The present technology is generally directed to coke oven charging systems and methods of use.
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for twenty-four to forty-eight hours under closely-controlled atmospheric conditions. Coking ovens have been used for many years to convert coal into metallurgical coke. During the coking process, finely crushed coal is heated under controlled temperature conditions to devolatilize the coal and form a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
Much of the coke manufacturing process is automated due to the extreme temperatures involved. For example, a pusher charger machine (“PCM”) is typically used on the coal side of the oven for a number of different operations. A common PCM operation sequence begins as the PCM is moved along a set of rails that run in front of an oven battery to an assigned oven and align a coal charging system of the PCM with the oven. The pusher side oven door is removed from the oven using a door extractor from the coal charging system. The PCM is then moved to align a pusher ram of the PCM to the center of the oven. The pusher ram is energized, to push coke from the oven interior. The PCM is again moved away from the oven center to align the coal charging system with the oven center. Coal is delivered to the coal charging system of the PCM by a tripper conveyor. The coal charging system then charges the coal into the oven interior. In some systems, particulate matter entrained in hot gas emissions that escape from the oven face are captured by the PCM during the step of charging the coal. In such systems, the particulate matter is drawn into an emissions hood through the baghouse of a dust collector. The charging conveyor is then retracted from the oven. Finally, the door extractor of the PCM replaces and latches the pusher side oven door.
With reference to
The weight of coal charging system 10, which can include internal water cooling systems, can be 80,000 pounds or more. When charging system 10 is extended inside the oven during a charging operation, the coal charging system 10 deflects downwardly at its free distal end. This shortens the coal charge capacity.
Despite the ill effect of coal charging system deflection, caused by its weight and cantilevered position, the coal charging system 10 provides little benefit in the way of coal bed densification. With reference to
Non-limiting and non-exhaustive embodiments of the present invention, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
The present technology is generally directed to coal charging systems used with coke ovens. In various embodiments, the coal charging systems, of the present technology, are configured for use with horizontal heat recovery coke ovens. However, embodiments of the present technology can be used with other coke ovens, such as horizontal, non-recovery ovens. In some embodiments, a coal charging system includes a charging head having opposing wings that extend outwardly and forwardly from the charging head, leaving an open pathway through which coal may be directed toward the side edges of the coal bed. In other embodiments, an extrusion plate is positioned on a rearward face of the charging head and oriented to engage and compress coal as the coal is charged along a length of the coking oven. In still other embodiments, a false door is vertically oriented to maximize an amount of coal being charged into the oven.
Specific details of several embodiments of the technology are described below with reference to
It is contemplated that the coal charging technology of the present matter will be used in combination with a pusher charger machine (“PCM”) having one or more other components common to PCMs, such as a door extractor, a pusher ram, a tripper conveyor, and the like. However, aspects of the present technology may be used separately from a PCM and may be used individually or with other equipment associated with a coking system. Accordingly, aspects of the present technology may simply be described as “a coal charging system” or components thereof. Components associated with coal charging systems, such as coal conveyers and the like that are well-known may not be described in detail, if at all, to avoid unnecessarily obscuring the description of the various embodiments of the technology.
With reference to
The charging head 104 is coupled with the distal end portion 110 of the elongated charging frame 102. In various embodiments, the charging head 104 is defined by a planar body 114, having an upper edge portion 116, lower edge portion 118, opposite side portions 120 and 122, a front face 124, and a rearward face 126. In some embodiments, a substantial portion of the body 114 resides within a charging head plane. This is not to suggest that embodiments of the present technology will not provide charging head bodies having aspects that occupy one or more additional planes. In various embodiments, the planar body is formed from a plurality of tubes, having square or rectangular cross-sectional shapes. In particular embodiments, the tubes are provided with a width of six inches to twelve inches. In at least one embodiment, the tubes have a width of eight inches, which demonstrated a significant resistance to warping during charging operations.
