Cold-form glass lamination to a display

Information

  • Patent Grant
  • 11384001
  • Patent Number
    11,384,001
  • Date Filed
    Tuesday, October 24, 2017
    6 years ago
  • Date Issued
    Tuesday, July 12, 2022
    a year ago
Abstract
In some embodiments, a process comprises fixing a first portion of a flexible glass substrate into a first fixed shape with a first rigid support structure and attaching a first display to the first portion of the flexible glass substrate or to the first rigid support structure. After fixing the first portion and attaching the first display, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display, cold-forming a second portion of the flexible glass substrate to a second fixed shape and fixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure.
Description
BACKGROUND

The present disclosure relates to curved cold-formed glass substrates, articles including such glass substrates, and related processes.


Curved glass substrates are desirable in many contexts. One such context is for use as a cover glass for a curved display, which may be incorporated into an appliance, an architectural element (e.g., wall, window, modular furniture, shower door, mirrors etc.), a vehicle (e.g., automobiles, aircraft, sea craft and the like). Existing methods of forming such curved glass substrates, such as thermal forming, have drawbacks including optical distortion and surface marking.


BRIEF SUMMARY

In some embodiments, articles comprising a display attached to cold-formed glass substrate are described, and methods of making such articles.


In some embodiments, a process comprises fixing a first portion of a flexible glass substrate into a first fixed shape with a first rigid support structure and attaching a first display to the first portion of the flexible glass substrate or to the first rigid support structure. After fixing the first portion and attaching the first display, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display, cold-forming a second portion of the flexible glass substrate to a second fixed shape and fixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure.


In some embodiments, the embodiments of any of the preceding paragraphs may further include a planar first display, a planar first fixed shape, and the first portion of the flexible glass substrate fixed into the first fixed shape with the first rigid support structure after attaching the first display to the first portion of the flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include first portion of the flexible glass substrate fixed into the first fixed shape with the first rigid support structure before attaching the first display to the first portion of the flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the first fixed shape being planar or non-planar.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the first display having a planar or a non-planar shape.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the first fixed shape being formed by cold-forming the first portion of the flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include a first display having a shape same as the first fixed shape.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the first rigid support structure permanently attached to the first portion of the flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the second fixed shape being non-planar.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the second rigid support structure permanently attached to the second portion of the flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the first display attached to the flexible glass substrate or to the first rigid support structure using a method selected from optical bonding or air gap bonding.


In some embodiments, the embodiments of any of the preceding paragraphs may further include a process comprising fixing a third portion of the flexible glass substrate into a third fixed shape with a third rigid support structure and attaching a second display to the third portion of the flexible glass substrate or to the third rigid support structure. The process further comprising cold-forming the second portion of the flexible glass substrate to the second fixed shape and fixing the second portion of the flexible glass substrate into the second fixed shape with the second rigid support structure, which is performed after fixing the third portion and attaching the second display, and while maintaining the third fixed shape of the third portion of the flexible glass substrate and the attached second display.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the flexible glass substrate comprising a chemically strengthened glass.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the process further comprising applying a coating to the flexible glass substrate before fixing the first portion and attaching the first display, and while the flexible glass substrate is planar.


In some embodiments, the embodiments of any of the preceding paragraphs may further include one of the at least one coatings is a decorative ink coating.


In some embodiments, the embodiments of any of the preceding paragraphs may further include one of the at least one coatings is an antireflective coating.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the flexible glass substrate directly bonded to the first rigid support structure.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the process further comprising applying an adhesive to at least one of the first rigid support structure and the flexible glass substrate prior to bonding.


In some embodiments, the embodiments of any of the preceding paragraphs may further include the flexible glass substrate bonded to the first rigid support structure using a method selected from roller tapes, mechanical retainers, press molding, or die molding.


In some embodiments, the embodiments of any of the preceding paragraphs may further include an article formed by the process comprising fixing a first portion of a flexible glass substrate into a first fixed shape with a first rigid support structure and attaching a first display to the first portion of the flexible glass substrate or to the first rigid support structure. After fixing the first portion and attaching the first display, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display, cold-forming a second portion of the flexible glass substrate to a second fixed shape and fixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure.


In some embodiments, the embodiments of any of the preceding paragraphs may further include an article comprising a cold-formed flexible glass substrate fixed into a non-planar fixed shape with a rigid support structure, and a display attached to the cold-formed flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include an article where there is no residual stress between the display and the cold-formed flexible glass substrate.


In some embodiments, the embodiments of any of the preceding paragraphs may further include a process comprising cold-forming a flexible glass substrate into a non-planar fixed shape, attaching the flexible glass substrate to a rigid support structure, and after cold forming and attaching the flexible glass substrate to a rigid support structure, attaching a display to the flexible glass substrate or to the rigid support structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, which are incorporated herein, form part of the specification and illustrate embodiments of the present disclosure. Together with the description, the figures further serve to explain the principles of and to enable a person skilled in the relevant art(s) to make and use the disclosed embodiments. These figures are intended to be illustrative, not limiting. Although the disclosure is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the disclosure to these particular embodiments. In the drawings, like reference numbers indicate identical or functionally similar elements.



FIG. 1A illustrates a top view of a glass substrate with a support structure.



FIG. 1B illustrates a cross-section view of a glass substrate with a support structure, along 1-1′ shown in FIG. 1A.



FIG. 2A illustrates a top view of a display directly attached to a glass substrate.



FIG. 2B illustrates a cross-section view of a display directly attached to a glass substrate, along 2-2′ shown in FIG. 2A.



FIG. 3A illustrates a top view of a display attached to a glass substrate.



FIG. 3B illustrates a cross-section view of a display attached to a glass substrate, along 3-3′ shown in FIG. 3A.



FIG. 4A illustrates a top view of a display attached to a support structure.



FIG. 4B illustrates a cross-section view of a display attached to a support structure, along 4-4′ shown in FIG. 4A



FIG. 5 illustrates a cross-section view of a planar display attached to a non-planar glass substrate.



FIG. 6 illustrates a cross-section view of a non-planar glass substrate covering a planar display attached to a support structure.



FIG. 7 illustrates a cross-section view of a non-planar display directly attached to a non-planar glass substrate.



FIG. 8 illustrates a cross-section view of a non-planar glass substrate covering a non-planar display attached to a support structure.



FIGS. 9A and 9B show process flowcharts of attaching displays to a cold-formed glass substrate.



FIG. 10A illustrates a top view of a display directly attached to a glass substrate and a cold-formed portion of the substrate with a second rigid support structure.



FIG. 10B illustrates a cross-section view of a display directly attached to a glass substrate and a cold-formed, non-planar portion of the substrate with a second rigid support structure, along 5-5′ shown in FIG. 10A.



FIG. 11 illustrates a cross-section view of two displays directly attached to a glass substrate.



FIG. 12 illustrates a cross-section view of two adjacent displays directly attached to a glass substrate.



FIG. 13A illustrates a top view of two displays directly attached to the planar first portion of the glass substrate and cold-formed, non-planar portions of the substrate supported with a rigid support structure.



FIG. 13B illustrates a cross-section view of two displays directly attached to the planar first portion of the glass substrate and cold-formed, non-planar portions of the substrate supported with a rigid support structure, along 6-6′ shown in FIG. 13A.



FIG. 14 illustrates the cold-forming process wherein the pins are selectively activated to press the glass substrate against the adhesive layer and support structure.



FIG. 15A illustrates an exemplary press molding process wherein a mold presses the glass substrate against a rigid support structure.



FIG. 15B illustrates a press-molded, cold-formed article. After press-molding, the press-mold is withdrawn.



FIG. 16 illustrates an automotive interior display comprising a cold-formed glass substrate bonded to a non-planar rigid support structure.



FIGS. 17A and 17B illustrate a top view and a cross-section view, respectively of a rigid support structure fixed to the glass substrate.



FIGS. 17C and 17D illustrate a top view and a cross-section view, respectively of displays attached to the glass substrate while the rigid support structure is fixed.



FIG. 18 shows a flowchart of a process where the display is attached after the fixing the rigid support structure and cold-forming the glass substrate.





DETAILED DESCRIPTION

Vehicle manufacturers are creating interiors that better connect, protect and safely inform today's drivers and passengers. As the industry moves towards autonomous driving, there is a need for creating large format appealing displays. There is already a trend towards larger displays including touch functionality in the new models from several OEMs. Such trends are also emerging in appliances, architectural elements (e.g., wall, window, modular furniture, shower door, mirrors etc.), and other vehicles (e.g., aircraft, sea-craft and the like). However, most of these displays consist of two dimensional plastic cover lenses.


Due to these emerging trends in the automotive interior industry and related industries, there is a need to develop a low cost technology to make three-dimensional transparent surfaces. Strengthened glass materials, such as chemically strengthened, thermally strengthened and/or mechanically strengthened glass materials are particularly desirable for use as such surfaces, particularly where the glass substrate is used as a curved cover glass for a display.


However, many methods for forming curved glass surfaces involve subjecting glass substrates to thermal forming processes (that include heating a glass substrate to a temperature above the transition temperature of the glass). Such processes can be energy intensive due to the high temperatures involved and such processes add significant cost to the product. Furthermore, thermal forming processes may cause strength degradation or may damage any coatings present on the glass substrate, such as antireflective (AR) coatings or ink coatings. Moreover, thermal forming processes may impart undesirable characteristics onto the glass itself, such as distortion and marking.


A planar glass substrate may be “cold-formed” to have a curved or three-dimensional shape. As used herein, “cold-forming” refers to bending the glass substrate at temperatures below the glass transition temperature of the glass. In some embodiments, cold-forming occurs at temperatures below 80° F. A cold-formed glass substrate has opposing major surfaces and a curved shape. The opposing major surfaces exhibit surface stresses that differ from one another that are created during cold-forming. The stresses include surface compressive stresses or tensile stresses generated by the cold-forming process. These stresses are not thermally relaxed because the glass substrate is maintained at temperatures well below the glass transition temperature.


In some embodiments, a cold-formed glass substrate forms a “developable” surface. A developable surface is a surface with zero Gaussian curvature—i.e., a surface that can be flattened into a plane without stretching or compressing within the plane of the surface. Examples of developable surfaces include cones, cylinders, oloids, tangent developable surfaces, and portions thereof. A surface that projects onto a single curved line is a developable surface. On the other hand, most smooth surfaces have a non-zero Gaussian curvature and are non-developable surfaces—a sphere is an example of a non-developable shape or surface since it cannot be rolled into a plane.


At any point on a surface, there can be found a normal vector that is at right angles to the surface; planes containing the normal vector are called normal planes. The intersection of a normal plane and the surface will form a curve called a normal section and the curvature of this curve is the normal curvature. The normal curvature varies depending upon which normal plane is considered. One such plane will have a maximum value for such curvature, and another will have a minimum value. These maximum and minimum values are called the principal curvatures.


Geometrically, Gaussian curvature is defined as the intrinsic measure of curvature of any surface, depending only on the distances that are measured on the surface, not on the way it is isometrically embedded in any space. Gaussian curvature can also be defined as the product of principal curvatures, Kmax and Kmin. Since the Gaussian curvature of a developable surface is zero everywhere, the maximum and minimum principal curvatures of a developable surface can be written as Equation (1):

Kmax=H+|H|,Kmin=H−|H|  (1)
Kmax=2H,κ_min=0 when H>0,  (2)
K_max=0,κ_min=0 when H=0,  (3)
K_max=0,κ_min=2H when H<0,  (4)

where H is the mean curvature of the surface.


