The examples described herein relate to a pouch and to a cold beverage dispenser and pouch for use in making mixed drinks and/or health and wellness drinks.
Many consumers enjoy trying different alcoholic beverages. Often, in order to try multiple types of beverages, it is necessary to purchase a multitude of ingredients and multiple bottles of alcohol. This can be very costly and requires a significant amount of storage, since bottle are often not emptied and need to be stored. Because of this, consumers tend to stick with a certain type of drink. Countertop single serve coffee makers have become very popular among consumers. These countertop coffee makers include a brewer which heats water from a reservoir and inputs hot water to a single serve container that houses coffee grinds and a filter. Coffee is “brewed” in the container and then permitted to exit the brewer into a cup.
A cold beverage dispenser and a flexible pouch are shown and described.
Consumers enjoy trying mixed drinks. Drink specialty menus are very popular at most restaurants. However, specialty drinks are often expensive to purchase. Consumers often would like to try specialty drinks at home, but it can be costly to purchase all the ingredients. In addition, consumers need to find recipes on their own. The cold beverage dispenser 10 described herein provides a solution for consumers to be able to make many different kind of drinks, including specialty drinks, without having to find a recipe, purchase ingredients, and mix various ingredients together.
In one example, the device 10 is an on-the-counter machine targeted to the casual cocktail market for people who want to try a variety of drinks, but don't necessarily want to invest in large amounts of expensive ingredients. In this example, the machine 10 is single-serve and permits a consumer to mix a wide variety of ingredients together to make a cocktail. The machine 10 has 2 receptacles or slots 12 for receiving ingredient containers or pouches 14, as well as a reservoir W for holding water. In another embodiment, the machine 10 may have one or more slots, such as 4 slots or 3 slots.
The receptacles 12 are configured to accept containers 14, such as single-serve containers, that include liquid ingredients or a slurry of ingredients. Alternatively, the containers 14 could hold powder ingredients. As another alternative, the containers could have multiple receptacles for receiving multiple ingredients in a single pouch, as will be discussed in greater detail below.
By utilizing multiple containers 14 in multiple receptacles 12, the consumer has the ability to create hundreds of cocktails. The containers 14 may include cocktail mixers (such as juice and other ingredients) or alcohol products (such as vodka, gin, whiskey, and the like). A typical cocktail can be made using one alcohol container 14 and one mixer container 14, for example. Alternatively, a single container could include both alcohol and a mixer that are disposed in separate compartments in the same pouch, or that are mixed together in a single compartment within a pouch. This type of pouch may be useful with cocktails that require more than one type of alcohol, such as a long island iced tea. The containers 14 are input separately into the receptacles 12 in the dispensing machine 10 and the alcohol is typically not mixed with the mixers prior to activation of the dispensing machine 10, although there may be some formulations where alcohol is mixed with a mixer in the container 14.
The size of the containers 14 may vary relative to the alcohol pouches and relative to what is required in order to make a drink recipe. Alternatively, the alcohol pouches and the mixer pouches may be substantially the same size so that they can utilize the same manufacturing line for production of the pouches.
The pouches include an opening area that is an area of the pouch that receives a cutting or opening mechanism. As discussed in greater detail below, the cutting mechanism may be a blade that slices through the front or back surface of the pouch. When the pouches have more than one compartment, the compartments should be positioned so that the blade may open both compartments. In addition, the pouches may be formed such that each compartment has a slanted surface in order to promote the exiting of the contents of the compartment via gravity.
The contents of the containers 14 are formulated so that they allow the consumer to make the “perfect” drink every time because the mixers are proportioned to exactly match the amount of alcohol in the alcohol container 14. This allows the consumer great ease to try a variety of drinks, mixed perfectly, in their own home. No measuring of ingredients is needed. The consumer only has to insert the containers 14 into the receptacles 12 and let the machine 10 prepare the cocktail. This is also advantageous because the consumer is not required to purchase a multitude of costly ingredients, which inevitably do not get entirely used, leaving half empty bottle to rest in the cupboard or refrigerator and take up space.
The Alcohol and Tobacco Tax and Trade Bureau (TTB) regulates the labeling, advertising and marketing of alcoholic beverages in the United States. Wine and liquor may only be sold in standard sizes. The smallest size bottle of distilled spirits permitted to be sold in the United States is referred to as a miniature and has a size of 50 ml or 1.7 ounces. A typical shot that is dispensed in US bars is between 1 ounce and 1.5 ounces. The “shot” dispensed in connection with the subject dispenser 10 is 1.7 ounces in order to conform to US sizing standards. This may change over time if federal regulations change. Other sizes may be used in other jurisdictions, such as foreign jurisdictions, with the size of the “shot” not being limited to 50 ml. The mixers utilized with the dispensing device 10 are formulated for use with 1.7 ounces of liquor. If a different size alcohol “shot” is permitted to be sold, then the mixers can be adjusted based upon the quantity of alcohol in the “shot” pouch. Double shots of alcohol may be used by either using a larger container 14 in the receptacle 12 or by using two alcohol containers 14, each having 1.7 ounces of alcohol. In one example, the dispenser 10 may have the capacity to make a “double” so that 3 ounces of alcohol are used at minimum, along with about 8 oz. of mixer. Alcohol may be dispensed as a precisely measured mixologist bartender shot, if desired and permitted under local laws.
The example drink dispenser 10 takes a pouch 14 of ingredients, adds water and dispenses it into a cup 16. When alcohol pouches 14 are also desired and available, the consumer may place both the mixer pouch and the alcohol pouch in the drink dispenser 10 in order to create a cocktail. When alcohol pouches 14 are not available, the consumer can take a mixer pouch 14 and place it into the drink dispenser 10 in order to make the cocktail and can add a shot of their favorite spirit using a premeasured shot glass that can be included with the system.