With further reference to
In some embodiments, such as depicted in
With reference to
With reference to
With reference to
In various embodiments, it is contemplated that opposing wings of various geometries may extend rearwardly from a charging head associated with a coal charging system according to the present technology. With continued reference to
With continued reference to
With reference to
Coal bed bulk density plays a significant role in determining coke quality and minimizing burn loss, particularly near the oven walls. During a coal charging operation, the charging head 104 retracts against a top portion of the coal bed. In this manner, the charging head contributes to the top shape of the coal bed. However, particular aspects of the present technology cause portions of the charging head to increase the density of the coal bed. With regard to
In some embodiments, the charging heads and charging frames of various systems may not include a cooling system. The extreme temperatures of the ovens will cause portions of such charging heads and charging frames to expand slightly, and at different rates, with respect to one another. In such embodiments, the rapid, uneven heating and expansion of the components may stress the coal charging system and warp or otherwise misalign the charging head with respect to the charging frame. With reference to
With reference to
Many prior coal charging systems provide a minor amount of compaction on the coal bed surface due to the weight of the charging head and charging frame. However, the compaction is typically limited to twelve inches below the surface of the coal bed. Data during coal bed testing demonstrated that the bulk density measurement in this region to be a three to ten unit point difference inside the coal bed.
With reference to
In use, coal is shuffled to the front end portion of the coal charging system 100, behind the charging head 104. Coal piles up in the opening between the conveyor and the charging head 104 and conveyor chain pressure starts to build up gradually until reaching approximately 2500 to 2800 psi. With reference to
With reference to
With reference to
When charging systems extend inside the ovens during charging operations, the coal charging systems, typically weighing approximately 80,000 pounds, deflect downwardly at their free, distal ends. This deflection shortens the coal charge capacity.
The following Examples are illustrative of several embodiments of the present technology.
1. A coal charging system, the system comprising:
2. The coal charging system of claim 1 wherein the opposing wings are positioned to extend forwardly from the charging head plane.
3. The coal charging system of claim 1 wherein the opposing wings are positioned to extend rearwardly from the charging head plane.
4. The coal charging system of claim 1 further comprising:
5. The coal charging system of claim 1 wherein the opposing wings include a first face adjacent the charging head plane and a second face extending from the first face toward the free end portion.
6. The coal charging system of claim 5 wherein the second faces of the opposing wings reside within a wing plane that is parallel to the charging head plane.
7. The coal charging system of claim 6 wherein each of the first faces of the opposing wings are angularly disposed from the charging head plane toward adjacent sides of the charging head.
8. The coal charging system of claim 7 wherein each of the first faces of the opposing wings are angularly disposed at a forty-five degree angle from the charging head plane toward adjacent sides of the charging head.
9. The coal charging system of claim 1 wherein the opposing wings are angularly disposed from the charging head plane toward adjacent sides of the charging head.
10. The coal charging system of claim 9 wherein the opposing wings each have opposite end portions and extend along a straight pathway between the opposite end portions.
11. The coal charging system of claim 9 wherein the opposing wings each have opposite end portions and extend along a curvilinear pathway between the opposite end portions.
12. The coal charging system of claim 1 further comprising:
13. The coal charging system of claim 1 further comprising:
14. The coal charging system of claim 1 further comprising:
15. The coal charging system of claim 14 wherein the elongated densification bar has a long axis disposed at an angle with respect to the charging head plane.
16. The coal charging system of claim 14 wherein the densification bar is comprised of a curvilinear lower engagement face that is coupled with each of the opposing wings in a static position.
17. The coal charging system of claim 1 wherein a portion of each of the opposite side portions of the charging head are angularly disposed from the front face of the charging head toward the rearward face to define generally forward facing charging head deflection faces.
18. The coal charging system of claim 1 wherein the charging head is coupled to the elongated charging frame by a plurality of slotted joints that allow relative movement between the charging head and the elongated charging frame.
19. The coal charging system of claim 1 wherein each of the opposite sides of the elongated charging frame include charging frame deflection faces, positioned to face at a downward angle toward a middle portion of the charging frame.
20. The coal charging system of claim 1 wherein each of the opposite sides of the elongated charging frame include charging frame deflection faces, positioned to face at a downward angle toward the charging frame.
21. The coal charging system of claim 1 wherein forward end portions of each of the opposite sides of the elongated charging frame include charging frame deflection faces, positioned rearwardly from the wings, and oriented to face forwardly and outwardly from the sides of the elongated charging frame.
22. The coal charging system of claim 1 further comprising:
23. The coal charging system of claim 22 wherein the extrusion plate extends substantially along a length of the charging head.