Kmax in equation (2) and Kmin in equation (4) are termed as the non-zero principal curvature of a surface.


In some embodiments, a cold-formed glass substrate has a complex developable shape. A complex developable shape refers to a combination of two or more developable shapes such as cones, cylinders, oloids, planes and tangent developable surfaces. For instance, a complex developable shape may be a combination of at least a planar and at least a concave surface, or at least a planar and at least a convex surface, or at least a concave and at least a convex surface.


In some embodiments, a complex developable shape may also be formed by a combination of planar, conical, cylindrical, and other developable surfaces and involve both inward and outward bending. In some embodiments, the combination of planar, conical, cylindrical, and other developable surfaces may be in such a way that no sharp angles form while going from one developable surface to another.


In some embodiments, a complex developable shape or a complex developable surface may include one or more planar portions, one or more conical portions, one or more cylindrical portions, and/or one or more other developable surface portions.


In some embodiments, the article may include a glass substrate that is provided as a sheet and that is strengthened (prior to being shaped into some embodiments of the article described herein). For example, the glass substrate may be strengthened by any one or more of thermal strengthening, chemical strengthening, and mechanical strengthening or by a combination thereof. In some embodiments, strengthened glass substrates have a compressive stress (CS) layer extending from a surface of the substrate thereof to a compressive stress depth (or depth of compressive stress layer or DOL). The depth of compression is the depth at which compressive stress switches to tensile stress. The region within the glass substrate exhibiting a tensile stress is often referred to as a central tension or CT layer.


As used herein, “thermally strengthened” refers to glass substrates that are heat treated to improve the strength of the substrate. In thermally-strengthened glass substrates, the CS layer is formed by heating the substrate to an elevated temperature above the glass transition temperature (i.e., near or approaching the glass softening point), and then cooling the glass surface regions more rapidly than the inner regions of the glass. The differential cooling rates between the surface regions and the inner regions generates a residual CS layer at the surfaces.


Factors that impact the degree of surface compression generated by thermal strengthening processes include the air-quench temperature, volume, and other variables that create a surface compression of at least 10,000 pounds per square inch (psi). In chemically strengthened glass substrates, the replacement of smaller ions by larger ions at a temperature below that at which the glass network can relax produces a distribution of ions across the surface of the glass that results in a stress profile. The larger size volume of the incoming ion produces the CS layer extending from a surface and the CT layer in the center of the glass. Chemical strengthening may be achieved by an ion exchange process, which includes immersion of a glass substrate into a molten salt bath for a predetermined period of time to allow ions at or near the surface(s) of the glass substrate to be exchanged for larger metal ions from the salt bath. In some embodiments, the temperature of the molten salt bath is from about 375° C. to about 450° C. and the predetermined time period is in the range from about four to about eight hours. In one example, sodium ions in a glass substrate are replaced by potassium ions from the molten bath, such as a potassium nitrate salt bath, though other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. In another example, lithium ions in a glass substrate are replaced by potassium and/or sodium ions from the molten bath that may include potassium nitrate, sodium nitrate or a combination thereof, although other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. In some embodiments, smaller alkali metal ions in the glass substrate can be replaced by Ag+ ions. Similarly, other alkali metal salts such as, but not limited to, sulfates, phosphates, halides, and the like may be used in the ion exchange process. The glass substrate may be immersed in a single bath or in multiple and successive baths which may have the same or different composition and/or temperature from one another. In some embodiments, the immersion in such multiple baths may be for different periods of time from one another.


In mechanically-strengthened glass substrates, the CS layer is generated by a mismatch of the coefficient of thermal expansion between portions of the glass substrate.


In strengthened glass substrates, the DOL is related to the CT value by the following approximate relationship: (Equation 5)









(
5
)











CT



CS
×
DOL


thickness
-

2
×
DOL







(
5
)









    • where thickness is the total thickness of the strengthened glass substrate and DOL depth of layer (DOL) is the depth of the compressive stress. Unless otherwise specified, central tension CT and compressive stress CS are expressed herein in MegaPascals (MPa), whereas thickness and depth of layer DOL are expressed in millimeters or microns.

    • Unless otherwise described, the CS value is the value measured at the surface and the CT value is the tensile stress value (as determined by Equation 5).





In some embodiments, a strengthened glass substrate can have a surface CS of 300 MPa or greater, e.g., 400 MPa or greater, 450 MPa or greater, 500 MPa or greater, 550 MPa or greater, 600 MPa or greater, 650 MPa or greater, 700 MPa or greater, 750 MPa or greater or 800 MPa or greater. In some embodiments, the surface CS is the maximum CS in the glass substrate. The strengthened glass substrate may have a DOL of 15 micrometers or greater, 20 micrometers or greater (e.g., 25, 30, 35, 40, 45, 50 micrometers or greater) and/or a maximum CT value of 10 MPa or greater, 20 MPa or greater, 30 MPa or greater, 40 MPa or greater (e.g., 42 MPa, 45 MPa, or 50 MPa or greater) but less than 100 MPa (e.g., 95, 90, 85, 80, 75, 70, 65, 60, 55 MPa or less). In one or more specific embodiments, the strengthened glass substrate has one or more of the following: a surface CS greater than 500 MPa, a DOL greater than 15 micrometers, and a maximum CT of greater than 18 MPa.


The CS and DOL may be determined by a surface stress meter such the commercially available FSM-6000 instrument, manufactured by Orihara Industrial, Co., Ltd. (Tokyo, Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method.


The materials for the glass substrates may be varied. The glass substrates used to form the articles described herein can be amorphous or crystalline. In this regard, the use of the term “glass” is general and is intended to encompass more than strictly amorphous materials. Amorphous glass substrates according to some embodiments can be selected from soda lime glass, alkali aluminosilicate glass, alkali containing borosilicate glass and alkali aluminoborosilicate glass. Examples of crystalline glass substrates can include glass-ceramics, sapphire or spinel. Examples of glass-ceramics include Li2O—Al2O3—SiO2 system (i.e. LAS-System) glass ceramics, MgO—Al2O3—SiO2 System (i.e. MAS-System) glass ceramics, glass ceramics including crystalline phases of any one or more of mullite, spinel, α-quartz, β-quartz solid solution, petalite, lithium disilicate, β-spodumene, nepheline, and alumina.


Glass substrates may be provided using a variety of different processes. For example, exemplary glass substrate forming methods include float glass processes and down-draw processes such as fusion draw and slot draw. A glass substrate prepared by a float glass process may be characterized by smooth surfaces and uniform thickness is made by floating molten glass on a bed of molten metal, typically tin. In an example process, molten glass that is fed onto the surface of the molten tin bed forms a floating glass ribbon. As the glass ribbon flows along the tin bath, the temperature is gradually decreased until the glass ribbon solidifies into a solid glass substrate that can be lifted from the tin onto rollers. Once off the bath, the glass substrate can be cooled further and annealed to reduce internal stress.


Down-draw processes produce glass substrates having a uniform thickness that possess relatively pristine surfaces, especially those produced by the fusion draw process. Because the average flexural strength of the glass substrate is controlled by the amount and size of surface flaws, a pristine surface that has had minimal contact has a higher initial strength. Down-drawn glass substrates may be drawn into a sheet having a thickness of less than about 2 millimeters. In addition, down drawn glass substrates have a very flat, smooth surface that can be used in its final application without costly grinding and polishing.


The fusion draw process, for example, uses a drawing tank that has a channel for accepting molten glass raw material. The channel has weirs that are open at the top along the length of the channel on both sides of the channel. When the channel fills with molten material, the molten glass overflows the weirs. Due to gravity, the molten glass flows down the outside surfaces of the drawing tank as two flowing glass films. These outside surfaces of the drawing tank extend down and inwardly so that they join at an edge below the drawing tank. The two flowing glass films join at this edge to fuse and form a single flowing sheet of glass. The fusion draw method offers the advantage that, because the two glass films flowing over the channel fuse together, neither of the outside surfaces of the resulting single sheet of glass comes in contact with any part of the apparatus. Thus, the surface properties of the fusion drawn sheet of glass are not affected by such contact.


The slot draw process is distinct from the fusion draw method. In slow draw processes, the molten raw material glass is provided to a drawing tank. The bottom of the drawing tank has an open slot with a nozzle that extends the length of the slot. The molten glass flows through the slot/nozzle and is drawn downward as a continuous sheet and into an annealing region.


Exemplary compositions for use in the glass substrate will now be described. One example glass composition comprises SiO2, B2O3 and Na2O, where (SiO2+B2O3)≥66 mol. %, and Na2O≥9 mol. %. Suitable glass compositions, in some embodiments, further comprise at least one of K2O, MgO, and CaO. In some embodiments, the glass compositions can comprise 61-75 mol. % SiO2; 7-15 mol. % Al2O3; 0-12 mol. % B2O3; 9-21 mol. % Na2O; 0-4 mol. % K2O; 0-7 mol. % MgO; and 0-3 mol. % CaO.


A further example glass composition comprises: 60-70 mol. % SiO2; 6-14 mol. % Al2O3; 0-15 mol. % B2O3; 0-15 mol. % Li2O; 0-20 mol. % Na2O; 0-10 mol. % K2O; 0-8 mol. % MgO; 0-10 mol. % CaO; 0-5 mol. % ZrO2; 0-1 mol. % SnO2; 0-1 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 12 mol. % (Li2O+Na2O+K2O)≤20 mol. % and 0 mol. %≤(MgO+CaO)≤10 mol. %.


A still further example glass composition comprises: 63.5-66.5 mol. % SiO2; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 0-5 mol. % Li2O; 8-18 mol. % Na2O; 0-5 mol. % K2O; 1-7 mol. % MgO; 0-2.5 mol. % CaO; 0-3 mol. % ZrO2; 0.05-0.25 mol. % SnO2; 0.05-0.5 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 14 mol. %≤(Li2O+Na2O+K2O)≤18 mol. % and 2 mol. %≤(MgO+CaO)≤7 mol. %.


In some embodiments, an alkali aluminosilicate glass composition comprises alumina, at least one alkali metal and, in some embodiments, greater than 50 mol. % SiO2, in some embodiments at least 58 mol. % SiO2, and in some embodiments at least 60 mol. % SiO2, wherein the ratio ((Al2O3+B2O3)/Σ modifiers)>1, where in the ratio the components are expressed in mol. % and the modifiers are alkali metal oxides. This glass composition, in some embodiments, comprises: 58-72 mol. % SiO2; 9-17 mol. % Al2O3; 2-12 mol. % B2O3; 8-16 mol. % Na2O; and 0-4 mol. % K2O, wherein the ratio ((Al2O3+B2O3)/Σmodifiers)>1.


In some embodiments, the glass substrate may include an alkali aluminosilicate glass composition comprising: 64-68 mol. % SiO2; 12-16 mol. % Na2O; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 2-5 mol. % K2O; 4-6 mol. % MgO; and 0-5 mol. % CaO, wherein: 66 mol. %≤SiO2+B2O3+CaO≤69 mol. %; Na2O+K2O+B2O3+MgO+CaO+SrO>10 mol. %; 5 mol. %≤MgO+CaO+SrO≤8 mol. %; (Na2O+B2O3)−Al2O3≤2 mol. %; 2 mol. %≤Na2O−Al2O3≤6 mol. %; and 4 mol. %≤(Na2O+K2O)−Al2O3≤10 mol. %.


In some embodiments, the glass substrate may comprise an alkali aluminosilicate glass composition comprising: 2 mol % or more of Al2O3 and/or ZrO2, or 4 mol % or more of Al2O3 and/or ZrO2.