The device 10 may include a funnel 18, a mixing chamber 120, or, alternatively, the ingredients may simply flow directly into an underlying cup 16. A funnel 18 may be used in order to direct the ingredients into the underlying cup 16 while a mixing reservoir 120 will typically have a valve 122 positioned at its outlet in order to allow mixing of ingredients in the mixing reservoir 120 before the valve 122 is opened. Both the funnel 18 and the mixing chamber 120 have an outlet 124 through which the combined ingredients may exit the mixing chamber 120 or funnel. When a mixing chamber 120 is utilized, swirling motion created by the input of water may permit the ingredients to mix before exiting the dispenser 10.
In yet another embodiment, a motorized blender (not shown) may be utilized to receive the ingredients and water in place of the mixing reservoir 120 so that the ingredients can be blended together before being dispensed into a cup 16. The blender may have an outlet 124 that is closed and opened by a valve 122 in order to permit blending in the blender before dispensing.
The dispensing device 10 may alternatively be used to make health drinks, such as those that include nutritional supplements or other “health food” related components. One type of ingredient may be a mixture of vitamins in a concentrated liquid form, which are known to be more readily absorbed by the body. Alternatively, a powder-based mix may be used, with water from a water supply W, with the water being used to make the powder-based mix flow out of the dispenser 10. Other types of health enhancing products may be used including vitamins, minerals, and other nutrients or products, as known by those of skill in the art. Pureed fruits and vegetables may be utilized to incorporate fruits and vegetables, if desired. For example, a kale-based pouch 14 could be used along with a mango-based pouch 14 along with a supplement pouch 14. Alternatively, these ingredients could be combined into a single pouch such that the compartments that house the ingredients are aligned with the opening area so that the ingredients may all flow from the pouch 14. Juices may be used. This permits the user to customize their “health” drink to find a drink mixture that they enjoy.
The device 10 may have a refrigeration component or chiller (not shown) and may include an ice dispenser (not shown). Alternatively, ice may be added to the cup or glass 16 before or after the liquid mixture is dispensed into the cup/glass 16. The liquid mixture may also be dispensed into other types of receptacles, such as pitchers or mugs, for example (not shown). A chiller could be used to chill the water or the ingredients in the containers 14. It is envisioned that larger pouches could be utilized to make half and whole pitchers of cocktails, if desired. When larger pouches are utilized, the receptacles in the dispensing device 10 must be large enough to accept the larger pouches.
An exterior view of an example dispensing device 10 is shown in
Containers 14a, 14b may enter the receptacles 12 via an opening in the top 126, as one example. The receptacles 12 are configured to accept single serve containers 14 that include liquid ingredients. The containers are shown as being in pouch form and have a thin wall that is conducive to slicing. Alternatively, the containers 14 could hold powder ingredients, as discussed above.
The dispenser 10 of
The display 11 and housing 22 are coupled together and form a unit. The cutter assembly 9 is a cassette that can be removed for cleaning. The housing 22 contains ridges or other surfaces (not shown) for receiving the cutting assembly 9 so that the cutting assembly seats in a top opening of the unit. A clip 28 may be positioned on the sides of the cutting assembly 9 for coupling with a groove (not shown) inside the housing 22 in order to hold the cutting assembly 9 in position in the housing 22. Other means may also be provided for coupling the cutter assembly 9 to the housing 22.
A divider 36 is provided between the first and second receptacles 12. The divider 36 may be removable from the housing 22 and is used to separate the two containers 14 in order to provide two separate receptacles 12 for receiving both containers 14 in the housing 22. The divider 36 has a slot 38 through which a cutting blade 40 can move horizontally. The divider 36 may be positioned in the housing 22 to abut grooves or slots (not shown) in the housing 22 interior. The divider 36 may be coupled in any known manner to the housing 22.
A water reservoir W is positioned on a rear end of the housing 22 and is removable from the housing 22 for filling purposes. The water reservoir may include seals and sensors, as known by those of skill in the art, in order to avoid leakage and in order to sense when the reservoir is running low on water. A pump 17.1 is coupled to the water reservoir W and is used to pump water through water lines in the housing 22 in order to mix the water with ingredients stored in the containers 14, as shown better in
The display panel 11 includes switches associated with the read 10.2, mix 10.5 and clean 10.3 buttons. Housing 22 includes an upper housing portion 42 and a lower housing portion 44. The upper housing portion 42 is broken into two parts, and a large opening is provided in the upper housing 42 in order to accept the cutter assembly 9 therein.
In this example, the containers 14 are loaded into the device 10 in
Some of the contents of the containers 14 may exit the container 14 upon contact of the container 14 with the opening mechanism 40. In some cases, the ingredients in the containers 14 will freely flow substantially entirely out of the containers 14 by gravity. This will in part depend upon the viscosity of the ingredients as well as the size of the opening 146 made in the containers 14 with the opening mechanism 40. In some cases, it may be beneficial to squeeze the contents of the containers 14 to ensure that the containers 14 are fully evacuated. This can be done at either
The cutting mechanism 40 and the water inlet 54 may cut the liner at substantially the same time, or one may activate before the other. A controller C or processor can be used to sequence the opening of a valve in order to introduce water into the containers 14. A controller C or processor could also be used to close the containers 14 in the receptacles 12 and to move the opening mechanism 40 into the containers 14, if desired. Alternatively, some of these functions can be done by hand or mechanically.
