(a) Field of the Invention
This invention relates to a wall and floor system for building construction and more particularly but not by limitation to a cold-formed steel structural wall and floor framing system used in commercial and residential buildings.
(b) Discussion of Prior Art
Now and in the past, cold formed steel, also referred to as light gauge steel, wall stud and floor joist framing has been used extensively, in particular for exterior curtain wall and interior non-bearing construction, primarily as replacement for wood stud framing used for partition walls and ceiling support framing in buildings where combustible materials are not permitted by building codes. More recently, cold formed steel bearing construction has been increasingly used as the structural load resisting elements for single and multi-story buildings, up to 9 or more stories.
Structural steel stud framing is manufactured in the United States using a minimum of 25% recycled steel, which is an advantage when considering the movement towards energy efficient construction and sustainable design. Further, steel stud framing and steel components are 100% recyclable upon a building's future demolition. Steel stud framing systems are straight and dimensionally accurate and consistent without material imperfections common in wood, concrete, and masonry, and can be manufactured to any required length during fabrication that is practical for shipping and erection.
Pre-assembled wall panels of studs and track can be shop fabricated and delivered to the construction site to be erected as pre-assembled units, saving construction time, labor, and on-site scrap and waste. Cold formed steel structures are lighter, more environmentally friendly, and take less skilled labor to construct than similar structures built using structural masonry, reinforced or pre-cast concrete bearing wall structures. A lighter structure has several advantages, such as lower weight for transportation costs, lighter and smaller foundations, and lower seismic forces, as seismic forces are directly proportional to building self weight. In high seismic areas, lower seismic forces further reduce cost of lateral frames, connections and collectors, as well as size and intricacy of foundations supporting lateral frames. Therefore, a lighter structure saves materials, labor, shipping, and complexity, creating a much more efficient structure and lower overall environmental impact than a heavier structure constructed with pre-cast floor planks, or masonry or concrete bearing walls.
Heretofore, there have been a large number of issued patents related to cold-formed, steel building structures, components, prefabricated assemblies and prefabricated structures. These patents disclose various structural components including the use of cold formed steel structural studs, track, joists and bridging, which have been used as standard construction materials for nearly 50 years.
The patents include U.S. Pat. No. 1,981,240 to Mcneil, U.S. Pat. No. 5,720,138 to Johnson, U.S. Pat. No. 5,274,973 to Liang, U.S. Pat. No. 5,647,186 to Donaldson, U.S. Pat. No. 6,519,911 to Sawada, U.S. Pat. No. 5,113,631 to diGirolamo et al., U.S. Pat. No. 4,716,695 to Alexander et al., U.S. Pat. No. 5,782,047 and U.S. Pat. No. 6,298,617 to De Quesada, U.S. Pat. No. 5,941,035 to Purse, U.S. Pat. No. 5,881,516 to Luedtke, U.S. Pat. No. 6,799,408 and U.S. Pat. No. 7,178,304 to Brady, D467,007 to Daudet et al., U.S. Pat. No. 4,075,810 to Zakrzewski et al., U.S. Pat. No. 4,130,970 to Cable, U.S. Pat. No. 4,161,087 to Levesque, Ser. No. 12/548,694 to Beck et al, Ser. No. 12/505,478 to Wing-Chow Siu, U.S. Pat. No. 5,479,749 to Colasanto et al, U.S. Pat. No. 5,412,919 to Pellock et al, and U.S. Pat. No. 7,739,850 to Daudet.
None of these prior art references disclose the unique combination of structure and features of the subject cold-formed steel structural wall and floor framing system. In particular, the above mentioned patents don't teach or suggest a system having top and bottom spanning tracks used to distribute point loads from wall studs and floor joists to offset supporting wall studs and floor joists indexed below.
A key object and advantage of the wall and floor system is the invention allows for simplification of current construction practices, reduces and/or eliminates problematic issues such as dimensional difficulties during pre-fabrication of structural panels, decreases coordination of construction scheduling and phasing of different building trades during construction, and reduces settlement of the building structure during and after construction due to fabrication tolerances.
Another object of the invention is the system allows for stacking of wall panels during construction prior to placing concrete floors, thereby avoiding mixing of construction materials, contractors and labor trades in terms of critical path sequencing of construction.
