It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system, device, and method of the present invention, as represented in
The presently preferred embodiments of the invention will be best understood by reference to the drawings wherein like parts are designated by like numerals throughout. Although reference to the drawings and a corresponding discussion follow below, it is first advantageous to provide a general background of the coking process, including the process of de-heading the coke drums at the end of a manufacturing cycle.
In the typical delayed coking process, high boiling petroleum residues are fed to one or more coke drums where they are thermally cracked into light products and a solid residue—petroleum coke. The coke drums are typically large cylindrical vessels having a top head and a conical bottom portion fitted with a bottom head. The fundamental goal of coking is the thermal cracking of very high boiling point petroleum residues into lighter fuel fractions. Coke is a byproduct of the process. Delayed coking is an endothermic reaction with a furnace supplying the necessary heat to complete the coking reaction in a drum. The exact mechanism is very complex, and out of all the reactions that occur, only three distinct steps have been isolated: 1) partial vaporization and mild coking of the feed as it passes through the furnace; 2) cracking of the vapor as it passes through the coke drum; and 3) cracking and polymerization of the heavy liquid trapped in the drum until it is converted to vapor and coke. The process is extremely temperature-sensitive with the varying temperatures producing varying types of coke. For example, if the temperature is too low, the coking reaction does not proceed far enough and pitch or soft coke formation occurs. If the temperature is too high, the coke formed generally is very hard and difficult to remove from the drum with hydraulic decoking equipment. Higher temperatures also increase the risk of coking in the furnace tubes or the transfer line. As stated, delayed coking is a thermal cracking process used in petroleum refineries to upgrade and convert petroleum residuum (or resid) into liquid and gas product streams leaving behind a solid concentrated carbon material, or coke. A fired heater is used in the process to reach thermal cracking temperatures, which range upwards of 1,000° F. With short residence time in the furnace, coking of the feed material is thereby “delayed” until it reaches large coking drums downstream of the heater. In normal operations, there are two coke drums so that when one is being filled, the other may be purged of the manufactured coke. These coke drums are large structures that are approximately 25-30 meters in height and from 4 to 9 meters in diameter. They are equipped with a top blind flange closure or orifice that is typically about 1.5 meters in diameter, and a bottom blind flange orifice that is typically about 2 meters in diameter.
In a typical petroleum refinery process, several different physical structures of petroleum coke may be produced. These are namely, shot coke, sponge coke, and/or needle coke, and are each distinguished by their physical structures and chemical properties. These physical structures and chemical properties also serve to determine the end use of the material. Several uses are available for manufactured coke, some of which include fuel for burning, the ability to be calcined for use in the aluminum, chemical, or steel industries, or the ability to be gasified to produce steam, electricity, or gas feedstock for the petrochemicals industry.
To produce the coke, a delayed coker feed originates from the crude oil supplied to the refinery and travels through a series of process members and finally empties into one of the coke drums used to manufacture coke. The delayed coking process is a batch-continuous process, which means that the process is ongoing or continuous as the feed stream coming from the furnace alternates filling between the two or more coke drums. As mentioned, while one drum is on-line filling up with coke, the other is being stripped, cooled, decoked, and prepared to receive another batch. This is a timely process, with each batch in the batch-continuous process taking approximately 12-20 hours to complete. In essence, hot oil, or residue as it is commonly known, from the tube furnace is fed into one of the coke drums in the system. The oil is extremely hot (95° F.) and produces hot vapors that condense on the colder walls of the coke drum. As the drum is being filled, a large amount of liquid runs down the sides of the drum into a boiling turbulent pool at the bottom. As this process continues, the hot residue and the condensing vapors cause the coke drum walls to heat. This naturally in turn, causes the residue to produce less and less of the condensing vapors, which ultimately causes the liquid at the bottom of the coke drum to start to heat up to coking temperatures. After some time, a main channel is formed in the coke drum, and as time goes on, the liquid above the accumulated coke decreases and the liquid turns to a more viscous type tar. This tar keeps trying to run back down the main channel which can coke at the top, thus causing the channel to branch. This process progresses up through the coke drum until the drum is full, wherein the liquid pools slowly turn to solid coke. When the first coke drum is full, the hot oil feed is switched to the second coke drum, and the first coke drum is isolated, steamed to remove residual hydrocarbons, cooled by filling with water, opened, and then decoked. This cyclical process is repeated over and over again in the manufacture of coke.