The cover 24 is connected to the cutter assembly 9 by a post 9.11 and a receiver 9.10. The post 9.11 is connected to the cutting arm 9.1 and cutting blade 40 and the receiver 9.10 is connected to the lower side of the cover 24 and is pivotable relative to the cover 24. A pawl 9.12 is positioned between the post 9.11 and the receiver 9.10 and is use to govern the motion of the cutting blade 40. The post 9.11 is slidably received within the receiver 9.10.
The housing 22 also includes a well 32 that has an overflow plate 34 that is positioned in the well 32 for catching any overflow from the dispenser 10. The well 32 is positioned at the dispensing end of the device 10 and is positioned below the funnel 18 through which liquid ingredients travel. The well 32 may include a drain lid 34 that is used for positioning a glass 16 on the drain 34 in order to keep the bottom of the glass 16 out of the well 32. Both the overflow well 32 and the drain lid 34 may be removable. The water reservoir W is removable in order to permit refilling of the reservoir with water.
As shown in
The blade 40 may be coupled to the cutter arm 9.1 in any known manner. The cutting blade 40 may be metal while the cutter arm 9.1 is plastic, or other suitable materials.
The example drink dispenser 10 takes multiple containers 14 of material, adds water and dispenses them into a cup 16. The funnel 18 serves as a mixing chamber for the ingredients in the containers 14, as well as a station for mixing water with the contents of the containers 14. Water nozzles or outlets 20 are provided at the bottom of the receptacles 12. The water outlets 20 are coupled to a pump 17.1 and the water reservoir W and are used to mix water with the contents of the containers 14. In addition, the water outlets 20 are used to help clean and rinse the funnel 18 and the various parts within the interior of the device 10 without having to remove the cutting assembly 9 or divider plate 36. The water outlets 20 are positioned on both sides of each receptacle 12. They work together to create a swirling pattern within the funnel 18 in order to help mix the ingredients and to help clean the interior when no containers 14 are inserted.
As discussed above, the display 11 includes a button for “mix” 10.5 and “clean” 10.3. The “mix” button 10.5 is pressed after the cover 24 is closed in order to dispense water from the water reservoir W. The “mix” button 10.5 is tied to a control system that will meter an appropriate amount of water for the particular containers 14 used. The mix button 10.5 may also be tied to a read function 10.2 such that upon reading the type of container 14 used, the control system can determine how much water to add.
A “read” button 10.2 can be used to read the types of pouch or pouches inserted and can be used to instruct a user as to what type of alcohol pouch to insert when a mixer pouch is installed. This read function would occur separately from the MIX button. Alternatively, button 10.2 can be an INFO or HELP button that the user presses, when needed in order to get instructions on how the machine works. It is anticipated that, due to the simplicity of the machine, once the user makes one or two drinks, they will no longer need instructions.
Reading may occur automatically when the user presses MIX, or, in some cases, the MIX and READ functions may be separated. In addition, once the reading occurs, the control system knows what type of beverage is being made and can determine how much water to add to the system. In one embodiment, the read 10.2 and mix 10.5 functions are both performed by the MIX button.
The “clean” button 10.3 is pressed when no containers 14 are present in the receptacles 12 in order to rinse or clean the interior of the device with water. The CLEAN button 10.3 initiates a flow of water into the funnel 18 that permits the funnel 18 to be rinsed out. Thus, a user must position a cup 16 under the funnel 18 when using the CLEAN button 10.3. In addition, the cutter assembly 9 and divider plate 36 are removable from the housing 22 and permit a user to easily clean the internal parts of the device 10 that come into contact with ingredients. Both parts maybe submerged in hot soapy water in order to be cleaned. In addition, once the divider plate 36 and the cutter assembly 9 are removed, a user can wipe the interior of the machine by hand in order to clean out the interior of the machine. The cutter mechanism may have a locking mechanism to prevent or deter release of the cutting blade when the cutter mechanism 9 is removed from the housing 12.
The pouch 14 can be made of PET, Polypropylene, Polystyrene, PETG, Surlyn, and HDPE food-grade materials or other materials. The seal 52 could be a foil seal or could be other types of materials, including any number of polymeric materials or combinations of materials in layers. The liner may comprise a combination of materials in layers. The seal 52 can be hermetic in order to preserve product freshness and shelf life and have inner layers that promote freshness and shelf life. While the liner is described as being vacuum sealed, it could be applied in other manners as known by those of skill in the art.
A nozzle 42 can be used for directing the water at one or more locations within the funnel 18 or reservoir 20. The water is metered out to mix with the contents of the containers 14 in a fixed amount in order to make the “perfect” drink. In addition, the water helps to clean the reservoir 20 each time a drink is made, since it may exit the reservoir 20 after the contents of the containers 14 have existed the reservoir 20.
The pouch 14 utilized with the dispenser stores a liquid, such as a concentrate, a non-concentrate, a flavor, an alcoholic beverage, a spirit, another beverage component, or the like. The pouch 14 is designed for use in a drink machine that incorporates a cutting blade that slices the pouch longitudinally in order to open the pouch. The pouch is positioned in the dispenser vertically and the cutting blade cuts the pouch at a lower end, although it could cut the pouch along its entire length or a greater amount of its length than shown. When the pouch is cut with the cutting blade at the lower end of the pouch, the pouch substantially completely evacuates the contents of the pouch. For example, approximately 90-100% of the pouch is evacuated. In another embodiment, approximately 92-98% of the pouch is evacuated. In another embodiment, approximately 93-97% of the pouch is evacuated. The amount of evacuation may be 85%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or substantially 100%. The pouch 14 could alternatively be used without a drink machine and could be opened by hand by tearing or cutting through part of the pouch 10, as will be described in greater detail below.