24. The coal charging system of claim 22 wherein the extrusion plate further includes an upper deflection face that is oriented to face rearwardly and upwardly with respect to the charging head; the coal engagement face and deflection face being operatively coupled with one another to define a peak shape, having a peak ridge that faces rearwardly away from the charging head.
25. The coal charging system of claim 22 wherein the extrusion plate is shaped to include opposing side deflection faces that are oriented to face rearwardly and laterally with respect to the charging head.
26. The coal charging system of claim 1 further comprising:
27. The coal charging system of claim 1 further comprising:
28. A coal charging system, the system comprising:
29. The coal charging system of claim 28 wherein the extrusion plate extends substantially along a length of the charging head.
30. The coal charging system of claim 28 wherein the extrusion plate further includes an upper deflection face that is oriented to face rearwardly and upwardly with respect to the charging head; the coal engagement face and deflection face being operatively coupled with one another to define a peak shape, having a peak ridge that faces rearwardly away from the charging head.
31. The coal charging system of claim 28 wherein the extrusion plate is shaped to include opposing side deflection faces that are oriented to face rearwardly and laterally with respect to the charging head.
32. A method of charging coal into a coke oven, the method comprising:
33. The method of claim 32 further comprising:
34. The method of claim 32 further comprising:
35. The method of claim 34 wherein the extrusion plate is shaped to include opposing side deflection faces that are oriented to face rearwardly and laterally with respect to the charging head and portions of the coal are extruded by the opposing side deflection faces.
36. The method of claim 32 further comprising:
37. A method of charging coal into a coke oven, the method comprising:
38. The method of claim 37 wherein the extrusion plate is shaped to include opposing side deflection faces that are oriented to face rearwardly and laterally with respect to the charging head and portions of the coal are extruded by the opposing side deflection faces.
Although the technology has been described in language that is specific to certain structures, materials, and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures, materials, and/or steps described. Rather, the specific aspects and steps are described as forms of implementing the claimed invention. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
This application is a continuation of U.S. patent application Ser. No. 14/839,384, filed Aug. 28, 2015, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/043,359, filed Aug. 28, 2014, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
425797 | Hunt | Apr 1890 | A |
469868 | Osbourn | Mar 1892 | A |
845719 | Schniewind | Feb 1907 | A |
976580 | Krause | Jul 1909 | A |
1140798 | Carpenter | May 1915 | A |
1424777 | Schondeling | Aug 1922 | A |
1430027 | Plantinga | Sep 1922 | A |
1486401 | Van Ackeren | Mar 1924 | A |
1572391 | Kiaiber | Feb 1926 | A |
1677973 | Marquard | Jul 1928 | A |
1721813 | Geipert | Jul 1929 | A |
1818370 | Wine | Aug 1931 | A |
1818994 | Kreisinger | Aug 1931 | A |
1848818 | Becker | Mar 1932 | A |
1955962 | Jones | Apr 1934 | A |
2075337 | Burnaugh | Mar 1937 | A |