Still another key object of the invention is the system allows for elimination of heavy load distributor elements at the top of bearing walls to transfer point loads from above to offset supporting stud framing below, by utilizing spanning track elements at top and bottom of walls. Due to the load distributing capability of the spanning tracks, floor systems can be pre-panelized prior to delivery to the jobsite to reduce labor time on site and allow for the majority of floor and roof construction on the ground as opposed to framed in place, thereby also improving jobsite safety. Mechanical, electrical, and plumbing utilities can be installed prior to placing concrete topping, greatly aiding construction phasing and greatly reducing the need to drill or core through concrete floors for utilities after placing concrete.
The proposed bearing wall system is compatible with several structural floor and roof framing systems, including spanning composite deck, cold formed steel joists, structural steel joists, wood joists, proprietary joist systems, prefabricated wood or steel trusses, proprietary floor joists, roof trusses, as well as a newly proposed composite joist system described in the art. The proposed composite joist system can be considered to act compositely with structural concrete topping using custom self drilling screws, designed to transfer joist chord compression into the concrete topping. Composite action greatly increases the floor framing rigidity, thereby reducing the weight of joist steel. Spanning floor elements can be supported either on the top of the spanning track, or the lower seat located at top of stud elevation. Note that when large concentrated loads such as from joists or beams are supported by the lower seat of the spanning track, the joist or beam must be directly connected to the spanning track vertical web through a welded or screwed connection to avoid over-loading the lower seat element, which is not adequate to support concentrated bearing loads.
Utilizing top flange supported joists also allows for a more continuous wall system, reducing sound transmission through floor joist interstitial space across walls, as this space is essentially eliminated.
Yet another object of the invention is a proposed shear wall system for resistance to lateral loading. The shear wall system consists of two lateral force resisting elements, diagonal flat steel straps and vertical steel sheet shear wall panels at ends. Straps are screwed or welded to the steel sheet shear wall panels at ends, which also serve to act as gusset plates for strap end connections. Steel sheet shear wall elements transfer strap tension load to horizontal track and vertical studs through screwed or welded connections. The steel sheet shear panels at wall ends will maintain some strength, stiffness, and energy dissipation throughout the building frame lateral cycle after tension strap yielding elongation during the design earthquake loading. Steel sheet shear panels also provide temporary lateral bracing for lateral stability during construction, prior to fastening the straps each end. Uplift restraint hold down anchors compatible with the spanning track bearing wall system are located at shear wall ends. Studs and hold-down anchors are positioned at each end of the steel sheet shear wall to resist overturning uplift from the shear wall panel as well as resist global shear wall overturning tension and compression forces. Horizontal blocking may be used behind steel sheet sheathing at regular intervals to obtain higher strength by restraining local buckling. Straps and steel sheet shear panels may be located on one side or both sides of the shear wall studs.
Shear walls can be strategically situated around the perimeter of a multi-story building to provide redundancy within a vertical gravity load carrying system. This feature can provide resistance to progressive collapse from explosion, or blast loading. Today, most federal and military buildings as well as an increasing number of state facility buildings are required to meet design standards for preventing progressive collapse due to blast loading.
The subject cold-formed, steel structural wall and floor framing system broadly includes a plurality of horizontal, elongated, top and bottom spanning tracks. The tracks are used for supporting a plurality of spaced apart vertical studs. Also, the tracks are used to support steel floor decks with concrete topping, floor joists, roof trusses and window and door headers.
The accompanying drawings illustrate complete preferred embodiments in the present invention according to the best modes presently devised for the practical application of the proposed wall and floor framing system as described herein:
In the following drawings, the subject cold-formed steel structural wall and floor framing system is shown having general reference numeral 10. Although there are several advantages using cold formed steel construction, several obstacles have prevented this construction method from gaining popularity throughout the United States. The following discusses three reasons why the subject wall and floor framing system 10 was developed over existing cold-formed steel building construction.
First, currently there are limited effective options using cold formed steel systems alone without using thicker structural steel elements or other materials to evenly distribute gravity forces between studs at top of bearing walls, in the condition where point loads occur in between studs, or stud or joist framing above bearing walls are offset from supporting stud framing below. Some prior wall and floor systems are limited due to lower than required capacity, use of construction materials from other trades such as structural rolled steel shapes or hollow tube steel shapes, or use of rigid floor systems such as precast planks that serve to span between studs below. In the drawings, top and bottom spanning tracks in the subject system 10 utilizes a cold formed steel section, maintaining all construction within the same building trade of cold formed steel without adding other trades, allowing for easier and more economical prefabrication. Also, the spanning tracks allow for non-aligning floor joists, and studs above and below a floor system, which typically must be aligned throughout the height of the building over all stories within ⅛″, thus creating construction tolerance difficulties and frequent field strengthening and correction of misalignments after erection.