A pouch was previously discussed in connection with
Another example pouch 14 is shown in
While the example pouch 14 shown does not have bottom wall, the pouch 14 could be formed as a standup pouch and include a bottom wall, if desired. The pouch 14 could also alternatively or in addition thereto have a top wall, or be shaped differently, such as having a gusset around the entire front and back surface 116, 118 (not shown). If desired, the pouch could be formed without a rim 64. As is evident, any type of soft pouch can be used, as long as the end that engages with the cutting mechanism is capable of being cut by the cutting mechanism. The term “soft” pouch refers to a flexible pouch that is cutable, pierceable, or sliceable with a knife and that otherwise does not have any hard plastic or other attachments in the vicinity of the area of the pouch that is to be cut, e.g., the opening area.
The general shape of the pouch 14 is rectangular with a spout 110 at an upper end. The pouch 14 has a longitudinal axis Y-Y that extends along the long axis of the pouch 14. The pouch 14 also has a transverse axis X-X that is perpendicular to the longitudinal axis Y-Y. During use, the longitudinal axis Y-Y of the pouch 14 will be positioned substantially vertically. The pouch 14 has a front outer surface 92 and a rear outer surface 94. The shape of the front outer surface 92 matches the shape of the rear outer surface 94, although it's possible for the front outer surface 92 not to match the rear outer surface 94, and such a pouch is within the scope of the present invention. For example, if one side of the pouch were bowed outwardly more than the other side, the front outer surface 92 would not match the rear outer surface 94. The perimeter of the pouch 14 is cut simultaneously after the pouch 14 is sealed in order to form an outer boundary to the pouch 14. The pouch as a top end 96 and a bottom end 98.
The compartment 112 has a top edge 196, a bottom edge 198, a left and right side edge 130, 132, which may be substantially identical to one another, and a front and rear surface 116, 118, which are shown as being substantially identical to one another in shape, but could be different from one another. A narrowed portion 88 of the compartment 112 is positioned at the top edge 196 of the compartment 112 in the area of the spout 110, and the bottom edge 198 of the compartment is flat or straight. An upper edge 196 of the compartment 112 is substantially an inverted V-shape when viewed from the side of the pouch 14. The upper edge 196 formed by the joining of the front and rear sides and forms shoulders 152 adjacent the spout 110 and narrowed portion 88. The compartment 112 has a length L1 that is greater than a width W1 thereof, although the length could be less than the width, if desired.
The rim 64 of the pouch 14 is formed from the front and back layers 116, 118, which are joined together around the outer edge by heat sealing or other known techniques for forming pouches that contain a liquid. The rim 64 has a top end 96, a bottom edge 98, a left and a right side 130, 132, which are substantially identical to one another, and a front and a back surface 116, 118 which are shown as being substantially identical to one another in shape, but may have different graphics applied thereto. The top end 96 of the rim 64 includes a spout 110 into which the narrowed portion 88 of the compartment 112 extends. The spout 110 is approximately rectangular in profile, but could have other shapes.
The bottom edge 98 of the rim 64 has an inwardly curved or concave edge. The spout 110 has a top edge 96 and the top edge 96 of the spout 110 has a curved surface, which may have a convex edge. The bottom concave shape and the top convex shape of the pouch rim 64 may be complementary to one another, such that they are substantially identical or created by the same cutting tool, such as a die punch. Other shapes could also be used for the top edge 96 of the spout 110. The side edges 130, 132 of the rim 64 are straight, but could be other shapes. The rim 64 also includes an upper edge 150 that slopes downwardly to form shoulders 152. The upper edge 150 of the shoulders 152 joins with the spout 110, which is centrally located. The shoulders 152 are shown as rounded portions where the side edges 130, 132 meet the upper edges 150 of the rim 64, but could be other shapes, such as squared.
The spout 110 includes two necked-in cut outs or notches 66, one on each side of the pouch 14, that are positioned between the spout 110 and the adjacent upper edge 150 of the pouch 14. These necked-in cut outs 66 help to create the narrowed portion 88 of the spout 110 that can be used to assist in tearing the spout 110 open by hand.
The pouch 14 also includes a notch 62 that extends longitudinally downwardly and inwardly at the top edge 96 of the spout 110. This notch 62 is used to create a thinned portion 58 of the spout 110 to aid in cutting the pouch 14 with the cutting blade 40 that is positioned inside a drink dispenser 10. It is contemplated that a cutting blade 40 will enter the front or rear surfaces 116, 118 of the pouch 14 and slice downwardly or upward longitudinally Y-Y. The notch 62 is designed to aid in the guiding of a blade through the spout 110 of the pouch 14 in order to release the contents of the pouch 14 therefrom and to permit the contents of the compartment 112 to substantially fully evacuate by gravity.
In practice, the top end 38 of the pouch 14 will be inserted into a receptacle in a drink machine such that the top end 96 faces downwardly and the bottom end 98 faces upwardly when the pouch 14 is installed in a slot of the dispenser 10. A cutting blade 40 enters from the front or rear surfaces of the pouch 14 and slices the pouch 14 vertically through the front and/or rear surfaces 116, 118 of the pouch 14 and spout 110. The blade 40 may be directed along part of its travel towards the notch 62 in the pouch 14 since that area of the pouch 14 has a thinner rim 64. Thus, the notch 62 helps to promote cutting in a desired location of the pouch 14.
The pouch 14 dimensions are, in part, determined based upon the types of manufacturing machines presently readily available. As other manufacturing machines become available, the pouch 14 size and shape may vary. In addition, although the compartment 112 mimics the shape of the rim 64 of the pouch 14 (with the exception of the bottom edge 198), the compartment 112 could have a shape that is different from that of the rim 64.