2394173 | Harris et al. | Feb 1946 | A |
2424012 | Bangham et al. | Jul 1947 | A |
2649978 | Such | Aug 1953 | A |
2667185 | Beavers | Jan 1954 | A |
2723725 | Keifer | Nov 1955 | A |
2756842 | Chamberlin et al. | Jul 1956 | A |
2873816 | Umbricht et al. | Feb 1959 | A |
2902991 | Whitman | Sep 1959 | A |
3015893 | McCreary | Jan 1962 | A |
3033764 | Hannes | May 1962 | A |
3462345 | Kernan | Aug 1969 | A |
3511030 | Hall et al. | May 1970 | A |
3542650 | Kulakov | Nov 1970 | A |
3545470 | Paton | Dec 1970 | A |
3592742 | Thompson | Jul 1971 | A |
3616408 | Hickam | Oct 1971 | A |
3623511 | Levin | Nov 1971 | A |
3630852 | Nashan et al. | Dec 1971 | A |
3652403 | Knappstein et al. | Mar 1972 | A |
3676305 | Cremer | Jul 1972 | A |
3709794 | Kinzler et al. | Jan 1973 | A |
3710551 | Sved | Jan 1973 | A |
3746626 | Morrison, Jr. | Jul 1973 | A |
3748235 | Pries | Jul 1973 | A |
3784034 | Thompson | Jan 1974 | A |
3806032 | Pries | Apr 1974 | A |
3836161 | Buhl | Sep 1974 | A |
3839156 | Jakobi et al. | Oct 1974 | A |
3844900 | Schulte | Oct 1974 | A |
3857758 | Mole | Dec 1974 | A |
3875016 | Schmidt-Balve et al. | Apr 1975 | A |
3876143 | Rossow et al. | Apr 1975 | A |
3876506 | Dix et al. | Apr 1975 | A |
3878053 | Hyde | Apr 1975 | A |
3894302 | Lasater | Jul 1975 | A |
3897312 | Armour et al. | Jul 1975 | A |
3906992 | Leach | Sep 1975 | A |
3912091 | Thompson | Oct 1975 | A |
3917458 | Polak | Nov 1975 | A |
3928144 | Jakimowicz | Dec 1975 | A |
3930961 | Sustarsic et al. | Jan 1976 | A |
3957591 | Riecker | May 1976 | A |
3959084 | Price | May 1976 | A |
3963582 | Helm et al. | Jun 1976 | A |
3969191 | Bollenbach | Jul 1976 | A |
3975148 | Fukuda et al. | Aug 1976 | A |
3984289 | Sustarsic et al. | Oct 1976 | A |
4004702 | Szendroi | Jan 1977 | A |
4004983 | Pries | Jan 1977 | A |
4040910 | Knappstein et al. | Aug 1977 | A |
4045299 | MacDonald | Aug 1977 | A |
4059885 | Oldengott | Nov 1977 | A |
4067462 | Thompson | Jan 1978 | A |
4083753 | Rogers et al. | Apr 1978 | A |
4086231 | Ikio | Apr 1978 | A |
4093245 | Connor | Jun 1978 | A |
4100033 | Holter | Jul 1978 | A |
4111757 | Ciarimboli | Sep 1978 | A |
4124450 | MacDonald | Nov 1978 | A |
4141796 | Clark et al. | Feb 1979 | A |
4145195 | Knappstein et al. | Mar 1979 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4162546 | Shorten | Jul 1979 | A |
4181459 | Price | Jan 1980 | A |
4189272 | Gregor et al. | Feb 1980 | A |
4194951 | Pries | Mar 1980 | A |
4196053 | Grohmann | Apr 1980 | A |
4211608 | Kwasnoski et al. | Jul 1980 | A |
4211611 | Bocsanczy et al. | Jul 1980 | A |
4213489 | Cain | Jul 1980 | A |
4213828 | Calderon | Jul 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4222824 | Flockenhaus et al. | Sep 1980 | A |
4224109 | Flockenhaus | Sep 1980 | A |
4225393 | Gregor et al. | Sep 1980 | A |
4235830 | Bennett et al. | Nov 1980 | A |
4239602 | La Bate | Dec 1980 | A |
4248671 | Belding | Feb 1981 | A |
4249997 | Schmitz | Feb 1981 | A |
4263099 | Porter | Apr 1981 | A |
4285772 | Kress | Aug 1981 | A |
4287024 | Thompson | Sep 1981 | A |
4289584 | Chuss et al. | Sep 1981 | A |
4289585 | Wagener et al. | Sep 1981 | A |
4296938 | Offermann et al. | Oct 1981 | A |
4302935 | Cousimano | Dec 1981 | A |
4303615 | Jarmell et al. | Dec 1981 | A |
4307673 | Caughey | Dec 1981 | A |
4314787 | Kwasnik et al. | Feb 1982 | A |
4330372 | Cairns et al. | May 1982 | A |
4334963 | Stog | Jun 1982 | A |
4336843 | Petty | Jun 1982 | A |