In some embodiments, the compositions used for a glass substrate may be batched with 0-2 mol. % of at least one fining agent selected from a group that includes Na2SO4, NaCl, NaF, NaBr, K2SO4, KCl, KF, KBr, and SnO2.

    • The articles may be a single sheet of glass or a laminate. According to some embodiments, a laminate refers to opposing glass substrates, such as the glass substrates described herein. In some embodiments, the glass substrates may be separated by an interlayer, for example, poly(vinyl butyral) (PVB), ethylenevinylacetate (EVA), polyvinyl chloride (PVC), ionomers, and thermoplastic polyurethane (TPU). A glass substrate forming part of a laminate can be strengthened (chemically, thermally, and/or mechanically) as described above. Thus, laminates according to some embodiments comprise at least two glass substrates bonded together by an interlayer in which a first glass substrate defines a first ply and a second glass substrate defines a second ply. The second ply may face the user of a display (i.e., the interior of a vehicle, the user-facing panel of an appliance or the user-facing surface of an architectural element), while the first ply may face the opposite direction. In vehicle applications such as automotive glazings, the first ply is exposed to a vehicle or automobile interior and the second ply faces an outside environment of the automobile. In some embodiments, the user interface may be from the interior, from the exterior or from both the interior and the exterior of the laminate, when used in automotive glazings. In vehicle applications such as automotive interiors, the second ply is unexposed and placed on an underlying support (e.g., a display, dashboard, center console, instrument panel, seat back, seat front, floor board, door panel, pillar, arm rest etc.), and the first ply is exposed to the vehicle or automobile interior and thus the user. In architectural applications, the second ply is exposed to a building, room, or furniture interior and the first ply faces an outside environment of the building, room or furniture.


Although various specific glasses are described herein, in some embodiments, any cold-formable glass may be used.


Some embodiments of the articles disclosed herein are useful in automobile interiors because such articles provide a non-planar cover compatible with curved displays. To be compatible with a non-planar display, a cover should match the shape of the non-planar display closely to insure optimal fit and enable a high quality viewing. It is also desirable to provide a cover that is high optical quality and cost effective. Thermal forming a cover to the precise shape presents challenges in attaining that desired shape. In addition, when glass is used, it is a challenge to minimize the downside effects of heating the cover to its softening point (e.g., distortion, and marking). The concept of cold-forming addresses these issues and permits the use of glass but creates new challenges in providing a sufficient support to maintain the cold-form shape and provide rigidity. The ability to cold-form a flexible glass substrate to the prescribed shape presents the opportunity for a high quality, cost effective solution.


Moreover, the articles described herein are also compatible with coatings and surface treatments that are often desirable. Examples of such coatings include anti-reflective (AR), antiglare (AG) and decorative and/or functional coatings. Examples of such surface treatments include AG surfaces, a haptic surface that provides tactile feedback, and the like. AR and AG coatings and AG surfaces may improve display visibility in a variety of challenging ambient lighting conditions. High-quality multi-layer AR coating processes are typically applied utilizing vapor deposition or sputter coating techniques. These techniques are usually limited to deposition on flat surfaces due to the nature of the process. Providing these coatings on a non-planar three dimensional surface is challenging and further adds to the cost of the process. Decorative ink coatings can be applied to a variety of shaped/curved surfaces, however the process to apply these coating to flat surfaces are simpler, better established, and more cost effective. Further, surface treatments (typically formed by etching treatments) are also typically applied to flat surfaces.


In some embodiments, various processes to attach a display to a piece of glass intended to be cold-formed to a specific shape, are described. The ability to provide a cold-formed curved glass article provides a significant advantage in eliminating the thermal forming/bending process. Elimination of the thermal forming process is both a cost and a quality improvement. The cost is obvious in that it eliminates a process step; the quality is improved due to not heating the glass to a softening point to shape it. Heating the glass to an elevated temperature can disrupt the pristine glass surface, both optically and dimensionally. Glass for auto interior is expected to have a high percentage of display application; the displays being very sensitive to glass distortion and flatness, favoring the cold-form process. One step to the successful implementation will be the process of attaching or laminating the display to the cover glass.


In some embodiments described herein, the use of a “die” is described. As used herein, a die includes a structure used to impart a desired shape to a glass substrate, and to attach a non-planar rigid support structure to the glass substrate. The die itself is not a part of the finished article, but rather may be used repeatedly to create many finished articles. In one or more embodiments, the term “die” refers to a tool used to impart a desired shape upon an object. In such embodiments, “die” has at least two parts, a first part and a second part, that may be pressed together to impart a desired shape on a flexible object disposed between the first and second parts. Once the non-planar rigid support structure is bonded to the cold-formed glass substrate, the die may be removed, and the non-planar rigid support structure maintains the desired shape of the cold-formed glass substrate. A die may be reused many times to reproducibly and precisely create the same shape for multiple articles comprising a non-planar rigid support structure bonded to a cold-formed glass substrate.


In some embodiments, an injection molding process is used to transform the flat glass substrate described herein to cold-formed and curved article created by injection molding a support structure on a major surface of the glass substrate, thus providing a superior support structure to hold the glass substrate to the prescribed shape and having the flexibility to match the curved display.


In some embodiments, injection molding is used to form a non-planar rigid support structure bonded to a surface of a cold-formed glass substrate. Any suitable injection molding process and material(s) may be used. For example, a die may be used to cold form a glass substrate and hold it in place while a non-planar rigid support structure is injection molded and attached to the cold formed glass substrate using channels in the die. For example, polyvinyl chloride (PVC) and thermoplastic polyurethane (TPU) are two common materials used to injection mold the non-planar rigid support structure. Reaction injection molding (RIM) may be used in some embodiments. Common materials used in RIM include polyurethane polyureas, polyisocyanurates, polyesters, polyphenols, polyepoxides, and nylon 6. Different materials may have different operating parameters. The machines, operating parameters (e.g., pressure, flow rate, temperature), and mold design may be different for different materials. Typical injection molding temperatures range from 300° F. to 450° F., and typical process pressures can range from the 200 psi to higher than 1000 psi. But, any suitable process parameters may be used.


In some embodiments, a direct bonding process is used to cold-form and bond a previously flat glass substrate to a non-planar rigid support structure. For example, a die may be used to press the glass substrate in a cold-formed shape while pressing the glass against the non-planar rigid support structure. Any suitable type of bonding, such as adhesive, may be used to attach the glass substrate to the non-planar rigid support structure.


Either injection molding or direct bonding could provide support over a significant portion of the major surface of the glass substrate to support and maintain the cold-formed shape, while minimizing the stresses imparted on the glass substrate.


In some embodiments, the methods described and the resulting articles exhibit high quality and enable the integration of optical and other features.


The articles described herein are expected to exhibit superior fit to curved displays and high optical quality. Flexible glass substrates may possess a flexible characteristic able to accommodate the curved display. Cold-forming maintains the high quality of the flat glass substrate that would otherwise be diminished in a thermal forming process. This concept also allows excellent stress management, minimizing the cold-form stress by providing support over a large area.


In some embodiments, the articles can easily integrate high quality coatings and surface treatments on a curved substrate surface, where such coatings are typically limited to flat parts. The coatings and/or surface treatments may be applied to a glass substrate prior to cold-forming, and cold-forming the coated and/or treated glass substrate in turn avoids the issues associated with thermal forming (i.e., damage to the coating and/or surface treatment from handling and/or high processing temperature).


In some embodiments, articles may have one or more coatings. The coatings may be any suitable coating including decorative ink coating, antireflective coating, or a combination thereof. In cases where more than one coatings are present, for example, the decorative ink coating and antireflective coating or any other coatings, may overlap, may be in different parts of the same side of the flexible glass substrate, or may be on different sides of the flexible glass substrate.


In some embodiments, a roller (preferably of soft materials, for example, of Teflon), a roller tape, pins, or a combination thereof is used to push the flexible glass substrate to conform to the shape of a rigid support structure, after a layer of adhesive is applied on the rigid support structure. Force may be applied to and maintained by multiple rollers and/or pins by any suitable means. For example, pressure chambers or a manifold that can apply and maintain a constant pressure on all rollers, or all pins pneumatically, hydraulically, mechanically or electronically through solenoid valves. A flexible mold may be similarly used.


In some embodiments, a roller, roller tape, array of pins, or flexible mold can be as wide as the flexible glass substrate. In another case it also can be as narrow as 10 mm. In the latter case, the flexible mold can also be applied along the both edges and/or along the center line. In most cases, a roller, roller tape or pins start from one side of the cover glass item, and moves toward the other end while aligned with the generation line of the developable surface. This method can avoid glass buckling and compound bending in the process of cold-forming, and hence can eliminate the risk of glass breakage caused by unwanted glass buckling and compound bending, and can enable cold bending to a smaller radius.


In some embodiments, as used herein, “generation line” refers to a line that defines a boundary between areas of a substrate where force has already been applied to press a flexible glass substrate against the adhesive layer, and areas of the substrate where such force has not yet been applied. The generation line is aligned with the zero principal curvature direction of the 3D shape. During a process of bonding the flexible glass substrate to the support structure, the generation line moves across the flexible glass substrate to sequentially press different parts of the flexible glass substrate against the support structure. Once the generation line has passed a particular part of the flexible glass substrate, the force is maintained until an adhesive holding the flexible glass substrate against the support structure is cured.


Force may be maintained in an area by application of force in spaced or periodic parts of the area. For example, once a roller tape passes over an area, or spaced pins have been actuated, spaced rollers or pins maintain the force. Gaps between the rollers do not negate maintenance of force, because the spaced rollers hold the flexible glass substrate against the support structure sufficiently well that the flexible glass substrate and the support structure do not move significantly relative to each other. If each pin or roller applies the same force, the maintained force is considered “uniform” even if parts of the area over which the generation line has passed are in contact with a roller or pin while others are in between rollers/pins.


Additional disclosure relevant to cold-forming 3D shapes can be found in PCT/US2015/039871 (WO2016/007815) to McFarland et al., entitled “Cold formed glass applique”; the disclosure of which is incorporated by reference in its entirety.


In some embodiments, cold-formed cover glass articles are provided, including articles with a complex 3D shape, as well as the forming process to make these cover glass articles. The glass layer in these cold-formed 3D cover glass articles is preferably strengthened glass, including thermally tempered, chemically strengthened, and/or glass laminates. In some embodiments, more preferably, this glass layer is Corning Gorilla glass.


Thin Corning Gorilla glass has a number of appealing attributes as cover glass for instrument panels and other displays, such as, higher scratch resistance, better optical performance, and better impact resistance. The superior surface stress structure, strength and thickness of Corning Gorilla glass enables the use of cold-forming to make 3D shapes, as stated in PCT/US2015/039871 (WO2016/007815), which is incorporated by reference in its entirety.


In some embodiments, a cold-forming process may be used to make the above-mentioned 3D cover glass articles. For example, a roller or pins (preferably of soft materials, for examples, of Teflon) are used to push the flexible glass substrate to conform to the shape of the rigid support structure, after a layer of adhesive is applied on the rigid support structure. Behind the roller, a flexible mold with multiple stiff pins (also preferably coated with Teflon, so as to avoid the issue of scratching glass) is closed to hold the cold formed glass in place.