The notch 62 on the top end 96 of the pouch 14 can be formed with an angle A1 of about 90 degrees. The notch 62 could have other dimensions than shown and described. The necked in cut outs 66 that form the tear location in the spout 110 could be formed at an angle A2 of about 50 or 60 degrees. The cut outs 66 could have different dimensions than shown and described. The cut outs 66 of the spout 110 form a thinner area 160 of the rim 64, making it easier to remove the spout 110 from the remainder of the pouch 14 by tearing or cutting. The indented notch 62 on the top edge 96 of the pouch 14 also defines a thinned portion 58 at the top end of the pouch 14 for cutting, as previously discussed.
As shown in
One example pouch is a lamination of PET, foil, and polyethylene. Other types of flexible materials may also be used, if desired. The invention not being limited to a particular type of material unless required to be so limited by patents of another.
As shown in
While not shown, four pouches could be utilized instead of two, with two pouches being stacked on top of each other in each receptacle 12. Alternatively, a single pouch could be used at any given time. In this case, the user could add alcohol via a premeasured shot glass that can be provided with the dispenser. If the user wishes a lighter drink, they could partially fill the shot glass. If the user wants a “double”, they could pour more liquor into the glass 16.
The containers 14 could be positioned in their respective receptacles or slots 12 and the closing of the cover could serve as the activation signal for opening the containers 14. The cover could be closed and pressed downwardly to activate the device 10. Alternatively, a separate button could be pressed to activate the device 10, such as the MIX button previously discussed. The contents of the container 14 are drained and water is added, which rinses the funnel 18.
The opening mechanisms 40 may be a cutting or slicing member(s), or other known members for opening a container 14. A piercing mechanism could be used, as long as the piercer is positioned to allow substantially all the contents of the pouch 14 to be evacuated. The opening mechanisms 40 are selected as a function of the type of containers 14 used to hold the ingredients. If one or more opening members are used, they each may be the same or different from one another.
The device 10 may be a counter-top machine that allows 2, 3, 4 or more liquids/slurries to mix together in specific ratios (minimizing liquid components to keep carbon footprint of the mixed drink at a minimum). A water source W may be a water reservoir W that is refillable and part of the device 10. A tank of any size, such as 32 ounces, may be utilized as the water reservoir W. Alternatively, the device 10 could be connected to a water line so that the water reservoir is not needed.
The container sizes and shapes may vary from that shown here and relative to one another in use. One example pouch may have a size of 1-2 ounces, such as 1.6 ounces or 1.7 ounces. Because alcohol is closely regulated by the federal government, the alcohol pouch may have 1.7 ounces of alcohol. Alternatively, where different laws allow for it, the pouch could hold 1-2 ounces or 1-3 ounces of alcohol. The pouches may hold concentrated ingredients. As such, the size of the pouches or containers may be reduced. For example, a 2 ounce pouch of orange juice concentrate may make 8 ounces of juice when properly re-constituted. Examples of types of components that may be used in making a cocktail using the device 10 include the following, which represent different viscosities: Syrup, Alcohol, Juice/Juice Puree, Dairy, a combination thereof, or other components not mentioned.
The dispensing device 10 is compact and stylish. The dispensing device 10 is easily cleaned/maintained. A separate container may be added to the first and second containers 14 to provide a carbonating component. Alternatively, a separate carbonation system may be utilized along with flavoring and alcohol containers 14. A CO2 container may be used for purposes of carbonation, if desired.
The dispenser 10 may be used to make any number of different types of cocktails. Examples of types of cocktails include those presented at http://www.drinksmixer.com/cat/1/ (12000+ cocktail recipes). As an example, one type of cocktail that may be made with the device 10 is “Sex on the Beach,” a popular fruit mixed drink made of vodka, peach schnapps, creme de cassis, and orange and cranberry juices. An individual container 14 for “Sex on the Beach” may be input to the system as well as a “shot” container 14 that includes a combination of vodka, peach schnapps and crème de cassis. Alternatively, the “Sex on the Beach” container 14 may already include all the components with the exception of vodka, which may be input using a separate shot container 14.
Alternatively, separate receptacles 12 for receiving multiple components may be used, or containers 14 may be sized to seat on top of or stacked against each other, with the opening or piercing member piercing through all containers 14 in the receptacle 12 in order to permit water to flow through each of the containers 14, or for the containers 14 to drain via gravity, in order to permit multiple different types of alcohol to flow from a single or multiple receptacles 12. For example, a single receptacle 12 could house the “Sex on the Beach” non-alcoholic components while a second single receptacle 12 could house the alcohol components including a peach schnapps container 14, a crème de cassis container 14, and a vodka container 14. The alcohol components could be stacked on top of each other or otherwise arranged in the receptacle 12. The alcohol components could be the same size or different sizes, depending upon what is called for in the drink recipe.
Another type of cocktail that is well known is the “Gin Fizz”. A Gin Fizz uses gin, lemon juice, soda water, and gomme syrup. In this example, one receptacle 12 would receive a container 14 of Gin and the other receptacle 12 would receive a mixer container 14 that contains lemon juice and gomme syrup. A separate input can provide the soda water—either added external to the device 10, such as by pouring soda water into the removable cup 16, or via a separate carbonation unit that permits the dispensation of carbonated soda water to the system. Where a separate carbonation system is used, the water may flow from the reservoir into the carbonation system where it is carbonated. Then, carbonated water may either flow through the pouches or containers 14, or flow separately to the cup 16. In one example, uncarbonated water travels through the pouches and containers 14 to dispense them into the cup 16, while soda water travels separately to the cup 16.