4340445 | Kucher et al. | Jul 1982 | A |
4342195 | Lo | Aug 1982 | A |
4344820 | Thompson | Aug 1982 | A |
4344822 | Schwartz et al. | Aug 1982 | A |
4366029 | Bixby et al. | Dec 1982 | A |
4373244 | Mertens et al. | Feb 1983 | A |
4375388 | Hara et al. | Mar 1983 | A |
4391674 | Velmin et al. | Jul 1983 | A |
4392824 | Struck et al. | Jul 1983 | A |
4395269 | Schuler | Jul 1983 | A |
4396394 | Li et al. | Aug 1983 | A |
4396461 | Neubaum et al. | Aug 1983 | A |
4431484 | Weber et al. | Feb 1984 | A |
4439277 | Dix | Mar 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445977 | Husher | May 1984 | A |
4446018 | Cerwick | May 1984 | A |
4448541 | Wirtschafter | May 1984 | A |
4452749 | Kolvek et al. | Jun 1984 | A |
4459103 | Gieskieng | Jul 1984 | A |
4469446 | Goodboy | Sep 1984 | A |
4474344 | Bennett | Oct 1984 | A |
4487137 | Horvat et al. | Dec 1984 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4506025 | Kleeb et al. | Mar 1985 | A |
4508539 | Nakai | Apr 1985 | A |
4527488 | Lindgren | Jul 1985 | A |
4568426 | Orlando | Feb 1986 | A |
4570670 | Johnson | Feb 1986 | A |
4614567 | Stahlherm et al. | Sep 1986 | A |
4643327 | Campbell | Feb 1987 | A |
4645513 | Kubota et al. | Feb 1987 | A |
4655193 | Blacket | Apr 1987 | A |
4655804 | Kercheval et al. | Apr 1987 | A |
4666675 | Parker et al. | May 1987 | A |
4680167 | Orlando | Jul 1987 | A |
4704195 | Janicka et al. | Nov 1987 | A |
4720262 | Durr et al. | Jan 1988 | A |
4726465 | Kwasnik et al. | Feb 1988 | A |
4793981 | Doyle et al. | Dec 1988 | A |
4824614 | Jones | Apr 1989 | A |
4919170 | Kallinich et al. | Apr 1990 | A |
4929179 | Breidenbach et al. | May 1990 | A |
4941824 | Holter et al. | Jul 1990 | A |
5052922 | Stokman et al. | Oct 1991 | A |
5062925 | Durselen et al. | Nov 1991 | A |
5078822 | Hodges et al. | Jan 1992 | A |
5087328 | Wegerer et al. | Feb 1992 | A |
5114542 | Childress et al. | May 1992 | A |
5213138 | Presz | May 1993 | A |
5227106 | Kolvek | Jul 1993 | A |
5228955 | Westbrook, III | Jul 1993 | A |
5318671 | Pruitt | Jun 1994 | A |
5423152 | Kolvek | Jun 1995 | A |
5447606 | Pruitt | Sep 1995 | A |
5480594 | Wilkerson et al. | Jan 1996 | A |
5622280 | Mays et al. | Apr 1997 | A |
5659110 | Herden et al. | Aug 1997 | A |
5670025 | Baird | Sep 1997 | A |
5687768 | Mull, Jr. et al. | Nov 1997 | A |
5752548 | Matsumoto et al. | May 1998 | A |
5787821 | Bhat et al. | Aug 1998 | A |
5810032 | Hong et al. | Sep 1998 | A |
5816210 | Yamaguchi | Oct 1998 | A |
5857308 | Dismore et al. | Jan 1999 | A |
5928476 | Daniels | Jul 1999 | A |
5968320 | Sprague | Oct 1999 | A |
6017214 | Sturgulewski | Jan 2000 | A |
6059932 | Sturgulewski | May 2000 | A |
6139692 | Tamura et al. | Oct 2000 | A |
6152668 | Knoch | Nov 2000 | A |
6187148 | Sturgulewski | Feb 2001 | B1 |
6189819 | Racine | Feb 2001 | B1 |
6290494 | Barkdoll | Sep 2001 | B1 |
6412221 | Emsbo | Jul 2002 | B1 |
6596128 | Westbrook | Jul 2003 | B2 |
6626984 | Taylor | Sep 2003 | B1 |
6699035 | Brooker | Mar 2004 | B2 |
6758875 | Reid et al. | Jul 2004 | B2 |
6907895 | Johnson et al. | Jun 2005 | B2 |
6946011 | Snyder | Sep 2005 | B2 |
6964236 | Schucker et al. | Nov 2005 | B2 |
7056390 | Fratello et al. | Jun 2006 | B2 |
7077892 | Lee | Jul 2006 | B2 |
7314060 | Chen et al. | Jan 2008 | B2 |
7331298 | Barkdoll et al. | Feb 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7497930 | Barkdoll et al. | Mar 2009 | B2 |
7611609 | Valia et al. | Nov 2009 | B1 |
7644711 | Creel | Jan 2010 | B2 |