Second, due to an inside radius of typical “runner” or “U” top and bottom tracks, a gap up to ⅛″ is permitted by the building code and cold formed steel design standards between the top and bottom of studs and the track bearing surface. During construction loading, this gap compresses through local yielding of the track and/or studs, causing large overall panel deformation and settlement. In a multi story building, this ⅛″ gap located at the top and bottom of bearing walls over several stories can add up to over an inch or more of settlement. In some cases, panel elements and connections have been damaged or fractured due to this compression displacement during construction, requiring structural repairs on site. To limit this effect, manufacturers utilize pre-compression or shims to try to limit the gap between studs and track. The subject wall and floor system 10 provides for a full bearing surface on the top and bottom of the wall studs, eliminating the ⅛″ gap between the studs and the bearing surface. This feature eliminates the corresponding deformation under loading, and the requirement of pre-compression, shimming, or structural repairs on site.
Third, the new wall and floor framing system 10 allows for a variation of the top spanning track to be used for the bottom spanning track of the structural walls, creating the ability to stack cold formed steel prefabricated panels prior to placing concrete floors. It is often difficult to obtain a completely level surface for bearing of cold formed steel wall panels, which require shims under the panels with steel plates or non-shrink grout. Also, precast planks can be manufactured to different tolerances between adjacent planks, requiring shimming or other field adjustments. For multi-level building construction, current construction practices typically require shimming or grouting for level surface at each floor level. The subject wall and floor system allows for shimming only at the lowest level at base of wall, placing the base spanning track over the top of a concrete foundation, eliminating the requirement for a completely level supporting surface, which is often also difficult to achieve in practice and in particular for foundation construction which typically has a larger construction tolerance than floors. The use of the spanning track as a bottom spanning track provides additional tolerance in terms of full bearing at each stud, regardless of the levelness of the supporting structure. Above the lowest bearing level, the subject wall and floor framing system is connected between panels and floors, not to concrete, completely eliminating shimming or levelness issues at upper stories.
In
The top spanning track 12 includes a horizontal top portion 16, first and second vertical sides 18 and 20, and integrally formed “L” shaped, first and second flanges 22 and 24. The top portion 16 and the flanges 22 and 24 may include holes 23 therein for placement of reinforcing bars or electrical conduit. Also, the vertical sides 18 and 20 may include elongated indentations, or embossments 25 that allow for composite action between the spanning tracks and structural concrete fill when placed in contact.
The bottom spanning track 14 includes a horizontal, bottom portion 26, first and second vertical sides 18 and 20 and integrally formed “L” shaped, first and second flanges 22 and 24. The flanges 22 and 24 as well as vertical sides 18 and 20 may also include holes 23 therein, as well as elongated embossments 25 in the vertical sides 18 and 20. It should be noted that an outwardly, deformed flange corner 28 in the flanges 22 and 24 is provided for allowing full bearing of vertical studs received inside the spanning tracks 12 and 14. The vertical studs are shown in the following drawings.
In
In this drawing, one of the system's floors is shown with a pair of corrugated, steel floor deck 32. The floor decks 32 are disposed on opposite sides of the top spanning track 12 and bolted to the track's first and second flanges 22 and 24. In this floor system, a concrete floor topping 34 is poured over the floor deck 32. The topping 34 typically includes rebar 36 located overtop deck valleys 38 in the deck's corrugations for added floor strength. The concrete topping 34, in this illustration, extends upwardly from the bottom of the valleys 38, above the top of ridges 40 in the deck's corrugations, and up to or above the bottom of the bottom spanning track's flanges 22 and 24. The floor deck 32 valleys 38 in the corrugations are fastened to the top portion 16 of the top spanning track 12 with self drilling screws 35.
It should be noted in this drawing, the bottom portion 26 of the bottom spanning track 14 rests on top of the top portion 16 of the top spanning track 12 and is fastened thereto with screws 35, thus eliminating the need for shimming to level the spanning tracks during the installation of the wall and floor system 10.
Top spanning track 12 is shown affixed at the end to a track stiffener 39 and to the supporting stud 30 at the end of the spanning track 12, to prevent buckling and or web crippling failure. It should be noted that studs 30 must be rotated at ends of spanning track sections such that end of spanning track 12 does not align with stud web with holes 31 to prevent loss of bearing support for the spanning track.
