. Dec 2005 B1
6972926 Codilian Dec 2005 B1
6975476 Berding Dec 2005 B1
6979931 Gustafson et al. Dec 2005 B1
6980391 Haro Dec 2005 B1
6980401 Narayanan et al. Dec 2005 B1
6982853 Oveyssi et al. Jan 2006 B1
6989953 Codilian Jan 2006 B1
6990727 Butler et al. Jan 2006 B1
6996893 Ostrander et al. Feb 2006 B1
7000309 Klassen et al. Feb 2006 B1
7006324 Oveyssi et al. Feb 2006 B1
7013731 Szeremeta et al. Mar 2006 B1
7031104 Butt et al. Apr 2006 B1
7035053 Oveyssi et al. Apr 2006 B1
7050270 Oveyssi et al. May 2006 B1
7057852 Butler et al. Jun 2006 B1
7062837 Butler Jun 2006 B1
7064921 Yang et al. Jun 2006 B1
7064922 Alfred et al. Jun 2006 B1
7064932 Lin et al. Jun 2006 B1
7085098 Yang et al. Aug 2006 B1
7085108 Oveyssi et al. Aug 2006 B1
7092216 Chang et al. Aug 2006 B1
7092251 Henry Aug 2006 B1
7099099 Codilian et al. Aug 2006 B1
7113371 Hanna et al. Sep 2006 B1
7142397 Venk Nov 2006 B1
7145753 Chang et al. Dec 2006 B1
RE39478 Hatch et al. Jan 2007 E
7161768 Oveyssi Jan 2007 B1
7161769 Chang et al. Jan 2007 B1
7180711 Chang et al. Feb 2007 B1
7193819 Chen et al. Mar 2007 B1
7209317 Berding et al. Apr 2007 B1
7209319 Watkins et al. Apr 2007 B1
D542289 Diebel May 2007 S
7212377 Ou-Yang et May 2007 B1
7215513 Chang et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7224551 Ou-Yang et al. May 2007 B1
D543981 Diebel Jun 2007 S
7227725 Chang et al. Jun 2007 B1
7239475 Lin et al. Jul 2007 B1
7271978 Santini et al. Sep 2007 B1
7274534 Choy et al. Sep 2007 B1
7280311 Ou-Yang et al. Oct 2007 B1
7280317 Little et al. Oct 2007 B1
7280319 McNab Oct 2007 B1
7292406 Huang Nov 2007 B1
7298584 Yamada et al. Nov 2007 B1
7327537 Oveyssi Feb 2008 B1
7339268 Ho et al. Mar 2008 B1
7342746 Lin Mar 2008 B1
RE40203 Hatch et al. Apr 2008 E
7353524 Lin et al. Apr 2008 B1
7369368 Mohajerani May 2008 B1
7372670 Oveyssi May 2008 B1
7375929 Chang et al. May 2008 B1
7379266 Ou-Yang et al. May 2008 B1
7381904 Codilian Jun 2008 B1
7385784 Berding et al. Jun 2008 B1
7388731 Little et al. Jun 2008 B1
7420771 Hanke et al. Sep 2008 B1
7434987 Gustafson et al. Oct 2008 B1
7436625 Chiou et al. Oct 2008 B1
7440234 Cheng et al. Oct 2008 B1
7477488 Zhang et al. Jan 2009 B1
7477489 Chen et al. Jan 2009 B1
7484291 Ostrander et al. Feb 2009 B1
7505231 Golgolab et al. Mar 2009 B1
7529064 Huang et al. May 2009 B1
7538981 Pan May 2009 B1
7549210 Teo et al. Jun 2009 B2
7561374 Codilian et al. Jul 2009 B1
7567410 Zhang et al. Jul 2009 B1
7576955 Yang et al. Aug 2009 B1
7593181 Tsay et al. Sep 2009 B1
7605999 Kung et al. Oct 2009 B1
7609486 Little Oct 2009 B1
7610672 Liebman Nov 2009 B1
7633721 Little et al. Dec 2009 B1
7633722 Larson et al. Dec 2009 B1
7656609 Berding et al. Feb 2010 B1
7660075 Lin et al. Feb 2010 B1
7672083 Yu et al. Mar 2010 B1
7684155 Huang et al. Mar 2010 B1
7686555 Larson et al. Mar 2010 B1
7709078 Sevier et al. May 2010 B1
7715149 Liebman et al. May 2010 B1