The decoking process is the process used to remove the coke from the drum upon completion of the coking process. Due to the shape of the coke drum, coke accumulates in the area near and attaches to the heads during the manufacturing process. To decoke the drum, the heads must first be removed. Typically, once full, the drum's contents are stripped and water quenched down to a temperature of 200° F. or less and vented to atmospheric pressure and the top head (typically a 4-foot diameter flange) is unbolted and removed to enable placement of a hydraulic coke cutting apparatus. After the cooling water is drained from the vessel, the bottom head (typically a 6-foot-diameter blind plate quench) is unbolted and removed. This process is commonly known as “de-heading” and can be a very dangerous procedure because of the size of the heads, the high temperatures within the drum, potential falling coke, and other reasons as mentioned above. Once the heads are removed, the coke is removed from the drum by drilling a pilot hole from top to bottom of the coke bed using high pressure water jets. Following this, the main body of coke left in the coke drum is cut into fragments which fall out the bottom and into a coke receiving area, and in some cases into, a bin or a rail cart, etc. The coke is then dewatered, crushed and sent to coke storage or loading facilities.
Although the present invention is applicable and utilized on both the top and bottom openings of a coke drum, the following detailed description and preferred embodiments will be discussed in reference to a bottom de-heading system only. One of ordinary skill in the art will recognize that the invention as explained and described herein for a coke drum bottom de-heading system may also be designed and used as a coke drum top or side de-heading system and the following discussion pertaining to the bottom de-heading system is not meant to be limiting to such.
The present invention is used in conjunction with a device for de-heading a coke drum following the manufacture of coke therein. As the present invention is especially adapted to be used in the coking process, the following discussion will relate specifically in this manufacturing area. It is foreseeable however, that the present invention may be adapted to be an integral part of other manufacturing processes producing various elements other than coke, and such processes should thus be considered within the scope of this application.
The present invention comprises a shroud and gate seal assembly. The inventive shroud and gate seal assembly may be used in conjunction with a dual seated, linear motion, goggle blind valve or other types of de-heading gate valves.
Turning now to another portion of the inventive system, a gate seal assembly 32 is shown located within valve body 22 in
Turning now to
This application claims priority to U.S. Provisional Patent Application Ser. No. 10/873,022 filed Nov. 1, 2004, entitled,“Coke Drum Bottle Throttling Valve and System,” which claims priority to U.S. patent application Ser. No. 10/274,280, filed Oct. 18, 2002 now U.S. Pat. No. 6,843,889 entitled,“Coke Drum Bottom Throttling Valve and Systems,” which claims priority to Provisional Patent Application Ser. No. 60/408,537, filed Sep. 5, 2002. 1. Field of the Invention The present invention relates to a device and system for use with a de-heading vessel containing a fluid, distillates, or an unconsolidated debris byproduct, such as the several types of coke. Specifically, the present invention relates to a system and device, namely a shroud for use with a de-header valve and that is coupled to a coke drum which serves to safely and effectively de-head the coke drum following the formation of coke, or other byproducts, to facilitate the removal of coke during the coking process. 2. Background In the hydrocarbon processing industry, many refineries recover valuable products from the heavy residual oil that remains after refining operations are completed. This recovery process is known as delayed coking and produces valuable distillates and coke in large vessels or coke drums. Coke drums are usually in operation in pairs so that when one coke drum is being filled with the byproduct or residual material, the feed may be directed to an empty drum so that the filled drum may be cooled and the byproduct purged from the coke drum, a process known as decoking. This allows the refinery process to operate in a continuous manner, without undue interruption. When one coke drum is full, it must be purged of the byproduct fed into it. The drum is steam purged and cooled with quench water. The drum is then drained of water and vented to atmospheric pressure, after which the top and bottom heads are removed (i.e. the coke drum is de-headed) to allow the coke to be cut from the drum and fall into a catch basin, typically a rail car. This process of de-heading the coke drum can be extremely dangerous for several reasons. To mention only a few, the cooling water introduced into