Ice dispensing may be provided by an auxiliary device (not shown) that is either integral with or separate from the device 10. The device 10 may include a refrigeration component (not shown) in order to chill or cool the components rapidly during the dispensing process. The device 10 may include a sensory signal to indicate that the products are being mixed together during dispensation.
Although an initial embodiment of the beverage maker 10 is an on the counter-type device, the device 10 may alternatively be an on-the-floor device or have different sizes depending upon the application. The beverage maker 10 may be utilized at home, in hotels, or anywhere where cocktails are imbibed.
The device 10 may include smart technology, such as an RFID chip reader and a processor and/or controller C for directing the operation of the device 10. The containers 14 may include a chip, such as an RFID chip that includes instructions for the device 10 to make the cocktail properly. For example, the chip may include instructions for how much water to add to the contents of the pouch, whether to use plain water or carbonated water, or a combination of both, how much pressure to apply to the contents of the container 14, or other instructions that aid in properly preparing a cocktail. A chip reader reads the instructions from the chip when the container 14 is placed into the receptacle 12. These instructions are then communicated to the processor, which then instructs the various parts of the device 10 to operate according to the instructions. The device 10 may include a processor and/or controller C regardless of whether RFID technology is used in order to allow for proper operation of the device 10. Other ways, such as barcodes, may be used in order to send instructions from the pouch to the processor, as known by those of skill in the art.
The device may use a barcode reader or similar device in order to read a code or image that is positioned on an exterior of the pouch. This image or bar code can be read and transmitted to a controller, which has programming that permits different amounts of liquid to be added to the cup 16 based upon the type of ingredients in the pouch 14.
Other types of containers 14 or shapes of containers 14 may be used, including those having different openings.
Various parts of the device 10 can be transparent, including the containers 14, if desired. Advertising material and instructions may be positioned on the containers 14 and on the devices 10.
In one embodiment, a beverage dispenser includes a housing, a first pouch, a cutting mechanism, a water source, and a pump. The housing has at least a first receptacle. The first pouch has a beverage content for seating in the first receptacle and has an opening area thereon for opening the pouch. The cutting mechanism is for opening the first pouch in the opening area of the pouch in order to allow the contents thereof to evacuate from the pouch. The water source is coupled to the housing permitting water to mix with the contents of the pouch. The pump is coupled to the water reservoir for transferring water from the water reservoir to the vicinity of the first receptacle such that water from the water reservoir is permitted to mix with the contents of the pouch. The opening area of the pouch permits cutting or slicing of the pouch with the cutting mechanism.
The pouch may be made of a soft, flexible material and the opening area of the pouch may include at least part of a side surface thereof. The pouch may be substantially completely evacuated after being cut by the cutting mechanism. About 90-99% of the contents of the pouch may be evacuated by gravity after the pouch is cut by the cutting mechanism. The cutting mechanism may be a blade.
The beverage dispenser may also include a control system for operating the beverage dispenser in order to dispense a beverage from an outlet of the housing. The beverage dispenser may also include a control panel permitting a user to enter instructions to the control system.
In another embodiment, a pouch for use in a beverage dispenser includes a soft pouch having a liquid or slurry contents stored in at least one compartment thereof and having a shape and size to seat in a receptacle of a beverage dispenser in order to allow opening of the pouch within the dispenser such that the contents of the pouch may be evacuated. The pouch is formed of a laminated material.
The laminated material may be a combination of PET, foil and polyethylene. The pouch has a length, a width, a top edge, and a bottom edge. The length may be greater than the width, and the top end may include a necked-down portion. The bottom edge may be concave. The top edge may be convex.
In another embodiment, a pouch for use in a beverage dispenser includes a first layer, a second layer, and an opening area. The first layer and second layer together form a cavity for holding a liquid or slurry content there between. The opening area on one or both of the first and second layers is configured to permit a cutting blade to slice through one or both of the side and top end of the pouch in order to permit the contents to be substantially completely evacuated from the pouch via gravity.
The first layer and the second layer may be coupled together via sealing in order to form a rim around a perimeter of the pouch. The entire pouch may be made of a flexible, sliceable material. The pouch may have an opening area defined on at least one surface thereof that accepts a cutting blade in order to open the pouch, and the opening area is soft, flexible, and sliceable. One or both of: the opening area may comprise less than one half of the length of the pouch; and the opening area may comprise an area that is less than one half the width of the pouch. The first and second layers may be integral with each other. For example, the first and second layer may be formed from a single sheet of material and folded over on itself.
The pouch has a length and a width. The length of the pouch may be greater than the width. The pouch may be configured to seat in a beverage dispenser lengthwise such that the length extends vertically permitting a cutting mechanism to slice through the opening area. The contents of the pouch may evacuate the pouch via gravity.
In another embodiment, a method for making a mixed drink using a drink dispenser and the pouch described above includes depositing the pouch having a liquid or a slurry content into a receiving receptacle of the drink dispenser. Then the method includes engaging a cutting mechanism that is positioned inside the drink dispenser to cut through at least a part of a side wall of the pouch in order to permit the contents of the pouch to at least in part exit the pouch and drain into a container. Then the method includes pumping water from a water reservoir to mingle with the contents from the pouch and to drain into the container.
The pouch may be substantially completely evacuated via gravity after engaging with cutting mechanism.
The term “substantially,” if used herein, is a term of estimation.
While various features of the claimed invention are presented above, it should be understood that the features may be used singly or in any combination thereof. Therefore, the claimed invention is not to be limited to only the specific embodiments depicted herein.