7722843 | Srinivasachar | May 2010 | B1 |
7727307 | Winkler | Jun 2010 | B2 |
7803627 | Hodges | Sep 2010 | B2 |
7823401 | Takeuchi et al. | Nov 2010 | B2 |
7827689 | Crane et al. | Nov 2010 | B2 |
7998316 | Barkdoll | Aug 2011 | B2 |
8071060 | Ukai et al. | Dec 2011 | B2 |
8079751 | Kapila et al. | Dec 2011 | B2 |
8080088 | Srinivasachar | Dec 2011 | B1 |
8152970 | Barkdoll et al. | Apr 2012 | B2 |
8236142 | Westbrook | Aug 2012 | B2 |
8266853 | Bloom et al. | Sep 2012 | B2 |
8398935 | Howell, Jr. et al. | Mar 2013 | B2 |
9039869 | Kim et al. | May 2015 | B2 |
9238778 | Quanci et al. | Jan 2016 | B2 |
9243186 | Quanci et al. | Jan 2016 | B2 |
9249357 | Quanci et al. | Feb 2016 | B2 |
20020170605 | Shiraishi et al. | Nov 2002 | A1 |
20030014954 | Ronning et al. | Jan 2003 | A1 |
20030015809 | Carson | Jan 2003 | A1 |
20050087767 | Fitzgerald et al. | Apr 2005 | A1 |
20060102420 | Huber et al. | May 2006 | A1 |
20060149407 | Markham et al. | Jul 2006 | A1 |
20070116619 | Taylor et al. | May 2007 | A1 |
20070251198 | Witter | Nov 2007 | A1 |
20080028935 | Andersson | Feb 2008 | A1 |
20080179165 | Chen et al. | Jul 2008 | A1 |
20080257236 | Green | Oct 2008 | A1 |
20080271985 | Yamasaki | Nov 2008 | A1 |
20080289305 | Girondi | Nov 2008 | A1 |
20090007785 | Kimura et al. | Jan 2009 | A1 |
20090152092 | Kim et al. | Jun 2009 | A1 |
20090162269 | Barger et al. | Jun 2009 | A1 |
20090217576 | Kim et al. | Sep 2009 | A1 |
20090283395 | Hippe | Nov 2009 | A1 |
20100095521 | Bertini et al. | Apr 2010 | A1 |
20100113266 | Abe et al. | May 2010 | A1 |
20100115912 | Worley | May 2010 | A1 |
20100287871 | Bloom et al. | Nov 2010 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
20100314234 | Knoch et al. | Dec 2010 | A1 |
20110048917 | Kim et al. | Mar 2011 | A1 |
20110120852 | Kim | May 2011 | A1 |
20110174301 | Haydock et al. | Jul 2011 | A1 |
20110192395 | Kim | Aug 2011 | A1 |
20110223088 | Chang et al. | Sep 2011 | A1 |
20110253521 | Kim | Oct 2011 | A1 |
20110315538 | Kim et al. | Dec 2011 | A1 |
20120024688 | Barkdoll | Feb 2012 | A1 |
20120030998 | Barkdoll et al. | Feb 2012 | A1 |
20120152720 | Reichelt et al. | Jun 2012 | A1 |
20120180133 | Al-Harbi et al. | Jul 2012 | A1 |
20120228115 | Westbrook | Sep 2012 | A1 |
20120247939 | Kim et al. | Oct 2012 | A1 |
20120305380 | Wang et al. | Dec 2012 | A1 |
20130045149 | Miller | Feb 2013 | A1 |
20130216717 | Rago et al. | Aug 2013 | A1 |
20130220373 | Kim | Aug 2013 | A1 |
20130306462 | Kim et al. | Nov 2013 | A1 |
20140033917 | Rodgers et al. | Feb 2014 | A1 |
20140039833 | Sharpe, Jr. et al. | Feb 2014 | A1 |
20140048402 | Quanci et al. | Feb 2014 | A1 |
20140061018 | Sarpen et al. | Mar 2014 | A1 |
20140083836 | Quanci et al. | Mar 2014 | A1 |
20140182195 | Quanci et al. | Jul 2014 | A1 |
20140182683 | Quanci et al. | Jul 2014 | A1 |
20140183023 | Quanci et al. | Jul 2014 | A1 |
20140183024 | Chun et al. | Jul 2014 | A1 |
20140224123 | Walters | Aug 2014 | A1 |
20140262139 | Choi et al. | Sep 2014 | A1 |
20140262726 | West et al. | Sep 2014 | A1 |
20150122629 | Freimuth et al. | May 2015 | A1 |
20150219530 | Li et al. | Aug 2015 | A1 |
20150247092 | Quanci et al. | Sep 2015 | A1 |
20150287026 | Yang et al. | Oct 2015 | A1 |
20150328576 | Quanci et al. | Nov 2015 | A1 |
20150361346 | West et al. | Dec 2015 | A1 |
20150361347 | Ball et al. | Dec 2015 | A1 |
20160032193 | Sarpen et al. | Feb 2016 | A1 |
20160060532 | Quanci et al. | Mar 2016 | A1 |