In
Also shown in this drawing is a bottom portion of a lower vertical stud 30 resting on and attached to a portion of a base spanning track 15. The base track 15 bears on a base of leveling grout 44, and is fastened through the leveling grout 44 which is disposed on the building's concrete foundation or concrete slab base 46.
In
Also illustrated in this drawing is one of the composite floor joists 48 supporting a portion of a steel deck 32 and concrete floor topping 34. Composite joists 48 are made structurally integral with composite floor slab through self drilling composite screws 33. Composite joists 48 are constructed with a tube steel frame 47, and steel sheet vertical web 55. Web 55 has holes 49 for small pipes or electrical conduit. Web 55 is omitted at center of joist span 51 to allow large pipes or ducts to pass perpendicular to joists. It can be appreciated that the deck 32, when extended and fastened to steel “Z” closure 37 with screws 35, the concrete floor topping 34 would be poured up to and under the flanges 22 and 24 for completing the floor system.
The top and bottom spanning tracks 12 and 14, shown in the drawings, can be fabricated with or without the holes 23 or stamped embossments 25. When stamped embossments 25 are provided, the deck 32 with the concrete topping 34 is used to form a composite structural beam at the top and/or bottom of the wall once the concrete topping is in place. Of course, if concrete is not used, a plywood floor, a bare deck, or a non-structural floor topping materials can be used as a finished floor surface. Also, the spanning tracks 12 and 14 can be manufactured with the pre-punched bolt holes 23 at regular intervals within spanning track flanges 22 and 24, or vertical web 18 and 20 for installation of electrical conduit, steel reinforcing bars, hold down anchor rods, or to allow concrete and or grout to flow through the bottom spanning track 14. Further, the spanning tracks can be strategically drilled to create holes 23, for placement of concrete reinforcing or anchor bolts if not pre-punched. At the ends of walls, where the spanning tracks terminate, a stud stiffener 39 is provided as shown in
In
In
In
In
In
In
These and other objects of the present invention will become apparent to those familiar with the current state of the practice of cold formed steel building construction when reviewing the following detailed description, showing novel construction, combination, and elements as herein described, and more particularly defined by the claims, it being understood that changes in the embodiments to the herein disclosed invention are meant to be included as coming within the scope of the claims, except insofar as they may be precluded by the prior art.
This non-provisional patent application claims the benefit of an earlier filed provisional patent application, filed on Jun. 17, 2010, Ser. No. 61/397,777, having a title of “Wall and Floor Framing System” by the subject inventor.
Number | Name | Date | Kind |
---|---|---|---|
2699669 | Nelsson | Jan 1955 | A |
2909251 | Nelsson | Oct 1959 | A |
3292328 | Darling et al. | Dec 1966 | A |
3483665 | Miller | Dec 1969 | A |
4047348 | McSweeney | Sep 1977 | A |
4058951 | Dean | Nov 1977 | A |
4835935 | Murphy | Jun 1989 | A |
4850169 | Burkstrand et al. | Jul 1989 | A |
4951436 | Burkstrand et al. | Aug 1990 | A |
5048257 | Luedtke | Sep 1991 | A |
5647186 | Donaldson | Jul 1997 | A |
5687538 | Frobosilo et al. | Nov 1997 | A |
6301854 | Daudet et al. | Oct 2001 | B1 |
6360510 | Woodrum et al. | Mar 2002 | B1 |
6374558 | Surowiecki | Apr 2002 | B1 |
6418694 | Daudet et al. | Jul 2002 | B1 |
6691478 | Daudet et al. | Feb 2004 | B2 |
6761005 | Daudet et al. | Jul 2004 | B1 |
6988347 | Nanayakkara | Jan 2006 | B2 |
7216465 | Saldana | May 2007 | B2 |
7223043 | Andrews | May 2007 | B1 |
7231742 | Majlessi | Jun 2007 | B2 |
7240459 | Daudet et al. | Jul 2007 | B2 |
7461494 | Frezza | Dec 2008 | B2 |
7712266 | Sarkisian | May 2010 | B2 |
7716899 | Beck et al. | May 2010 | B2 |
7797901 | Near | Sep 2010 | B2 |
7849649 | Tonyan et al. | Dec 2010 | B2 |
7856786 | Beck et al. | Dec 2010 | B2 |
8091316 | Beck et al. | Jan 2012 | B2 |
20090188208 | Studebaker et al. | Jul 2009 | A1 |
20100218451 | Andrews | Sep 2010 | A1 |
20110113715 | Tonyan et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
61397777 | Jun 2010 | US |