Further, it should be understood that variations and modifications may occur to those skilled in the art to which the claimed invention pertains. The embodiments described herein are exemplary of the claimed invention. The disclosure may enable those skilled in the art to make and use embodiments having alternative elements that likewise correspond to the elements of the invention recited in the claims. The intended scope of the invention may thus include other embodiments that do not differ or that insubstantially differ from the literal language of the claims. The scope of the present invention is accordingly defined as set forth in the appended claims.
This application is a continuation-in-part to U.S. patent application Ser. No. 14/806,522, filed on Jul. 22, 2015, which claims priority to Provisional application No. 62/027,286, filed on Jul. 22, 2014; to U.S. patent application Ser. No. 15/060,716, filed on Mar. 4, 2016; and to U.S. patent application Ser. No. 15/060,706, filed on Mar. 4, 2016, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2103389 | Salfisberg | Dec 1937 | A |
2635788 | Snyder et al. | Apr 1953 | A |
2663461 | Brown | Dec 1953 | A |
3009498 | Fohr | Nov 1961 | A |
3186625 | McAd | Jun 1965 | A |
3199437 | Nelsen | Aug 1965 | A |
3429495 | McClosky | Feb 1969 | A |
4171755 | Carlisle | Oct 1979 | A |
4463876 | Swallert | Aug 1984 | A |
4759472 | Strenger | Jul 1988 | A |
4808346 | Strenger | Feb 1989 | A |
D304299 | Sakamoto | Oct 1989 | S |
D306555 | Lane et al. | Mar 1990 | S |
4915261 | Strenger | Apr 1990 | A |
D309432 | Mancini | Jul 1990 | S |
4981374 | Rutter | Jan 1991 | A |
D319976 | Wortley et al. | Sep 1991 | S |
5067635 | Thomsen | Nov 1991 | A |
D351992 | Jacques | Nov 1994 | S |
D354906 | Lane, Jr. et al. | Jan 1995 | S |
5497913 | Baker | Mar 1996 | A |
D392559 | Smith et al. | Mar 1998 | S |
6076968 | Smith | Jun 2000 | A |
6079315 | Beaulieu et al. | Jun 2000 | A |
6116782 | Arkins | Sep 2000 | A |
6155457 | Landa | Dec 2000 | A |
6164825 | Larkin et al. | Dec 2000 | A |
D442078 | Fuquen | May 2001 | S |
D452144 | Tedeschi, Jr. et al. | Dec 2001 | S |
D455645 | Bell et al. | Apr 2002 | S |
D463974 | Berman | Oct 2002 | S |
6606938 | Taylor | Aug 2003 | B2 |
6607762 | Lazaris et al. | Aug 2003 | B2 |
6655260 | Lazaris et al. | Dec 2003 | B2 |
D484972 | Steele, IV et al. | Jan 2004 | S |
D501399 | Tobolka | Feb 2005 | S |
6935781 | Makino | Aug 2005 | B2 |
D509751 | Risgalla | Sep 2005 | S |
D523758 | Risgalla | Jun 2006 | S |
7055683 | Bourque | Jun 2006 | B2 |
D533462 | Bachmann | Dec 2006 | S |
7165488 | Bragg et al. | Jan 2007 | B2 |
D545689 | Peel | Jul 2007 | S |
D550568 | Lau et al. | Sep 2007 | S |
D555010 | Maier et al. | Nov 2007 | S |
7306095 | Bourque | Dec 2007 | B1 |
D558594 | Kirou et al. | Jan 2008 | S |
7347138 | Bragg et al. | Mar 2008 | B2 |
7360418 | Pelovitz | Apr 2008 | B2 |
7377162 | Lazaris | May 2008 | B2 |
7398726 | Streeter et al. | Jul 2008 | B2 |
D578010 | Friedland et al. | Oct 2008 | S |
D578011 | Friedland et al. | Oct 2008 | S |
D578016 | Friedland et al. | Oct 2008 | S |
D578017 | Friedland et al. | Oct 2008 | S |
D578018 | Friedland et al. | Oct 2008 | S |
D578019 | Friedland et al. | Oct 2008 | S |
D580780 | Kelly et al. | Nov 2008 | S |
D580782 | Murray | Nov 2008 | S |
D585302 | Beyer et al. | Jan 2009 | S |
D586231 | Friedland et al. | Feb 2009 | S |
D587597 | Friedland et al. | Mar 2009 | S |
7513192 | Sullivan et al. | Apr 2009 | B2 |
D595592 | Beyer et al. | Jul 2009 | S |
D601037 | Beyer et al. | Sep 2009 | S |
7640845 | Woodnorth et al. | Jan 2010 | B2 |
D610467 | Kozarsky | Feb 2010 | S |
D613181 | Friedland et al. | Apr 2010 | S |
D623536 | Bohmke | Sep 2010 | S |
D627236 | Kozarsky | Nov 2010 | S |
7950850 | Fukuizumi | May 2011 | B2 |
D640566 | Norlin et al. | Jun 2011 | S |
D643745 | Hartley | Aug 2011 | S |
8091735 | Girard et al. | Jan 2012 | B2 |
8104642 | Bambrick et al. | Jan 2012 | B2 |
8151694 | Jacobs et al. | Apr 2012 | B2 |
D668554 | Tsuchiya | Oct 2012 | S |
8361527 | Winkler et al. | Jan 2013 | B2 |
D676335 | Murray | Feb 2013 | S |
D676336 | Murray | Feb 2013 | S |
8481097 | Skalski | Jul 2013 | B2 |
8495949 | Tinkler et al. | Jul 2013 | B2 |