In some embodiments, a flexible mold can be as wide as the top flexible glass substrate. In another case it also can be as narrow as 10 mm. In the latter case, the flexible mold can also be applied along the both edges and/or along the center line. In most cases, the roller starts from one side of the cover glass item, and moves toward the other end while aligned with the generation line of the developable surface. This method can avoid glass buckling and compound bending in the process of cold-forming, and hence can eliminate the risk of glass breakage caused by unwanted glass buckling and compound bending, and can enable cold bending to a smaller radius.


In some embodiments, the display can be attached to the flexible glass substrate by optical bonding, air gap bonding, or any suitable means.


Optical bonding, as referred to herein, is a method of attaching a glass substrate to a display using an optically transparent adhesive. The transparent adhesive is applied over the entire surface between the display and the glass substrate. This bonding method removes all air and air bubbles from the viewing or the display area. The removal of air and air bubbles between the display and the glass substrate eliminates surface-to-air reflections, thereby enhancing the contrast and viewing angles, especially significant in sunlight conditions. The most commonly used optical adhesives for optical bonding processes are silicone, epoxy and polyurethanes.


Air gap bonding, as referred to herein, is an alternative method of attaching a glass substrate to a display using an adhesive. In contrast to optical bonding, an adhesive is applied between the display and the glass substrate around the periphery of the display or the inactive areas of the display. Where the adhesive does not overlap with the viewing area of the display, the adhesive may be transparent or opaque. This method results in some “air gap” between the display and the glass substrate. Air gap bonding is the most effective and common bonding method used for touch screens and panels.


Some embodiments described herein have at least one of many advantages listed below:

    • i. Flexibility of manufacturing process:
      • a. the display can be attached to the glass substrate or the rigid support structure.
      • b. the display can be attached to the glass substrate either before or after the rigid support structure is attached to the glass substrate.
    • ii. Improved lamination quality—The support structures are permanent, rigid fixtures that prevent any relative movement between the display and the glass substrate in the first during cold-forming of other portions of the substrate, improving the lamination quality.
    • iii. Choice of materials for support structures—The support structures can be made of any material including metals, ceramics, alloys, reinforced plastic and rubber.
    • iv. Stress isolation to prevent delamination—The fixed shape maintained by the support structures isolates any stress induced by further processing, thereby eliminating delamination of the display from the substrate.
    • v. Ease of coating or surface treatment of glass substrate prior to cold-forming.
    • vi. The proposed process improves lamination quality, enhances yield, and reduces cost while offering design flexibility.


The figures are not necessarily drawn to scale. The different parts of various figures may have some parts not drawn to scale relative to other parts in order to better illustrate concepts.



FIG. 1A illustrates a top view 100 of a flexible glass substrate 110 with a first rigid support structure 120. The first portion 130 of the flexible glass substrate 110 is the portion of the area of the flexible glass substrate 110 where the first rigid support structure 120 is fixed. The first portion 130 of the flexible glass substrate 110 has a first fixed shape 135. The boundaries of the first portion 130 coincide with the outer boundary of the first rigid support structure 120. A gap between the outer boundaries of the first rigid support structure 120 and the boundaries of the first portion 130 is shown and exaggerated for illustration purposes only. The first fixed shape 135 is not illustrated in the figures and it may have a planar or a non-planar shape.


The first portion 130 is illustrated in FIG. 1A as the dotted area around the first rigid support structure 120. The second portion 132 of the flexible glass substrate 110 is defined as the area of the flexible glass substrate 110 that is not fixed by the first rigid support structure.


In some embodiments, the first portion 130 of the flexible glass substrate 110 can be fixed with the first rigid support structure 120 by direct bonding, die molding, press molding or using any suitable means.


In some embodiments, the first rigid support structure 120 may be made of a material selected from the group metals, alloys, ceramics, plastics, rubbers, reinforced plastics, and glasses or combinations thereof.


In some embodiments, the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 may be a shape selected from the group circular, square, rectangular, polygon, triangular, and oval or combinations thereof.



FIG. 1B illustrates a cross-section view 150 of the flexible glass substrate 110 with a first rigid support structure 120, corresponding to the plane 1-1′ shown in FIG. 1A.



FIGS. 2-8 illustrate top views and corresponding cross-sections of various combinations of attaching the first display 140 to the first portion 130 of the flexible glass substrate 110 or to the first rigid support structure 120. Some of the possible combinations include, but are not limited to, a planar display attached to a planar glass substrate, a planar display attached to a non-planar glass substrate, a planar display attached to a rigid support structure, a non-planar display attached to a planar substrate, a non-planar display attached to a non-planar substrate, a non-planar display attached to a rigid support structure.


In some embodiments, further combinations may include various bonding methods such as optical bonding, or air gap bonding or any suitable means to attach the display to the glass substrate or the rigid support structure.



FIG. 2A illustrates a top view 200 of a first display 140 having a planar shape directly attached to the first portion 130 of the flexible glass substrate 110, also having a planar shape. In some embodiments, the first display 140 may be attached to the first portion 130 of the flexible glass substrate 110 via optical bonding.



FIG. 2B illustrates a cross-section view 250 of the first display 140 having a planar shape directly attached to the first portion 130 of the flexible glass substrate 110, corresponding to the plane 2-2′ shown in FIG. 2A.



FIG. 3A illustrates a top view 300 of a first display 140 having a planar shape attached to the first portion 130 of the flexible glass substrate 110, also having a planar shape, via air gap bonding. The optical adhesive 310 may be applied around the periphery of the display such that a hermetic seal is created between the first display 140 and the flexible glass substrate 110. The air gap bonding method results in an air gap 320, defined as the inactive area between the display and the glass substrate.


In some embodiments, the area of the air gap 320 may vary depending on the method of attaching the display to the substrate or to the rigid support structure. The area of the air gap 320 may be larger where the display 140 is attached to the first rigid support structure 120 as compared to the flexible glass substrate 110.



FIG. 3B illustrates a cross-section view 350 of the first display 140 having a planar shape attached to the first portion 130 of the flexible glass substrate 110, corresponding to the plane 3-3′ shown in FIG. 3A.



FIG. 4A illustrates a top view 400 of a first display 140 attached to the first rigid support structure 120 using an adhesive 310. In some embodiments, the first display 140 has a planar shape, same as the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110.



FIG. 4B illustrates a cross-section view 450 of the first display 140 attached to the first rigid support structure 120 using an optical adhesive 310, corresponding to the plane 3-3′ shown in FIG. 3A.



FIG. 5 illustrates a cross-section view 500 of a first display 140 attached to the flexible glass substrate 110 via air gap bonding using the optical adhesive 310. In some embodiments, the first display 140 has a planar shape and the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 is non-planar.



FIG. 6 illustrates a cross-section view 600 of a first display 140 attached to the first rigid support structure 120 via air gap bonding, optical bonding, or by any suitable means. In some embodiments, the first display 140 has a planar shape and the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 is non-planar.



FIG. 7 illustrates a cross-section view 700 of a first display 140 directly attached to the flexible glass substrate 110 via optical bonding, direct bonding, or by any suitable means. In some embodiments, the first display 140 has a non-planar shape and the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 is non-planar.



FIG. 8 illustrates a cross-section view 800 of a first display 140 attached to the first rigid support structure 120 via air gap bonding, optical bonding, direct bonding, or by any suitable means. In some embodiments, the first display 140 has a non-planar shape and the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 is non-planar.


In some embodiments, the first display 140 is attached to the first portion 130 of the flexible glass substrate 110 after fixing the first portion 130 of the flexible glass substrate 110 with a first rigid support structure 120 into a fixed first shape 135.



FIG. 9A illustrates a process flow chart of attaching a display to the first portion 130 of the flexible glass substrate 110 after fixing the first portion of the substrate with a rigid support structure into a fixed first shape. The steps are performed in the following order:

    • Step 910: fixing a first portion 130 of a flexible glass substrate 110 into a first fixed shape 135 with a first rigid support structure 120;
    • Step 920: attaching a first display 140 to the first portion 130 of the flexible glass substrate 110 or to the first rigid support structure 120;
    • Step 930: after fixing the first portion 130 and attaching the first display 140, and while maintaining the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 and the attached first display 140, cold-forming a second portion 132 of the flexible glass substrate 110 to a second fixed shape 137;
    • Step 940: fixing the second portion 132 of the flexible glass substrate 110 into the second fixed shape 137 with a second rigid support structure 125.


In some embodiments, wherein the first display 140 is planar and the first fixed shape 135 is planar, the display 140 is attached to the first portion 130 of the flexible glass substrate 110 before fixing the first portion 130 of the flexible glass substrate 110 with a first rigid support structure 120 into a fixed first shape 135.



FIG. 9B illustrates a process flow chart of attaching a display to the first portion 130 of the flexible glass substrate 110 before fixing the first portion of the substrate with a rigid support structure into a fixed first shape. The steps are performed in the following order:

    • Step 920: attaching a first display 140 to the first portion 130 of the flexible glass substrate 110 or to the first rigid support structure 120;
    • Step 910: fixing a first portion 130 of a flexible glass substrate 110 into a first fixed shape 135 with a first rigid support structure 120;
    • Step 930: after fixing the first portion 130 and attaching the first display 140, and while maintaining the first fixed shape 135 of the first portion 130 of the flexible glass substrate 110 and the attached first display 140, cold-forming a second portion 132 of the flexible glass substrate 110 to a second fixed shape 137;
    • Step 940: fixing the second portion 132 of the flexible glass substrate 110 into the second fixed shape 137 with a second rigid support structure 125.



FIG. 10 A illustrates a top view 1000 of a display 140 attached to the first portion 130 of the flexible glass substrate 110 and a second portion 132 of the flexible glass substrate 110 cold-formed into a non-planar shape and fixed into the second fixed shape 137 by the second rigid support structure 125. The non-planarity of the second portion 132 of the flexible glass substrate 110 cannot be illustrated in FIG. 10A due to the viewing angle. In this embodiment, a planar display is attached to the planar first portion of a planar flexible glass substrate, but it should be understood and appreciated that a number of other combinations of substrate and display shapes are also possible.



FIG. 10B illustrates a cross-section view 1050, along 5-5′ shown in FIG. 10A, of a display 140 attached to the first portion 130 of the flexible glass substrate 110 and a second portion 132 of the flexible glass substrate 110 cold-formed into a non-planar shape and fixed into the second fixed shape 137 by the second rigid support structure 125.


In some embodiments, as discussed earlier, the first display 140 may be attached to the first portion 130 of the flexible glass substrate 110 or to the first rigid support structure in various combinations, while the second portion 132 of the flexible glass substrate is cold-formed into a non-planar shape.


In some embodiments, a planar display 140 is attached to a non-planar first portion 130 of the flexible glass substrate 110 using an optical adhesive 310 while the second portion 132 of the flexible glass substrate is cold-formed into a non-planar shape.


In some embodiments, a planar display 140 is attached to the first rigid structure 120 by suitable means while the second portion 132 of the flexible glass substrate is cold-formed into a non-planar shape.


In some embodiments, a non-planar display 140 is attached to a non-planar first portion 130 of the flexible glass substrate 110 using an optical adhesive 310 while the second portion 132 of the flexible glass substrate is cold-formed into a non-planar shape.


In some embodiments, a non-planar display 140 is attached to the first rigid structure 120 by suitable means while the second portion 132 of the flexible glass substrate is cold-formed into a non-planar shape.


The proposed process variations and design options of attaching the display to the first portion of the flexible glass substrate renders the manufacturing process very flexible and maintain superior quality.