the hot drums prior to the removal of the bottom head becomes extremely hot and could leak from the loosened head and scald surrounding operators, the load of un-drained water and loose coke within the drum may exceed the limits of the support system and cause it to fail. Positioning the chute and necessary removal of the flanges or heads is done with operators who are in close proximity to the drums, potentially falling coke may injure workers as the heads are removed, and operating personnel may be exposed to finely divided coke particles, steam, hot water and noxious gases, when the drum is opened. Indeed several fatalities occur each year as a result of this manufacturing process. Once the coke is removed, the heads are replaced and the coke drum is prepared to repeat the cycle. Prior art systems and methods have tried too more efficiently and effectively de-head coke drums, as well as to minimize many of the dangers inherent in the de-heading process. One such method involves placing a de-heading cart under the drum, raising a flange support ram, with braces installed, and loosening some (up to one half) of the flange bolts by manual operation with an impact wrench. Following the water quench and drain, the remaining bolts are manually removed, braces are removed from the ram, the approximately 4-ton flange is lowered, and the cart, with flange resting thereon, is moved away. This is extremely dangerous due to the manual labor requirements. Other systems have been disclosed, which somewhat reduce human or manual involvement. For example, U.S. Pat. No. 4,726,109 to Malsbury et al. and U.S. Pat. No. 4,960,358 to DiGiacomo et al. describe a remote unheading device for coking drums. The device includes a head unit for attachment to a lower flange of a coking drum and a plurality of swing bolts which are disconnected by remotely operated de-tensioning equipment. A platform device lowers the head unit, moves it laterally to one side and tips it for cleaning. A chute attached to the frame can be raised into engagement with the coking drum lower flange for removal of coke from the drum. U.S. Pat. No. 5,098,524 to Antalfy et al. filed on Dec. 10, 1990 discloses a coke drum unheading device having a pivoting actuator system operable from a location remote from a drum outlet. The actuator is adapted to move a drum head between closed and open positions and to retain the drum head in a closed position under a load. U.S. Pat. No. 5,500,094 to Fruchtbaum provides a coke drum unheading device that retracts and tilts the bottom head incrementally so that falling debris such as shot coke can be caught by a chute. Following disposal of the loose debris, the head can be withdrawn from the area of the drum for maintenance. Specifically, the invention provides an unheading device for removing a bottom head from a flange on a lower end of a coke drum. An unheading car is horizontally movable into and from position below the bottom head. A vertically adjustable bottom head support member is mounted on the car. A bearing plate is pivotally mounted at an upper end of the support member for engaging a lower surface of the bottom head. A retractable arm has first and second sections hingedly connected at one end and having respective opposite ends secured to the bearing plate and the support member for pivoting the bearing plate and bottom head supported thereon with respect to horizontal, preferably to tilt the head towards an adjacent chute. U.S. Pat. No. 5,581,864 to Rabet discloses an apparatus and method enabling removal of the drum head of a coke drum, which comprises an apparatus remotely placing a carriage under the drum head and the carriage is adapted to remotely engage the drum head, tightly support the head against the drum while workers are in the area, and to lower the head and carry it away. A safety feature is also included and disclosed, wherein the carriage is normally supported by springs which, in the event of excessive loads, automatically transfers the load carrier to an overhead beam designed to carry any excessive loads. Each of these prior art devices share common deficiencies in that they are incapable of providing simple, efficient, and safe solutions to the de-heading of a coke drum. Specifically, each of the assemblies or devices require that the head unit be completely removed from the flange portion of the coke drum after each coking cycle and prior to the purging of the coke from the coke drum. This creates an extreme hazard to workers and provides an inefficient and time consuming procedure. Removal of the head unit increases the chance for accident, while at the same time increases human involvement as the head unit must be properly placed on the coke drum each time despite the automation involved. In addition, a large amount of floor space is required to accommodate those assemblies and devices that automate the removal and lifting of the head unit from the coke drum. Finally, such devices and systems may not be operable in an