8516948 | Zimmerman et al. | Jul 2013 | B2 |
D689371 | Ross | Sep 2013 | S |
D689776 | Murray | Sep 2013 | S |
D692315 | Bohmke et al. | Oct 2013 | S |
D692316 | Bohmke et al. | Oct 2013 | S |
D693241 | Kilber et al. | Nov 2013 | S |
8573114 | Huang et al. | Nov 2013 | B2 |
8590753 | Marina et al. | Nov 2013 | B2 |
D695132 | Bouthillon | Dec 2013 | S |
8609170 | Tinkler et al. | Dec 2013 | B2 |
D698663 | Lin | Feb 2014 | S |
D700066 | Berman | Feb 2014 | S |
8667892 | Cominelli et al. | Mar 2014 | B2 |
8673379 | Skalski | Mar 2014 | B2 |
D703549 | Murray | Apr 2014 | S |
8708195 | Duran | Apr 2014 | B1 |
8740020 | Marina et al. | Jun 2014 | B2 |
8757222 | Rudick et al. | Jun 2014 | B2 |
8808775 | Novak et al. | Aug 2014 | B2 |
8881948 | Lassota | Nov 2014 | B1 |
D723385 | Gaudard | Mar 2015 | S |
8985395 | Tansey | Mar 2015 | B2 |
9061819 | Kane, Jr. | Jun 2015 | B2 |
D736099 | Deuerer | Aug 2015 | S |
9365405 | Stratton | Jun 2016 | B2 |
9701527 | Tansey, Jr. | Jul 2017 | B2 |
9783403 | Tansey, Jr. | Oct 2017 | B2 |
9809437 | Tansey, Jr. | Nov 2017 | B2 |
20040007588 | Danby | Jan 2004 | A1 |
20040118710 | Bourque | Jun 2004 | A1 |
20050109796 | Bourque | May 2005 | A1 |
20060118581 | Clark | Jun 2006 | A1 |
20080010950 | Peck | Jan 2008 | A1 |
20080314927 | Martin | Dec 2008 | A1 |
20090057340 | Moothart | Mar 2009 | A1 |
20090120961 | Dietschi et al. | May 2009 | A1 |
20100116842 | Hecht et al. | May 2010 | A1 |
20100154919 | Jansen | Jun 2010 | A1 |
20100269707 | Wiemer et al. | Oct 2010 | A1 |
20110166910 | Marina et al. | Jul 2011 | A1 |
20110226343 | Novak et al. | Sep 2011 | A1 |
20120183657 | Marina et al. | Jun 2012 | A1 |
20130015206 | van Haperen et al. | Jan 2013 | A1 |
20130042941 | van Haperen et al. | Feb 2013 | A1 |
20130062366 | Tansey | Mar 2013 | A1 |
20130077898 | Doll | Mar 2013 | A1 |
20130233180 | Belmont | Sep 2013 | A1 |
20140069953 | Metropulos et al. | Mar 2014 | A1 |
20140072678 | Jenkins | Mar 2014 | A1 |
20140106048 | Harper | Apr 2014 | A1 |
20140114469 | Givens et al. | Apr 2014 | A1 |
20140134299 | Guidorzi et al. | May 2014 | A1 |
20140175125 | Breault | Jun 2014 | A1 |
20140209634 | Metropulos et al. | Jul 2014 | A1 |
20140224130 | Castellani et al. | Aug 2014 | A1 |
20140263407 | Rudick et al. | Sep 2014 | A1 |
20140263414 | San Miguel et al. | Sep 2014 | A1 |
20140372233 | Knecht et al. | Dec 2014 | A1 |
20150125586 | Ergican | May 2015 | A1 |
20150151956 | Tansey | Jun 2015 | A1 |
20150175400 | Newman | Jun 2015 | A1 |
20150183627 | Tansey, Jr. | Jul 2015 | A1 |
20150217986 | Tansey, Jr. | Aug 2015 | A1 |
20150307248 | Patwardhan et al. | Oct 2015 | A1 |
20160023879 | Walker et al. | Jan 2016 | A1 |
20160251208 | Tansey, Jr. | Sep 2016 | A1 |
20160376140 | Tansey, Jr. | Dec 2016 | A1 |
20170253402 | Melville, Jr. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
0299767 | Jan 1989 | EP |
H09290898 | Nov 1991 | JP |
69850 | Jan 2008 | RU |
2004075702 | Sep 2004 | WO |
2008104751 | Sep 2008 | WO |
Entry |
---|
“Post Mix Soda Fountains”, The CHI Company, New and Used Beverage Equipment for Honest Prices, Retrieved Date: Oct. 14, 2014, Retrieved at: <http://www.chicompany.net/index.php?main_page=index&cPath=25>, 3 pages. |
“International Search Report and Written Opinion for PCT/US2015/041632”, dated Oct. 29, 2015, 7 pages. |
“International Search Report and Written Opinion for PCT Patent Application No. PCT/US2017/020841”, dated Jun. 29, 2017, 7 pages. |
Google Image Search Results for Single Serve Liquid Portion Pack Pouch, Retrieved Date: Sep. 15, 2015, Retrieved At: <<https://www.google.com/search?q=single+serve+liquid+portion+pac+pouch&rlz=1T4GGHP_enUS617US617&source=Inms&tbm=isch>>, pp. 1-7. |
Google Image Search Results for Pouch Shapes, Retrieved Date: Sep. 15, 2015, Retrieved At: <<https://www.google.com/search?q=pouch+shapes&rlz=1T4GGHP_enUS617US617&tbm=isch&tbo=u&source=univ&sa=X&ved=0CB4Q>>, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20160376139 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62027286 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15060706 | Mar 2016 | US |
Child | 15193054 | US | |
Parent | 15060716 | Mar 2016 | US |
Child | 15060706 | US | |
Parent | 14806522 | Jul 2015 | US |
Child | 15060716 | US |