In some embodiments, one or more first displays 140 may be attached to one or more first portions 130 of the flexible glass substrate 110 such that the displays 140 are not in direct contact with each other. FIG. 11 illustrates a cross-section view 1100 of two first displays 140 attached to two first portions 130 of the flexible glass substrate 110 separated by a second portion 132 of the flexible glass substrate 110. In some embodiments, the first portions 130 may have a planar shape, or may have a non-planar shape, or one of the first portions 130 may have a planar and the other one may have a non-planar shape. The second portion 132 may be cold-formed into a second fixed shape 137 that is non-planar, not illustrated in FIG. 11. The first display 140 may be attached either to the flexible glass substrate 110 or to the first rigid support structure 120 in any of the various combinations described above.


In some embodiments, one or more first displays 140 may be attached to the first portion 130 of the flexible glass substrate 110 such that the displays 140 are separated by a portion of the first rigid support structure 120. FIG. 12 illustrates a cross-section view 1200 of two first displays 140 attached to a first portion 130 of the flexible glass substrate 110 separated by portion of the first rigid support structure 120.


In some embodiments, the process may further comprise fixing a third portion of the flexible glass substrate into a third fixed shape with a third rigid support structure; attaching a second display to the third portion of the flexible glass substrate or to the third rigid support structure; wherein cold-forming the second portion of the flexible glass substrate to the second fixed shape and fixing the second portion of the flexible glass substrate into the second fixed shape with the second rigid support structure is performed after fixing the third portion and attaching the second display, and while maintaining the third fixed shape of the third portion of the flexible glass substrate and the attached second display.



FIG. 13A illustrates a top view 1300 of two displays 140 attached to the first portions 130 of the flexible glass substrate 110 such that the displays 140 are not in direct contact with each other and separated by the second rigid support structure 125. The second portion 132 of the flexible glass substrate 110 is cold-formed and fixed into a second fixed shape 137 by the second rigid support structure 125. The fixed second shape 137 is non-planar.


The non-planarity of the second portion 132 after cold-forming is not visible in FIG. 13A due to the top viewing angle, but is clearly seen in FIG. 13B, a cross-section view 1350 of FIG. 13A corresponding to the 6-6′ plane.



FIG. 14 illustrates a process 1400 of cold-forming the second portion 132 of the flexible glass substrate 110 using sequentially activated pins 1410. The pin block 1420 may have cavities 1430 drilled or machined through a portion of the height of the pin block such that the pins 1410 can move up and down determined by the contour of the portion of the second rigid support structure 125 coated with an adhesive (not shown in the figure), against which the flexible glass substrate 110 is being pressed. The length of the pins 1410 protruding out of the pin block 1420 can be adjusted using a clamping mechanism. In some embodiments, the clamps 1482 and 1484 operate by receiving an input signal from an actuator, for example, clamps 1482 and 1484 are shown in a locked configuration 1490 and clamps 1482 and 1484 are shown in an unlocked configuration 1480.


In some embodiments, the pin block 1420 houses a pressure manifold 1470, connected with an inlet connector 1450, to apply and maintain a constant pressure on the pins 1410 through cavities 1430. The movement of the pins 1410 in the vertical direction can be controlled by an actuator mechanism.


In some embodiments, the pins 1410 may have a cross-section selected from the group consisting of cylindrical, triangular, and rectangular. The pins 1410 may be made of a material selected from the group consisting of metals, ceramics, plastics, composites, rubber, and combinations thereof.


The actuator mechanism may be selected from the group comprising hydraulic, pneumatic, electric, and mechanical input signals, or combinations thereof. In some embodiments, an individual pin, a column of pins, a row of pins, an array of pins or any combinations thereof can be actuated to apply or not apply the force on the flexible glass substrate 110.


In some embodiments, a column of pins 1410 may be sequentially actuated such that the initial force is applied by actuating one or more pins; the generation line is defined by the position of the pins most recently actuated; and the application of force is maintained by actuated pins that do not move relative to the flexible substrate 110 after the generation line has passed, and until the adhesive is cured.


In some embodiments, pins 1410 may be individually actuated such that only the second portions 132 of the flexible glass substrate 110 are pushed against the second rigid support structure 125.


In some embodiments, all pins 1410 in a pin block 1420 may be simultaneously actuated, with the clamps 1482 and 1484 in the unlocked configuration 1480, such that the initial force is applied by all the actuated pins; the generation line is defined by the position of the column of leading pins 1410; moving the generation line across the substrate to cold-form the flexible glass substrate 110 into the shape of the second rigid support structure 125, while maintaining the application of force on areas of the flexible substrate 110 over which the generation line has passed until the adhesive cures.


In some embodiments, the adhesive applied on the second rigid support structure 125 is preferably a high-strength structural adhesive. Exemplary high-strength structural adhesives include Loctite high-purity M-121 HP Epoxy, 3M Scotch Weld DP 420 Epoxy, Loctite H4800 Acrylics, 3M Auto Glass Windshield Urethane, and CRL Dow Corning 995 Silicone.


In some embodiments, the cavities 1430 are connected to the pressure manifold 1470. The pressure in the pressure manifold 1470 can be created by any suitable means 1460, such as compressed air or oil through the inlet connector 1450.


In some embodiments, a roller, a roller tape, pins, a roller attached to an end of a pin or any combinations thereof may be used to apply and maintain pressure on the flexible glass substrate 110 as it is being pushed against the second support structure 125.



FIG. 15A shows an exemplary process of press molding 1500. The process comprises pushing the press mold 1510 against the flexible glass substrate 110 to which the displays 140 and the first rigid support structures 120 are attached. During bonding, as the press mold 1510 pushes down on the flexible glass substrate 110 against the adhesive (not shown) and the underlying second rigid support structure 125, tensile stresses, compressive stresses or a combination thereof may be generated in the flexible glass substrate 110. This stress may result in breakage for some percentage of articles, reducing yield. Furthermore, the flexible glass substrate 110 may slide against the uncured adhesive potentially affecting the thickness uniformity and the conformality of adhesive layer. Some embodiments described herein such as cold-forming of chemically-strengthened or thermally-strengthened, improve upon the press molding process, particularly for articles having a developable and/or complex developable shape, by providing sufficient glass strength to overcome the stress created in the flexible glass substrate 110 during processing, thereby increasing yield relative to press molding and similar processes. The arrows indicate the direction of the movement of the mold and the flexible glass substrate 110 to which the displays 140 and the first rigid support structures 120 are attached.



FIG. 15B shows a process step 1550 of the press molding process, where the press mold is retracted once the second portion 132 of the flexible glass substrate 110 is pressed into the shape of the second rigid support structure 125, forming the desired end product. The arrows indicate the direction of the movement of the press mold away from the end product once the process is finished.



FIG. 16 shows an example of a part 1600, a section of an automotive interior display, including but not limited to an instrument cluster, a console display, or a center stack display, having a monitor, that may be made in some embodiments. A cold-formed flexible glass substrate 110 is bonded to a second rigid support structure 125. The cold-formed glass substrate 110 includes an open region 1650 that is not in direct contact with the second non-planar rigid support structure 125. Open region 1650 may have a non-planar shape maintained by the first rigid support structure 120. A monitor or a display 140 may be laminated to open region 1650. Rigid support structure 125 may be designed to be attached to other parts of an automobile.


In some embodiments, the display 140 is attached to the flexible glass substrate 110 after fixing the flexible glass substrate 110 into a fixed shape with a rigid support structure 125 and cold-forming the fixed flexible glass substrate 110 into the fixed shape. The cold-formed flexible glass substrate 110 may have one or more portions having a planar shape and one or more portions having a non-planar shape. The cold-formed flexible glass substrate 110 may have, but not limited to, a complex developable shape, a developable shape or a combination thereof.



FIG. 17A illustrates a top view 1700 of the flexible glass substrate 110 with a rigid support structure 125. FIG. 17B illustrates a cross-section view 1720, along 7-7′ shown in FIG. 17A. Along the 7-7′ plane, the rigid support structure 125 has one or more openings 1710 through which a display can be attached to the cold-formed flexible glass substrate 110 after the cold-forming is finished.



FIG. 17C illustrates a top view 1740 of the cold-formed flexible glass substrate 110 with a rigid support structure 125 and displays 140 attached to the cold-formed glass substrate. FIG. 17D illustrates a cross-section view 1760, along the 8-8′ plane shown in FIG. 17C.


In some embodiments, cold forming of the flexible glass substrate 110 can be prior to attachment to the rigid support structure 125, for example, using injection molding, press molding, or any suitable means.


In some embodiments, cold forming of the flexible glass substrate 110 can be performed at the same time as the attachment to the rigid support structure 125, for example, using roller tapes, pins, or any suitable means.



FIG. 18 shows a process flowchart of attaching a display 140 to the flexible glass substrate 110 after cold-forming the flexible glass substrate 110 and bonding to a rigid support structure 125. The steps are performed in the following order:

    • Step 1810: Cold forming the flexible glass substrate 110 and fixing to a rigid support structure 125.
    • Step 1820: attaching a display 140 to the flexible glass substrate 110 or to the rigid support structure through the opening 1710.


Aspect (1) of this disclosure pertains to a process comprising fixing a first portion of a flexible glass substrate into a first fixed shape with a first rigid support structure; attaching a first display to the first portion of the flexible glass substrate or to the first rigid support structure; after fixing the first portion and attaching the first display, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display: cold-forming a second portion of the flexible glass substrate to a second fixed shape; and fixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure.


Aspect (2) of this disclosure pertains to the process of Aspect (1), wherein the first display is planar; the first fixed shape is planar; and the first portion of the flexible glass substrate is fixed into the first fixed shape with the first rigid support structure after attaching the first display to the first portion of the flexible glass substrate.


Aspect (3) of this disclosure pertains to the process of Aspect (1), wherein the first portion of the flexible glass substrate is fixed into the first fixed shape with the first rigid support structure before attaching the first display to the first portion of the flexible glass substrate.


Aspect (4) of this disclosure pertains to the process of Aspect (1) or Aspect (2), wherein the first fixed shape is planar.


Aspect (5) of this disclosure pertains to the process of Aspect (1) or Aspect (3), wherein the first fixed shape is non-planar.


Aspect (6) of this disclosure pertains to the process of Aspect (1) or Aspect (3), wherein the first display is non-planar.


Aspect (7) of this disclosure pertains to the process of any one of Aspects (1) through (6), wherein the first fixed shape is formed by cold-forming the first portion of the flexible glass substrate.


Aspect (8) of this disclosure pertains to the process of any one of Aspects (1) through (7), wherein the shape of the first display is the same as the first fixed shape.


Aspect (9) of this disclosure pertains to the process of any one of Aspects (1) through (8), wherein the first rigid support structure is permanently attached to the first portion of the flexible glass substrate.


Aspect (10) of this disclosure pertains to the process of any one of Aspects (1) through (9), wherein the second fixed shape is non-planar.


Aspect (11) of this disclosure pertains to the process of any one of Aspects (1) through (10), wherein the second rigid support structure is permanently attached to the second portion of the flexible glass substrate.


Aspect (12) of this disclosure pertains to the process of any one of Aspects (1) through (11), wherein the first display is attached to the flexible glass substrate or to the first rigid support structure using a method selected from optical bonding, or air gap bonding.


Aspect (13) of this disclosure pertains to the process of any one of Aspects (1) through (12), further comprises: fixing a third portion of the flexible glass substrate into a third fixed shape with a third rigid support structure; attaching a second display to the third portion of the flexible glass substrate or to the third rigid support structure; wherein: cold-forming the second portion of the flexible glass substrate to the second fixed shape; and fixing the second portion of the flexible glass substrate into the second fixed shape with the second rigid support structure is performed after fixing the third portion and attaching the second display, and while maintaining the third fixed shape of the third portion of the flexible glass substrate and the attached second display.