environment where there the bottom headroom is less than the diameter of the bottom head. A typical de-header system comprises a dual seated, linear motion goggle blind gate valve, or de-header valve, that is removably coupled to and seals against the flanged portion of a coke drum much the same way a conventional head unit would be attached. The de-header valve is equipped with a sliding blind having an orifice therein, a flat surface adjacent the orifice, a stroke slightly greater than the diameter of the orifice in the de-header valve, and upper and lower seats, wherein one of such seats is a dynamic, live loaded seat that is capable of automatic adjustment so as to seal the blind between the upper seat. As such, the sliding blind can be moved in a substantially linear bi-directional manner between upper and lower seats, or dual seats, thus causing the orifice located thereon to move between an open, closed, and partially open position relative to the orifice in the coke drum. In a closed position, the de-header valve and coke drum are prepared to receive the byproduct feed from the refinery process used to manufacture coke. Once the drum is full, the valve may be actuated causing the sliding blind to open. In doing so, coke that has accumulated on the blind is sheared by the upper and lower seats, thus de-heading the coke drum and facilitating the removal of coke using methods commonly known in the art. The present invention operates in an environment wherein a coke drum de-heading system may comprise (a) at least one coke drum containing manufactured coke therein, wherein the coke drum has a top orifice and a bottom orifice; (b) a de-header valve removably coupled to the coke drum and designed to facilitate the removal of coke from the coke drum by de-heading the coke drum and allowing the coke to pass there through; and (c) an exchange system, including an upper and lower bonnet and other elements and members adapted to integrate the de-heading system, and particularly the de-header valve, into the manufacturing system. The de-header valve itself may comprise (1) a main body having an orifice dimensioned to align, in a concentric relationship, with either the top or bottom orifice of the coke drum when the de-header valve is coupled thereto; (2) a live loaded seat assembly coupled to the main body and comprising a floating dynamic, live loaded seat, a live seat adjustment mechanism coupled to the main body and designed to control and adjust the force and resulting seat load of the dynamic, live loaded seat, and a force transfer module in juxtaposition to the dynamic, live loaded seat for transferring the force from the live loaded seat adjustment mechanism to the dynamic, live loaded seat; (3) a static seat positioned opposite from and counteracting or counterbalancing the dynamic, live loaded seat; and (4) a blind or sliding blind capable moving in a linear, bi-directional manner within the de-header valve and between the dynamic, live loaded seat and the static seat, the blind physically controlled by an actuator and having a force exerted thereon by the dual seats, namely the dynamic, live loaded seat and the static seat, such that a seal is created between the dynamic, live loaded seat, the blind, and the static seat. In essence, the de-header valve de-heads the coke drum and facilitates the removal of the coke from the coke drum upon actuation of the blind from a closed to an open position. As the blind is actuated from a closed position, opening of the blind exposes the drum to the outside atmosphere. As can be seen in FIGS. 1A and 1B, this causes depressurization of any residual pressure in the drum and allows coke and any liquid contained within the drum to fall down the material discharge chute. By varying the speed of the actuation of the valve, the flow of this material may be regulated or throttled so as to prevent surges of material from flowing down the chute and overwhelming the coke receiving area or any equipment below. In addition to the residual pressure in the drum, steam can also be released around the blind if not properly prevented. For example, in order to prevent outflow of material from the drum, the valve is body pressurized with a 20-PSI gradient above the pressure within in the drum. Upon actuation of the blind, there remains a 20-PSI steam pressure within the valve body. The inventive shroud and side valve seals significantly reduce the amount of steam released through the open blind when the valve is throttling. Upon complete closing of the blind, the shroud cap end plate is engaged overcoming a biasing pressure on shroud cap return springs and releasing steam pressure from the valve body into the shroud. Upon stroking of the valve in the opposite direction to open the the blind, the shroud cap return springs bias the cap closed on the end of the shroud to prevent any further migration of steam pressure from the body cavity into the shroud. The benefits of the shrouding closure and valve side gate seals is that