20160060533 | Quanci et al. | Mar 2016 | A1 |
20160060534 | Quanci et al. | Mar 2016 | A1 |
20160060536 | Quanci et al. | Mar 2016 | A1 |
20160149944 | Obermeier et al. | May 2016 | A1 |
20160152897 | Quanci et al. | Jun 2016 | A1 |
20160160123 | Quanci et al. | Jun 2016 | A1 |
20160186063 | Quanci et al. | Jun 2016 | A1 |
20160186064 | Quanci et al. | Jun 2016 | A1 |
20160186065 | Quanci et al. | Jun 2016 | A1 |
20160222297 | Choi et al. | Aug 2016 | A1 |
20160319197 | Quanci et al. | Nov 2016 | A1 |
20160319198 | Quanci et al. | Nov 2016 | A1 |
20170015908 | Quanci et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
1172895 | Aug 1984 | CA |
2775992 | May 2011 | CA |
2822841 | Jul 2012 | CA |
2822857 | Jul 2012 | CA |
87212113 | Jun 1988 | CN |
87107195 | Jul 1988 | CN |
2064363 | Oct 1990 | CN |
1092457 | Sep 1994 | CN |
1255528 | Jun 2000 | CN |
1358822 | Jul 2002 | CN |
2509188 | Sep 2002 | CN |
2521473 | Nov 2002 | CN |
2528771 | Jan 2003 | CN |
1468364 | Jan 2004 | CN |
1527872 | Sep 2004 | CN |
2668641 | Jan 2005 | CN |
1957204 | May 2007 | CN |
101037603 | Sep 2007 | CN |
101058731 | Oct 2007 | CN |
101157874 | Apr 2008 | CN |
201121178 | Sep 2008 | CN |
100510004 | Jul 2009 | CN |
101486017 | Jul 2009 | CN |
101497835 | Aug 2009 | CN |
101509427 | Aug 2009 | CN |
102155300 | Aug 2011 | CN |
202226816 | May 2012 | CN |
102584294 | Jul 2012 | CN |
103468289 | Dec 2013 | CN |
212176 | Jul 1909 | DE |
1212037 | Mar 1966 | DE |
3315738 | Nov 1983 | DE |
3231697 | Jan 1984 | DE |
3329367 | Nov 1984 | DE |
3328702 | Feb 1985 | DE |
19545736 | Jun 1997 | DE |
19803455 | Aug 1999 | DE |
10122531 | Nov 2002 | DE |
10154785 | May 2003 | DE |
102005015301 | Oct 2006 | DE |
102006004669 | Aug 2007 | DE |
102006026521 | Dec 2007 | DE |
102009031436 | Jan 2011 | DE |
102011052785 | Dec 2012 | DE |
0208490 | Jan 1987 | EP |
2295129 | Mar 2011 | EP |
2339664 | Aug 1977 | FR |
441784 | Jan 1936 | GB |
606340 | Aug 1948 | GB |
611524 | Nov 1948 | GB |
725865 | Mar 1955 | GB |
871094 | Jun 1961 | GB |
S50148405 | Nov 1975 | JP |
54054101 | Apr 1979 | JP |
S5453103 | Apr 1979 | JP |
57051786 | Mar 1982 | JP |
57051787 | Mar 1982 | JP |
57083585 | May 1982 | JP |
57090092 | Jun 1982 | JP |
58091788 | May 1983 | JP |
59051978 | Mar 1984 | JP |
59053589 | Mar 1984 | JP |
59071388 | Apr 1984 | JP |
59108083 | Jun 1984 | JP |
59145281 | Aug 1984 | JP |
60004588 | Jan 1985 | JP |
61106690 | May 1986 | JP |
62011794 | Jan 1987 | JP |
62285980 | Dec 1987 | JP |
01103694 | Apr 1989 | JP |
01249886 | Oct 1989 | JP |
H0319127 | Mar 1991 | JP |
H04178494 | Jun 1992 | JP |
H06264062 | Sep 1994 | JP |
07188668 | Jul 1995 | JP |
07216357 | Aug 1995 | JP |
08127778 | May 1996 | JP |
H10273672 | Oct 1998 | JP |
H11-131074 | May 1999 | JP |
2000-204373 | Jul 2000 | JP |
2001200258 | Jul 2001 | JP |
03197588 | Aug 2001 | JP |
2002106941 | Apr 2002 | JP |
2003041258 | Feb 2003 | JP |
2003071313 | Mar 2003 | JP |
2003292968 | Oct 2003 | JP |
2003342581 | Dec 2003 | JP |
2005263983 | Sep 2005 | JP |
2007063420 | Mar 2007 | JP |
04159392 | Oct 2008 | JP |
2008231278 | Oct 2008 | JP |
2009144121 | Jul 2009 | JP |
2012102302 | May 2012 | JP |
2013006957 | Jan 2013 | JP |
1019960008754 | Oct 1996 | KR |
1019990054426 | Jul 1999 | KR |
20000042375 | Jul 2000 | KR |
1020050053861 | Jun 2005 | KR |
100737393 | Jul 2007 | KR |
10-0797852 | Jan 2008 | KR |
20110010452 | Feb 2011 | KR |
10-0296700 | Oct 2011 | KR |
101318388 | Oct 2013 | KR |