Aspect (14) of this disclosure pertains to the process of any one of Aspects (1) through (13), wherein the flexible glass substrate comprises a chemically strengthened glass.


Aspect (15) of this disclosure pertains to the process of any one of Aspects (1) through (14), further comprising applying at least one coating to the flexible glass substrate before fixing the first portion and attaching the first display, and while the flexible glass substrate is planar.


Aspect (16) of this disclosure pertains to the process of Aspect (15), wherein one of the at least one coatings is a decorative ink coating.


Aspect (17) of this disclosure pertains to the process of Aspect (15) or (16), wherein one of the at least one coatings is an antireflective coating.


Aspect (18) of this disclosure pertains to the process of any one of Aspects (1) through (17), wherein the flexible glass substrate is directly bonded to the first rigid support structure.


Aspect (19) of this disclosure pertains to the process of any one of Aspects (1) through (18), further comprising applying an adhesive to at least one of the first rigid support structure and the flexible glass substrate prior to bonding.


Aspect (20) of this disclosure pertains to the process of any one of Aspects (1) through (19), wherein the flexible glass substrate is bonded to the first rigid support structure using a method selected from roller tapes, mechanical retainers, press molding, or die molding.


Aspect (21) of this disclosure pertains to an article, formed by the process comprising: fixing a first portion of a flexible glass substrate into a first fixed shape with a first rigid support structure; attaching a first display to the first portion of the flexible glass substrate or to the first rigid support structure; after fixing the first portion and attaching the display, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display: cold-forming a second portion of the flexible glass substrate to a second fixed shape; and fixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure.


Aspect (22) of this disclosure pertains to an article, comprising: a cold-formed flexible glass substrate fixed into a non-planar fixed shape with a rigid support structure; a display attached to the cold-formed flexible glass substrate, wherein there is no residual stress between the display and the cold-formed flexible glass substrate.


Aspect (23) of this disclosure pertains to a process comprising: cold-forming a flexible glass substrate into a non-planar fixed shape; attaching the flexible glass substrate to a rigid support structure; and after cold forming and attaching the flexible glass substrate to a rigid support structure, attaching a display to the flexible glass substrate or to the rigid support structure.


Embodiments of the present disclosure are described in detail herein with reference to embodiments thereof as illustrated in the accompanying drawings, in which like reference numerals are used to indicate identical or functionally similar elements. References to “one embodiment,” “an embodiment,” “some embodiments,” “in certain embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.


Where a range of numerical values is recited herein, comprising upper and lower values, unless otherwise stated in specific circumstances, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the claims be limited to the specific values recited when defining a range. Further, when an amount, concentration, or other value or parameter is given as a range, one or more preferred ranges or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether such pairs are separately disclosed. Finally, when the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to. Whether or not a numerical value or end-point of a range recites “about,” the numerical value or end-point of a range is intended to include two embodiments: one modified by “about,” and one not modified by “about.”


As used herein, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art.


As used herein, “comprising” is an open-ended transitional phrase. A list of elements following the transitional phrase “comprising” is a non-exclusive list, such that elements in addition to those specifically recited in the list may also be present.


The term “or,” as used herein, is inclusive; more specifically, the phrase “A or B” means “A, B, or both A and B.” Exclusive “or” is designated herein by terms such as “either A or B” and “one of A or B,” for example.


The indefinite articles “a” and “an” to describe an element or component means that one or at least one of these elements or components is present. Although these articles are conventionally employed to signify that the modified noun is a singular noun, as used herein the articles “a” and “an” also include the plural, unless otherwise stated in specific instances. Similarly, the definite article “the,” as used herein, also signifies that the modified noun may be singular or plural, again unless otherwise stated in specific instances.


The term “wherein” is used as an open-ended transitional phrase, to introduce a recitation of a series of characteristics of the structure.


The examples are illustrative, but not limiting, of the present disclosure. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in the field, and which would be apparent to those skilled in the art, are within the spirit and scope of the disclosure.


While various embodiments have been described herein, they have been presented by way of example only, and not limitation. It should be apparent that adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It therefore will be apparent to one skilled in the art that various changes in form and detail can be made to the embodiments disclosed herein without departing from the spirit and scope of the present disclosure. The elements of the embodiments presented herein are not necessarily mutually exclusive, but may be interchanged to meet various needs as would be appreciated by one of skill in the art.