the amount of steam lost from the system during the throttling is greatly reduced and the shroud prevents dropping of any coke which accompanies the movement of the opening of the blind valve from falling into the bonnet. This is especially important in a throttling situation where the inner diameter of the opening of the blind will communicate with the interior of the shroud for extended periods of time thus having a greater opportunity to retain coke fragments. The openings in the gate valve also have an opportunity to fill. Without the shroud, this material would be deposited in the bonnet upon actuation of the valve. Instead, because of the close tolerance between the shroud and the blind, any deposited materials will accompany the blind as it is actuated and be pushed out through the downstream port of the valve as the valve is closed.
Number | Name | Date | Kind |
---|---|---|---|
176321 | Kromer | Apr 1876 | A |
900206 | Reed | Oct 1908 | A |
1656355 | Huffmann | Jan 1928 | A |
1991621 | Noll | Feb 1935 | A |
2064567 | Riley | Dec 1936 | A |
2245554 | Court | Jun 1941 | A |
2317566 | Utterback | Apr 1943 | A |
2403608 | Payne et al. | Jul 1946 | A |
2562285 | Timmer | Jul 1951 | A |
2717865 | Kimberlin et al. | Sep 1955 | A |
2734715 | Knox | Feb 1956 | A |
2761160 | Manning | Sep 1956 | A |
3215399 | McInerney et al. | Nov 1965 | A |
3379623 | Forsyth | Apr 1968 | A |
3617480 | Keel | Nov 1971 | A |
3646947 | Rochelle et al. | Mar 1972 | A |
3716310 | Guenther | Feb 1973 | A |
3837356 | Selep et al. | Sep 1974 | A |
3852047 | Schlinger et al. | Dec 1974 | A |
4125438 | Kelly et al. | Nov 1978 | A |
4174728 | Usnick et al. | Nov 1979 | A |
4253487 | Worley et al. | Mar 1981 | A |
4275842 | Purton et al. | Jun 1981 | A |
4492103 | Naumann | Jan 1985 | A |
4531539 | Jandrasi et al. | Jul 1985 | A |
4611613 | Kaplan | Sep 1986 | A |
4626320 | Alworth et al. | Dec 1986 | A |
4666585 | Figgins et al. | May 1987 | A |
4726109 | Malsbury | Feb 1988 | A |
4738399 | Adams | Apr 1988 | A |
4771805 | Maa | Sep 1988 | A |
4797197 | Mallari | Jan 1989 | A |
4824016 | Cody et al. | Apr 1989 | A |
4923021 | Courmier et al. | May 1990 | A |
4929339 | Elliott, Jr. et al. | May 1990 | A |
4959126 | Tong et al. | Sep 1990 | A |
4960358 | DiGiacomo et al. | Oct 1990 | A |
5024730 | Colvert | Jun 1991 | A |
5035221 | Martin | Jul 1991 | A |
5041207 | Harrington et al. | Aug 1991 | A |
5048876 | Wallskog | Sep 1991 | A |
5076893 | Tong et al. | Dec 1991 | A |
5107873 | Clinger | Apr 1992 | A |
5116022 | Genreith et al. | May 1992 | A |
5221019 | Pechacek et al. | Jun 1993 | A |
5228525 | Denney et al. | Jul 1993 | A |
5228825 | Fruchtbaum et al. | Jul 1993 | A |
5299841 | Schaefer | Apr 1994 | A |
5417811 | Malsbury | May 1995 | A |
H1442 | Edgerton et al. | Jun 1995 | H |
5464035 | Heinecke | Nov 1995 | A |
5581864 | Rabet | Dec 1996 | A |
5785843 | Antalffy et al. | Jul 1998 | A |
5794729 | Van Meter et al. | Aug 1998 | A |
5800680 | Guerra | Sep 1998 | A |
5816505 | Tran et al. | Oct 1998 | A |
5816787 | Brinkerohoff et al. | Oct 1998 | A |
5876568 | Kindersley | Mar 1999 | A |
5927684 | Marx et al. | Jul 1999 | A |
5947674 | Malsbury et al. | Sep 1999 | A |
6007068 | Dellacorte | Dec 1999 | A |
6039844 | Malik | Mar 2000 | A |
6066237 | Kindersley | May 2000 | A |
6095493 | Velan | Aug 2000 | A |
6113745 | Maitland et al. | Sep 2000 | A |
6117308 | Ganji | Sep 2000 | A |
6223925 | Malsbury et al. | May 2001 | B1 |
6228225 | Meher-Homji | May 2001 | B1 |
6254733 | Lu et al. | Jul 2001 | B1 |
6264797 | Schroeder et al. | Jul 2001 | B1 |
6264829 | Antalffy et al. | Jul 2001 | B1 |
6367843 | Fetzer | Apr 2002 | B1 |
6547250 | Noble et al. | Apr 2003 | B1 |
6565714 | Lah | May 2003 | B2 |
6644436 | Hofmann et al. | Nov 2003 | B2 |
6644567 | Adams et al. | Nov 2003 | B1 |
6660131 | Lah | Dec 2003 | B2 |
6738697 | Breed | May 2004 | B2 |
6751852 | Malsbury et al. | Jun 2004 | B2 |
6843889 | Lah et al. | Jan 2005 | B2 |
6926807 | Bosi et al. | Aug 2005 | B2 |
6935371 | Stares | Aug 2005 | B2 |
6964727 | Lah | Nov 2005 | B2 |
6989081 | Lah | Jan 2006 | B2 |
7033460 | Lah et al. | Apr 2006 | B2 |
7037408 | Wilborn et al. | May 2006 | B2 |
7115190 | Lah | Oct 2006 | B2 |
7117959 | Lah | Oct 2006 | B2 |
7316762 | Lah | Jan 2008 | B2 |
20020134658 | Lah | Sep 2002 | A1 |
20020157897 | Hofmann et al. | Oct 2002 | A1 |
20020166862 | Malbury et al. | Nov 2002 | A1 |
20020170814 | Lah | Nov 2002 | A1 |
20030047153 | Kubel et al. | Mar 2003 | A1 |
20030089589 | Malsbury | May 2003 | A1 |
20030127314 | Bell et al. | Jul 2003 | A1 |
20030159737 | Stares | Aug 2003 | A1 |
20030185718 | Sellakumar | Oct 2003 | A1 |
20040118746 | Wilborn et al. | Jun 2004 | A1 |
20040154913 | Lah | Aug 2004 | A1 |
20040238662 | Paul | Dec 2004 | A1 |
20050269197 | Beala et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060175188 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60408537 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10274280 | Oct 2002 | US |
Child | 11353299 | US |