1535880 | Jan 1990 | SU |
201241166 | Oct 2012 | TW |
WO-9012074 | Oct 1990 | WO |
WO-9945083 | Sep 1999 | WO |
WO-2005023649 | Mar 2005 | WO |
WO-2005115583 | Dec 2005 | WO |
WO-2007103649 | Sep 2007 | WO |
WO-2008034424 | Mar 2008 | WO |
WO-2010107513 | Sep 2010 | WO |
WO-2011000447 | Jan 2011 | WO |
WO-2012029979 | Mar 2012 | WO |
WO-2013023872 | Feb 2013 | WO |
WO-2014021909 | Feb 2014 | WO |
WO2014153050 | Sep 2014 | WO |
Entry |
---|
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, avaiable online at: http://www.renold.com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, West et al. |
U.S. Appl. No. 15/392,972, filed Dec. 28, 2016, Quanci et al. |
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, West et al. |
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247. |
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010. |
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C. IMechIE 2001. |
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67. |
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages. |
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217. |
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546. |
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552. |
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412. |
JP 03-197588, Inoue Keizo et al., Method and Equipment for Boring Degassing Hole in Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991. |
JP 04-159392, Inoue Keizo et al., Method and Equipment for Opening Hole for Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992. |
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32. |
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1—24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *. |
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages. |
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25. |
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28. |
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358. |
International Search Report and Written Opinion of International Application No. PCT/US2015/047511; dated Oct. 26, 2015; 10 pages. |
Australian Examination Report No. 1 for Australian Patent Application No. 2015308674, dated Mar. 9, 2017. |
Canadian Office Action in Canadian Application No. 2,959,367, dated Mar. 27, 2017, 4 pages. |
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, Quanci et al. |
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30. |
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29. |
Walker D N et al, “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23. |
Korean Office Action for Korean Application No. 10-2017-7005693; dated Jul. 17, 2017; 13 pages. |
Chinese Office Action in Chinese Application No. 201580049825.5; dated Jul. 21, 2017. |
Japanese Notice of Rejection for Japanese Application No. 2017-511644; dated Aug. 1, 2017, 7 pages. |
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64. |
Chinese Office Action in Chinese Application No. 201580049825.5; dated Feb. 26, 2018; 8 pages. |
Extended European Search Report for European Application No. 15836056.0; dated Feb. 15, 2018; 4 pages. |
Japanese Notice of Rejection for Japanese Application No. 2017-511644; dated Feb. 13, 2018, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20170253804 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62043359 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14839384 | Aug 2015 | US |
Child | 15443246 | US |