It is to be understood that the phraseology or terminology used herein is for the purpose of description and not of limitation. The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. A process, comprising: attaching a first display to a first portion of a flexible glass substrate;after attaching the first display to the first portion of the flexible glass substrate, fixing the first portion of the flexible glass substrate into a first fixed shape with a first rigid support structure, wherein the first fixed shape-comprises a non-planar shape;after attaching the first display and fixing the first portion, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display: cold-forming a second portion of the flexible glass substrate to a second fixed shape; andfixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure, wherein the second rigid support structure surrounds the first rigid support structure.
  • 2. The process of claim 1, wherein the first display comprises a non-planar shape.
  • 3. The process of claim 1, wherein the first fixed shape is formed by cold-forming the first portion of the flexible glass substrate.
  • 4. The process of claim 1, wherein the shape of the first display is the same as the first fixed shape.
  • 5. The process of claim 1, wherein the first rigid support structure is attached to the first portion of the flexible glass substrate.
  • 6. The process of claim 1, wherein the second fixed shape comprises a non-planar shape.
  • 7. The process of claim 1, wherein the second rigid support structure is attached to the second portion of the flexible glass substrate.
  • 8. The process of claim 1, further comprising: fixing a third portion of the flexible glass substrate into a third fixed shape with a third rigid support structure; andattaching a second display to the third portion of the flexible glass substrate or to the third rigid support structure;wherein: cold-forming the second portion of the flexible glass substrate to the second fixed shape; andfixing the second portion of the flexible glass substrate into the second fixed shape with the second rigid support structureis performed after fixing the third portion and attaching the second display, and while maintaining the third fixed shape of the third portion of the flexible glass substrate and the attached second display, andwherein the second rigid support structure surrounds the third rigid support structure.
  • 9. The process of claim 1, further comprising applying at least one coating to the flexible glass substrate before fixing the first portion and attaching the first display, and while the flexible glass substrate is planar.
  • 10. The process of claim 9, wherein one of the at least one coatings is a decorative ink coating or an antireflective coating.
  • 11. The process of claim 1, wherein the flexible glass substrate is directly bonded to the first rigid support structure.
  • 12. The process of claim 11, further comprising applying an adhesive to at least one of the first rigid support structure and the flexible glass substrate prior to bonding.
  • 13. The process of claim 11, wherein the flexible glass substrate is bonded to the first rigid support structure using a method selected from roller tapes, mechanical retainers, press molding, or die molding.
  • 14. The process of claim 1, wherein the first display is directly attached to the first portion of the flexible glass substrate.
  • 15. The process of claim 1, wherein the first portion of the flexible glass substrate comprises a boundary that coincides with an outer boundary of the rigid support structure, and wherein the display is directly attached to the portion of the flexible glass substrate within an opening surrounded by an interior perimeter edge of the rigid support structure.
  • 16. An article, formed by a process comprising: attaching a first display to a first portion of a flexible glass substrate;after attaching the first display to the first portion of the flexible glass substrate, fixing the first portion of the flexible glass substrate into a first fixed shape with a first rigid support structure, wherein the first fixed shape comprises a non-planar shape;after attaching the first display and fixing the first portion, and while maintaining the first fixed shape of the first portion of the flexible glass substrate and the attached first display: cold-forming a second portion of the flexible glass substrate to a second fixed shape; andfixing the second portion of the flexible glass substrate into the second fixed shape with a second rigid support structure, wherein the second rigid support structure surrounds the first rigid support structure.
  • 17. An article, comprising: a first rigid support structure;a second rigid support structure;a third rigid support structure;a cold-formed flexible glass substrate fixed into a non-planar fixed shape, the cold-formed flexible glass substrate comprising: a first portion with a first fixed shape, wherein the first rigid support structure is fixed at the first portion, and wherein a boundary of the first portion coincides with an outer boundary of the first rigid support structure,a second portion with a second fixed shape, wherein the second rigid support structure is fixed at the second portion, and wherein a boundary of the second portion coincides with an outer boundary of the second rigid support structure, anda third portion with a third fixed shape, wherein the third rigid support structure is fixed at the third portion, and wherein the third rigid support structure surrounds the first portion and the second portion;a first display attached to the first portion of the flexible glass substrate within a first opening surrounded by an interior perimeter edge of the first rigid support structure; anda second display attached to the second portion of the flexible glass substrate within a second opening surrounded by an interior perimeter edge of the second rigid support structure.
  • 18. The article of claim 17, wherein: the first fixed shape comprises a planar shape,the second fixed shape comprises a planar shape, andthe third fixed shape comprises a non-planar shape.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 U.S.C. § 371 of International Patent Application Serial No. PCT/US2017/58010, filed on Oct. 24, 2017, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/412,542, filed on Oct. 25, 2016, the contents of which are relied upon and incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/058010 10/24/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/081068 5/3/2018 WO A
US Referenced Citations (309)
Number Name Date Kind
2068030 Lieser Jan 1937 A
2608030 Jendrisak Aug 1952 A
3197903 Walley Aug 1965 A
3338696 Dockerty Aug 1967 A
3582456 Stolki Jun 1971 A
3682609 Dockerty Aug 1972 A
3753840 Plumat Aug 1973 A
3778335 Boyd Dec 1973 A
3790430 Mochel Feb 1974 A
3799817 Laethem Mar 1974 A
4147527 Bystrov et al. Apr 1979 A
4238265 Deminet Dec 1980 A
4445953 Hawk May 1984 A
4455338 Henne Jun 1984 A
4859636 Aratani et al. Aug 1989 A
4899507 Mairlot Feb 1990 A
4969966 Norman Nov 1990 A
4985099 Mertens et al. Jan 1991 A
5108480 Sugiyama Apr 1992 A
5154117 Didelot et al. Oct 1992 A
5173102 Weber et al. Dec 1992 A
5245468 Demiryont et al. Sep 1993 A
5250146 Horvath Oct 1993 A
5264058 Hoagland et al. Nov 1993 A
5300184 Masunaga Apr 1994 A
5711119 Cornils et al. Jan 1998 A
5897937 Cornils et al. Apr 1999 A
6044662 Morin Apr 2000 A
6086983 Yoshizawa Jul 2000 A
6101748 Cass et al. Aug 2000 A
6242931 Hembree et al. Jun 2001 B1
6265054 Bravet et al. Jul 2001 B1
6270605 Doerfler Aug 2001 B1
6274219 Schuster et al. Aug 2001 B1
6287674 Verlinden et al. Sep 2001 B1
6302985 Takahashi et al. Oct 2001 B1
6332690 Murofushi Dec 2001 B1
6387515 Joret et al. May 2002 B1
6420800 Levesque et al. Jul 2002 B1
6426138 Narushima et al. Jul 2002 B1
6582799 Brown et al. Jun 2003 B1
6620365 Odoi et al. Sep 2003 B1
6816225 Colgan et al. Nov 2004 B2
6903871 Page Jun 2005 B2
7297040 Chang et al. Nov 2007 B2
7375782 Yamazaki et al. May 2008 B2
7478930 Choi Jan 2009 B2
7489303 Pryor Feb 2009 B1
7542302 Curnalia et al. Jun 2009 B1
7750821 Taborisskiy et al. Jul 2010 B1
7955470 Kapp et al. Jun 2011 B2
8298431 Chwu et al. Oct 2012 B2
8344369 Yamazaki et al. Jan 2013 B2
8521955 Arulambalam et al. Aug 2013 B2
8549885 Dannoux et al. Oct 2013 B2
8586492 Barefoot et al. Nov 2013 B2
8652978 Dejneka et al. Feb 2014 B2
8692787 Imazeki Apr 2014 B2
8702253 Lu et al. Apr 2014 B2
8765262 Gross Jul 2014 B2
8814372 Vandal et al. Aug 2014 B2
8833106 Dannoux et al. Sep 2014 B2
8912447 Leong et al. Dec 2014 B2
8923693 Yeates Dec 2014 B2
8962084 Brackley et al. Feb 2015 B2
8967834 Timmerman et al. Mar 2015 B2
8969226 Dejneka et al. Mar 2015 B2
8978418 Balduin et al. Mar 2015 B2
9007226 Chang Apr 2015 B2
9061934 Bisson et al. Jun 2015 B2
9090501 Okahata Jul 2015 B2
9109881 Roussev et al. Aug 2015 B2
9140543 Allan et al. Sep 2015 B1
9156724 Gross Oct 2015 B2
9223162 Deforest et al. Dec 2015 B2
9240437 Shieh et al. Jan 2016 B2
9278500 Filipp Mar 2016 B2
9278655 Jones et al. Mar 2016 B2
9290413 Dejneka et al. Mar 2016 B2
9346703 Bookbinder et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9357638 Lee et al. May 2016 B2
9442028 Roussev et al. Sep 2016 B2
9446723 Stepanski Sep 2016 B2
9469561 Kladias et al. Oct 2016 B2
9517967 Dejneka et al. Dec 2016 B2
9573843 Keegan et al. Feb 2017 B2
9593042 Hu et al. Mar 2017 B2
9595960 Wilford Mar 2017 B2
9606625 Levesque et al. Mar 2017 B2
9617180 Bookbinder et al. Apr 2017 B2
9663396 Miyasaka et al. May 2017 B2
9694570 Levasseur et al. Jul 2017 B2
9700985 Kashima et al. Jul 2017 B2
9701564 Bookbinder et al. Jul 2017 B2
9720450 Choi et al. Aug 2017 B2
9724727 Domey et al. Aug 2017 B2
9802485 Masuda et al. Oct 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9821509 Kastell Nov 2017 B2
9895975 Lee et al. Feb 2018 B2
9902640 Dannoux et al. Feb 2018 B2
9931817 Rickerl Apr 2018 B2
9933820 Helot et al. Apr 2018 B2
9947882 Zhang et al. Apr 2018 B2
9955602 Wildner et al. Apr 2018 B2
9957190 Finkeldey et al. May 2018 B2
9963374 Jouanno et al. May 2018 B2
9972645 Kim May 2018 B2
9975801 Maschmeyer et al. May 2018 B2
9992888 Moon et al. Jun 2018 B2
10005246 Stepanski Jun 2018 B2
10017033 Fisher et al. Jul 2018 B2
10042391 Yun et al. Aug 2018 B2
10074824 Han et al. Sep 2018 B2
10086762 Uhm Oct 2018 B2
10131118 Kang et al. Nov 2018 B2
10140018 Kim et al. Nov 2018 B2
10153337 Lee et al. Dec 2018 B2
10175802 Boggs et al. Jan 2019 B2
10211416 Jin et al. Feb 2019 B2
10222825 Wang et al. Mar 2019 B2
10273184 Garner et al. Apr 2019 B2
10303223 Park et al. May 2019 B2
10303315 Jeong et al. May 2019 B2
10326101 Oh et al. Jun 2019 B2
10328865 Jung Jun 2019 B2
10343377 Levasseur et al. Jul 2019 B2
10347700 Yang et al. Jul 2019 B2
10377656 Dannoux et al. Aug 2019 B2
10421683 Schillinger et al. Sep 2019 B2
10427383 Levasseur et al. Oct 2019 B2
10444427 Bookbinder et al. Oct 2019 B2
10483210 Gross et al. Nov 2019 B2
10500958 Cho et al. Dec 2019 B2
10606395 Boggs et al. Mar 2020 B2
20020039229 Hirose et al. Apr 2002 A1
20040026021 Groh et al. Feb 2004 A1
20040069770 Cary et al. Apr 2004 A1
20040107731 Doehring et al. Jun 2004 A1
20040258929 Glaubitt et al. Dec 2004 A1
20050178158 Moulding et al. Aug 2005 A1
20060227125 Wong et al. Oct 2006 A1
20070188871 Fleury et al. Aug 2007 A1
20070195419 Tsuda et al. Aug 2007 A1
20070210621 Barton et al. Sep 2007 A1
20070221313 Franck et al. Sep 2007 A1
20070223121 Franck et al. Sep 2007 A1
20070291384 Wang Dec 2007 A1
20080031991 Choi et al. Feb 2008 A1
20080093753 Schuetz Apr 2008 A1
20080285134 Closset et al. Nov 2008 A1
20080303976 Nishizawa et al. Dec 2008 A1
20090096937 Bauer Apr 2009 A1
20090101208 Vandal et al. Apr 2009 A1
20090117332 Ellsworth et al. May 2009 A1
20090179840 Tanaka et al. Jul 2009 A1
20090185127 Tanaka et al. Jul 2009 A1
20090201443 Sasaki et al. Aug 2009 A1
20090311497 Aoki Dec 2009 A1
20100000259 Ukrainczyk et al. Jan 2010 A1
20100031590 Buchwald et al. Feb 2010 A1
20100065342 Shaikh Mar 2010 A1
20100103138 Huang et al. Apr 2010 A1
20100182143 Lynam Jul 2010 A1
20100245253 Rhyu et al. Sep 2010 A1
20110057465 Beau et al. Mar 2011 A1
20110148267 McDaniel et al. Jun 2011 A1
20120050975 Garelli et al. Mar 2012 A1
20120111056 Prest May 2012 A1
20120128952 Miwa et al. May 2012 A1
20120134025 Hart May 2012 A1
20120144866 Liu et al. Jun 2012 A1
20120152897 Cheng et al. Jun 2012 A1
20120196110 Murata et al. Aug 2012 A1
20120202030 Kondo et al. Aug 2012 A1
20120218640 Gollier et al. Aug 2012 A1
20120263945 Yoshikawa Oct 2012 A1
20120280368 Garner et al. Nov 2012 A1
20120320509 Kim et al. Dec 2012 A1
20130020007 Niiyama et al. Jan 2013 A1
20130033885 Oh et al. Feb 2013 A1
20130070340 Shelestak et al. Mar 2013 A1
20130081428 Liu et al. Apr 2013 A1
20130088441 Chung et al. Apr 2013 A1
20130120850 Lambert et al. May 2013 A1
20130186141 Henry Jul 2013 A1
20130209824 Sun et al. Aug 2013 A1
20130279188 Entenmann et al. Oct 2013 A1
20130314642 Timmerman et al. Nov 2013 A1
20130329346 Dannoux et al. Dec 2013 A1
20130330495 Maatta et al. Dec 2013 A1
20140014260 Chowdhury et al. Jan 2014 A1
20140065374 Tsuchiya et al. Mar 2014 A1