7729091 Huang et al. Jun 2010 B1
7751145 Lin et al. Jul 2010 B1
7826177 Zhang et al. Nov 2010 B1
7852601 Little Dec 2010 B1
7864488 Pan Jan 2011 B1
7898770 Zhang et al. Mar 2011 B1
7903369 Codilian et al. Mar 2011 B1
7907369 Pan Mar 2011 B1
7911742 Chang et al. Mar 2011 B1
7926167 Liebman et al. Apr 2011 B1
7957095 Tsay et al. Jun 2011 B1
7957102 Watson et al. Jun 2011 B1
7961436 Huang et al. Jun 2011 B1
8004782 Nojaba et al. Aug 2011 B1
8009384 Little Aug 2011 B1
8018687 Little et al. Sep 2011 B1
8031431 Berding et al. Oct 2011 B1
8064168 Zhang et al. Nov 2011 B1
8064170 Pan Nov 2011 B1
8068314 Pan et al. Nov 2011 B1
8081401 Huang et al. Dec 2011 B1
8100017 Blick et al. Jan 2012 B1
8116038 Zhang et al. Feb 2012 B1
8125740 Yang et al. Feb 2012 B1
8142671 Pan Mar 2012 B1
8156633 Foisy Apr 2012 B1
8159785 Lee et al. Apr 2012 B1
8189298 Lee et al. May 2012 B1
8194348 Jacoby et al. Jun 2012 B2
8194354 Zhang et al. Jun 2012 B1
8194355 Pan et al. Jun 2012 B1
8203806 Larson et al. Jun 2012 B2
8223453 Norton et al. Jul 2012 B1
8228631 Tsay et al. Jul 2012 B1
8233239 Teo et al. Jul 2012 B1
8248733 Radavicius et al. Aug 2012 B1
8259417 Ho et al. Sep 2012 B1
8274760 Zhang et al. Sep 2012 B1
8276256 Zhang et al. Oct 2012 B1
8279560 Pan Oct 2012 B1
8284514 Garbarino Oct 2012 B1
8289646 Heo et al. Oct 2012 B1
8300352 Larson et al. Oct 2012 B1
8305708 Tacklind Nov 2012 B2
8320086 Moradnouri et al. Nov 2012 B1
8322021 Berding et al. Dec 2012 B1
8345387 Nguyen Jan 2013 B1
8363351 Little Jan 2013 B1
8369044 Howie et al. Feb 2013 B2
8411389 Tian et al. Apr 2013 B1
8416522 Schott et al. Apr 2013 B1
8416534 Heo et al. Apr 2013 B1
8422171 Guerini Apr 2013 B1
8422175 Oveyssi Apr 2013 B1
8432641 Nguyen Apr 2013 B1
8437101 German et al. May 2013 B1
8438721 Sill May 2013 B1
8446688 Quines et al. May 2013 B1
8451559 Berding et al. May 2013 B1
8467153 Pan et al. Jun 2013 B1
8472131 Ou-Yang et al. Jun 2013 B1
8477460 Liebman Jul 2013 B1
8488270 Brause et al. Jul 2013 B2
8488280 Myers et al. Jul 2013 B1
8499652 Tran et al. Aug 2013 B1
8514514 Berding et al. Aug 2013 B1
8530032 Sevier et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8547664 Foisy et al. Oct 2013 B1
8553356 Heo et al. Oct 2013 B1
8553366 Hanke Oct 2013 B1
8553367 Foisy et al. Oct 2013 B1
8616900 Lion Dec 2013 B1
8665555 Young et al. Mar 2014 B1
8667667 Nguyen et al. Mar 2014 B1
8693139 Tian et al. Apr 2014 B2
8693140 Weiher et al. Apr 2014 B1
8699179 Golgolab et al. Apr 2014 B1
8702998 Guerini Apr 2014 B1
8705201 Casey et al. Apr 2014 B2
8705209 Seymour et al. Apr 2014 B2
20010038509 Lofstrom et al. Nov 2001 A1
20030218827 Teo et al. Nov 2003 A1
20060034010 Abe et al. Feb 2006 A1
20070035872 Hayakawa et al. Feb 2007 A1
20110212281 Jacoby et al. Sep 2011 A1
20130038964 Garbarino et al. Feb 2013 A1
20130091698 Banshak, Jr. et al. Apr 2013 A1
20130155546 Heo et al. Jun 2013 A1
20130290988 Watson et al. Oct 2013 A1