20140141206 Gillard et al. May 2014 A1
20140146538 Zenker et al. May 2014 A1
20140153234 Knoche et al. Jun 2014 A1
20140153894 Jenkins et al. Jun 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140168546 Magnusson et al. Jun 2014 A1
20140234581 Immerman et al. Aug 2014 A1
20140308464 Levasseur et al. Oct 2014 A1
20140312518 Levasseur et al. Oct 2014 A1
20140333848 Chen Nov 2014 A1
20140340609 Taylor et al. Nov 2014 A1
20150015807 Franke et al. Jan 2015 A1
20150072129 Okahata et al. Mar 2015 A1
20150077429 Eguchi et al. Mar 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150168768 Nagatani Jun 2015 A1
20150177443 Faecke et al. Jun 2015 A1
20150210588 Chang et al. Jul 2015 A1
20150246424 Venkatachalam et al. Sep 2015 A1
20150246507 Brown et al. Sep 2015 A1
20150274585 Rogers et al. Oct 2015 A1
20150322270 Amin et al. Nov 2015 A1
20150336357 Kang et al. Nov 2015 A1
20150351272 Wildner et al. Dec 2015 A1
20150357387 Lee et al. Dec 2015 A1
20160009066 Nieber et al. Jan 2016 A1
20160009068 Gamer Jan 2016 A1
20160016849 Allan Jan 2016 A1
20160039705 Kato et al. Feb 2016 A1
20160052241 Zhang Feb 2016 A1
20160066463 Yang et al. Mar 2016 A1
20160081204 Park et al. Mar 2016 A1
20160083282 Jouanno et al. Mar 2016 A1
20160083292 Tabe et al. Mar 2016 A1
20160091645 Birman et al. Mar 2016 A1
20160102015 Yasuda et al. Apr 2016 A1
20160113135 Kim et al. Apr 2016 A1
20160207290 Cleary et al. Jul 2016 A1
20160214889 Garner et al. Jul 2016 A1
20160216434 Shih et al. Jul 2016 A1
20160250982 Fisher et al. Sep 2016 A1
20160252656 Waldschmidt et al. Sep 2016 A1
20160259365 Wang et al. Sep 2016 A1
20160272529 Hong et al. Sep 2016 A1
20160297176 Rickerl Oct 2016 A1
20160306451 Isoda et al. Oct 2016 A1
20160313494 Hamilton et al. Oct 2016 A1
20160354996 Alder et al. Dec 2016 A1
20160355091 Lee et al. Dec 2016 A1
20160355901 Isozaki et al. Dec 2016 A1
20160375808 Etienne et al. Dec 2016 A1
20170008377 Fisher et al. Jan 2017 A1
20170021661 Pelucchi Jan 2017 A1
20170066223 Notsu et al. Mar 2017 A1
20170081238 Jones et al. Mar 2017 A1
20170088454 Fukushima et al. Mar 2017 A1
20170094039 Lu Mar 2017 A1
20170115944 Oh et al. Apr 2017 A1
20170158551 Bookbinder et al. Jun 2017 A1
20170160434 Hart et al. Jun 2017 A1
20170185289 Kim et al. Jun 2017 A1
20170190152 Notsu et al. Jul 2017 A1
20170197561 McFarland Jul 2017 A1
20170213872 Jinbo et al. Jul 2017 A1
20170217290 Yoshizumi et al. Aug 2017 A1
20170217815 Dannoux et al. Aug 2017 A1
20170240772 Dohner et al. Aug 2017 A1
20170247291 Hatano et al. Aug 2017 A1
20170262057 Knittl et al. Sep 2017 A1
20170263690 Lee et al. Sep 2017 A1
20170274627 Chang et al. Sep 2017 A1
20170285227 Chen et al. Oct 2017 A1
20170305786 Roussev et al. Oct 2017 A1
20170327402 Fujii et al. Nov 2017 A1
20170334770 Luzzato et al. Nov 2017 A1
20170349473 Moriya et al. Dec 2017 A1
20180009197 Gross et al. Jan 2018 A1
20180014420 Amin et al. Jan 2018 A1
20180031743 Wakatsuki et al. Feb 2018 A1
20180050948 Faik et al. Feb 2018 A1
20180069053 Bok Mar 2018 A1
20180072022 Tsai et al. Mar 2018 A1
20180103132 Prushinskiy et al. Apr 2018 A1
20180111569 Faik et al. Apr 2018 A1
20180122863 Bok May 2018 A1
20180125228 Porter et al. May 2018 A1
20180134232 Helot May 2018 A1
20180141850 Dejneka et al. May 2018 A1
20180147985 Brown et al. May 2018 A1
20180149777 Brown May 2018 A1
20180149907 Gahagan et al. May 2018 A1
20180164850 Sim et al. Jun 2018 A1
20180186674 Kumar et al. Jul 2018 A1
20180188869 Boggs et al. Jul 2018 A1
20180208131 Mattelet et al. Jul 2018 A1
20180208494 Mattelet et al. Jul 2018 A1
20180210118 Gollier et al. Jul 2018 A1
20180215125 Gahagan Aug 2018 A1
20180245125 Tsai et al. Aug 2018 A1
20180304825 Mattelet et al. Oct 2018 A1
20180324964 Yoo et al. Nov 2018 A1
20180345644 Kang et al. Dec 2018 A1
20180364760 Ahn et al. Dec 2018 A1
20180374906 Everaerts et al. Dec 2018 A1
20190034017 Boggs et al. Jan 2019 A1
20190039352 Zhao et al. Feb 2019 A1
20190039935 Couillard et al. Feb 2019 A1
20190069451 Myers et al. Feb 2019 A1
20190077337 Gervelmeyer Mar 2019 A1
20190152831 An et al. May 2019 A1
20190223309 Amin et al. Jul 2019 A1
20190295494 Wang et al. Sep 2019 A1
20190315648 Kumar et al. Oct 2019 A1
20190329531 Brennan et al. Oct 2019 A1
20200064535 Haan et al. Feb 2020 A1
Foreign Referenced Citations (223)
Number Date Country
1587132 Mar 2005 CN
1860081 Nov 2006 CN
101600846 Dec 2009 CN
101684032 Mar 2010 CN
201989544 Sep 2011 CN
102341356 Feb 2012 CN
102464456 May 2012 CN
103136490 Jun 2013 CN
103587161 Feb 2014 CN
203825589 Sep 2014 CN
204111583 Jan 2015 CN
102566841 Apr 2015 CN
104656999 May 2015 CN
104679341 Jun 2015 CN
204463066 Jul 2015 CN
104843976 Aug 2015 CN
105118391 Dec 2015 CN
105511127 Apr 2016 CN
205239166 May 2016 CN
105705330 Jun 2016 CN
106256794 Dec 2016 CN
205905907 Jan 2017 CN
106458683 Feb 2017 CN
206114596 Apr 2017 CN
206114956 Apr 2017 CN
107613809 Jan 2018 CN
107757516 Mar 2018 CN
108519831 Sep 2018 CN
108550587 Sep 2018 CN
108725350 Nov 2018 CN
109135605 Jan 2019 CN
109690662 Apr 2019 CN
109743421 May 2019 CN
4415787 Nov 1995 DE
4415878 Nov 1995 DE
69703490 May 2001 DE
192004022008 Dec 2004 DE
102004002208 Aug 2005 DE
102009021938 Nov 2010 DE
102010007204 Aug 2011 DE
102013214108 Feb 2015 DE
102014116798 May 2016 DE
0076924 Apr 1983 EP
0316224 May 1989 EP
0347049 Dec 1989 EP
0418700 Mar 1991 EP
0423698 Apr 1991 EP
0525970 Feb 1993 EP
0664210 Jul 1995 EP
1013622 Jun 2000 EP
1031409 Aug 2000 EP
1046493 Oct 2000 EP
0910721 Nov 2000 EP
1647663 Apr 2006 EP
2236281 Oct 2010 EP
2385630 Nov 2011 EP
2521118 Nov 2012 EP
2852502 Apr 2015 EP
2933718 Oct 2015 EP
3093181 Nov 2016 EP
3100854 Dec 2016 EP
3118174 Jan 2017 EP
3118175 Jan 2017 EP
3144141 Mar 2017 EP
3156286 Apr 2017 EP
3189965 Jul 2017 EP
3288791 Mar 2018 EP
3426614 Jan 2019 EP
3532442 Sep 2019 EP
2750075 Dec 1997 FR
2918411 Oct 2013 FR
3012073 Apr 2015 FR
0805770 Dec 1958 GB
0991867 May 1965 GB
1319846 Jun 1973 GB
2011316 Jul 1979 GB
2281542 Mar 1995 GB
55-154329 Dec 1980 JP
57-048082 Mar 1982 JP
58-073681 May 1983 JP
58-194751 Nov 1983 JP
59-076561 May 1984 JP
63-089317 Apr 1988 JP
63-190730 Aug 1988 JP
3059337 Jun 1991 JP
03-228840 Oct 1991 JP
04-119931 Apr 1992 JP
05-116972 May 1993 JP
06-340029 Dec 1994 JP
10-218630 Aug 1998 JP
11-001349 Jan 1999 JP
11-006029 Jan 1999 JP
11-060293 Mar 1999 JP
2000-260330 Sep 2000 JP
2002-255574 Sep 2002 JP
2003-500260 Jan 2003 JP
2003-276571 Oct 2003 JP
2003-321257 Nov 2003 JP
2004-101712 Apr 2004 JP
2004-284839 Oct 2004 JP
2006-181936 Jul 2006 JP
2007-188035 Jul 2007 JP
2007-197288 Aug 2007 JP
2010-145731 Jul 2010 JP
2010145731 Jul 2010 JP
2010-256769 Nov 2010 JP
2012-111661 Jun 2012 JP
2013-084269 May 2013 JP
2014-126564 Jul 2014 JP
2015-502901 Jan 2015 JP
2015092422 May 2015 JP
5748082 Jul 2015 JP
5796561 Oct 2015 JP
2016-500458 Jan 2016 JP
2016031696 Mar 2016 JP
2016-517380 Jun 2016 JP
2016-130810 Jul 2016 JP
2016-144008 Aug 2016 JP
5976561 Aug 2016 JP
2016-530204 Sep 2016 JP
2016173794 Sep 2016 JP
2016-207200 Dec 2016 JP
2016203609 Dec 2016 JP
6281825 Feb 2018 JP
6340029 Jun 2018 JP
2002-0019045 Mar 2002 KR
10-0479282 Aug 2005 KR
10-2008-0023888 Mar 2008 KR
10-2013-0005776 Jan 2013 KR
10-2014-0111403 Sep 2014 KR
10-2015-0026911 Mar 2015 KR
10-2015-0033969 Apr 2015 KR
10-2015-0051458 May 2015 KR
10-1550833 Sep 2015 KR
10-2015-0121101 Oct 2015 KR
10-2015-0125971 Nov 2015 KR
10-2016-0118746 Oct 2016 KR
10-1674060 Nov 2016 KR
10-2016-0144008 Dec 2016 KR
10-2017-0000208 Jan 2017 KR
10-2017-0106263 Sep 2017 KR
10-2017-0107124 Sep 2017 KR
10-2017-0113822 Oct 2017 KR
10-2017-0121674 Nov 2017 KR
10-2018-0028597 Mar 2018 KR
10-2018-0049484 May 2018 KR
10-2018-0049780 May 2018 KR
10-2019-0001864 Jan 2019 KR
10-2019-0081264 Jul 2019 KR
200704268 Jan 2007 TW
201438895 Oct 2014 TW
201546006 Dec 2015 TW
201636309 Oct 2016 TW
201637857 Nov 2016 TW
58334 Jul 2018 VN
9425272 Nov 1994 WO
9739074 Oct 1997 WO
9801649 Jan 1998 WO
0073062 Dec 2000 WO
2006095005 Sep 2006 WO
2007108861 Sep 2007 WO
2008042731 Apr 2008 WO
2008153484 Dec 2008 WO
2009072530 Jun 2009 WO
2011029852 Mar 2011 WO
2011144359 Nov 2011 WO
2011155403 Dec 2011 WO
2012005307 Jan 2012 WO
2012058084 May 2012 WO
2012166343 Dec 2012 WO
2013072611 May 2013 WO
2013072612 May 2013 WO
2013174715 Nov 2013 WO
2013175106 Nov 2013 WO
2014085663 Jun 2014 WO
2014107640 Jul 2014 WO
2014172237 Oct 2014 WO
2014175371 Oct 2014 WO
2015031594 Mar 2015 WO
2015055583 Apr 2015 WO
2015057552 Apr 2015 WO
2015084902 Jun 2015 WO
2015085283 Jun 2015 WO
2015141966 Sep 2015 WO
2016007843 Jan 2016 WO
2016010947 Jan 2016 WO
2016010949 Jan 2016 WO
2016007815 Jan 2016 WO
2016044360 Mar 2016 WO
2016069113 May 2016 WO
2016070974 May 2016 WO
2016115311 Jul 2016 WO
2016125713 Aug 2016 WO
2016136758 Sep 2016 WO
2016173699 Nov 2016 WO
2016183059 Nov 2016 WO
2016195301 Dec 2016 WO
2016202605 Dec 2016 WO
2016196531 Dec 2016 WO
2016196546 Dec 2016 WO
2017015392 Jan 2017 WO
2017019851 Feb 2017 WO
2017023673 Feb 2017 WO
2017106081 Jun 2017 WO
2017146866 Aug 2017 WO
2017158031 Sep 2017 WO
2017155932 Sep 2017 WO
2018015392 Jan 2018 WO
2018005646 Jan 2018 WO
2018009504 Jan 2018 WO
2018075853 Apr 2018 WO
2018081068 May 2018 WO
2018102332 Jun 2018 WO
2018125683 Jul 2018 WO
2018160812 Sep 2018 WO
2018200454 Nov 2018 WO
2018200807 Nov 2018 WO
2018213267 Nov 2018 WO
2019055469 Mar 2019 WO
2019055652 Mar 2019 WO
2019074800 Apr 2019 WO
2019075065 Apr 2019 WO
2019151618 Aug 2019 WO
Non-Patent Literature Citations (49)
Entry
“Corning® Gorilla® Glass for Automotive Featured in Curved Cover Lens Applications at the Paris Motor Show”; Corning Incorporated; Sep. 30, 2016; 3 Pages.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2017/058010; dated Dec. 20, 2017; 12 Pages; European Patent Office.
Taiwanese Patent Application No. 106136742, Office Action dated Feb. 20, 2021, 2 pages (English Translation Only); Taiwanese Patent Office.
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages.
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages.
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages.
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages.
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages.
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages.
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages.
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (Eds) (2014); 9 Pages.
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages.
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015) 285-300.
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243.
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age.
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass—New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages.
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97.
Weijde; “Graduation Plan”; Jan. 2017; 30 Pages.
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages.
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages.
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation: C770-16, 2016.
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages.
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages.
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages.
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”.
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages.
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006.
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages.
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages.
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI.
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017].
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136.
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84.
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass”; Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689.
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146.
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297.
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office.
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014).
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469.
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics”; Chapter 1 in “Materials Research for Manufacturing: An Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016).
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center Cnsole Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages.
Photodon, “Screen Protectors for Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015).
Product Information Sheet: Corning® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, 2015, Rev: F_090315, 2 pages.
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10.
Stattler; “New Wave-Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages.
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010).
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550.
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages.
Korean Patent Application No. 10-2019-7014915, Notice of Allowance, dated Jan. 24, 2022, 7 pages (4 pages of English Translation and 3 pages of Original Document), Korean Patent Office.
Related Publications (1)
Number Date Country
20200062632 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62412542 Oct 2016 US