Principles and embodiments of the present disclosure relate generally to complexly curved glass articles and methods of cold forming complexly curved glass articles.
Vehicle manufactures are creating interiors that better connect, protect and safely inform today's drivers and passengers. As the industry moves towards autonomous driving, there is a need for creating large format appealing displays. There is already a trend towards larger displays including touch functionality in the new models from several OEMs. However, most of these displays consist of two dimensional plastic cover lens.
Due to these emerging trends in the automotive interior industry and related industries, there is a need to develop a low cost technology to make three-dimensional transparent surfaces. Of further interest is the development of automotive interior parts that includes bends in different directions, while maintaining complete independence between the bends.
One of the approaches that could be utilized to make three-dimensional automotive interior display surfaces is by utilizing plastics. Plastic materials could be shaped in a three-dimensional mold including multi-axis bends; however, glass is advantaged compared to plastics in several respects. In particular, plastics materials are prone to permanent damage during blunt impact, general wear, and UV exposure.
Three-dimensional glass surfaces are conventionally formed via hot forming process. The process also is capable for forming three-dimensional automotive interior displays that are curved in more than one direction. Such glass bending methods involve heating the glass sheet and forming the sheet while it is still in a high temperature state at or near the softening temperature of the glass.
However, hot forming processes are energy intensive due to the high temperatures involved and such processes add significant cost to the product. Furthermore, there is a need to provide anti-reflective coatings or other coatings on automotive interior display surfaces. Providing such coatings uniformly on a three-dimensional surface utilizing vapor deposition techniques is very challenging and further adds to the cost of the process.
Cold forming processes, which may also be referred to as cold bending has been utilized to address some of the aforementioned issues. However, cold bending has been limited to bends or curvatures along one axis only. The anticlastic glass configuration that involves having opposite curvatures at one point is severely limited to large bend radius (1 m or higher) and mostly finds use for architectural or building applications. Cold bending procedure induces a permanent strain, and consequently a permanent stress, in the glass pane.
Therefore, there is a need for new complexly curved glass articles and methods of making the same that can be used in automotive interiors and other applications.
A solution to at least one of the above issues involves glass articles having complexly curved shapes formed by cold forming. One aspect of the disclosure pertains to a complexly curved glass article that has been formed by a cold forming process. A second aspect of the disclosure pertains to a method for forming a complexly curved glass article using a cold forming process. According to one or more embodiments, the cold forming process is a cold bending process utilizing a preform with a first bend region having a set of first bend line segments, and a second bend region having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect. In various embodiments, the glass article is a laminate comprising at least two substrates, and the cold forming process is performed at a temperature below the glass transition temperature of either of the substrates that are used to form the laminate. Accordingly, the methods described herein do not require heating to at or near the glass transition temperature of the glass, thus reducing manufacturing time and cost by avoiding heating operations for the glass substrate.
Another aspect of the disclosure pertains to a vehicle interior component comprising the complexly curved glass article. Yet another aspect of the disclosure pertains to a vehicle comprising the vehicle interior component.
Various embodiments are listed below. It will be understood that the embodiments listed below may be combined not only as listed below, but in other suitable combinations in accordance with the scope of the disclosure.
Further features of embodiment of the present disclosure, their nature and various advantages will become more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, which are also illustrative of the best mode contemplated by the applicants, and in which like reference characters refer to like parts throughout, where:
Before describing several exemplary embodiments of the disclosure, it is to be understood that the disclosure is not limited to the details of construction or process steps set forth in the following description. The descriptions in the disclosure are capable of other embodiments and of being practiced or being carried out in various ways.
Reference throughout this specification to “one embodiment,” “certain embodiments,” “various embodiments,” “one or more embodiments” or “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of the phrases such as “in one or more embodiments,” “in certain embodiments,” “in various embodiments,” “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
It has been found that cold forming processes such as cold bending can be used to prepare complexly curved glass articles by use of a preform configuration in which one bend in a first direction is independent of a second bend in a second direction. Each of the cold bends can be either single curvature or double curvature. In one or more embodiments, the cold bend is a single curvature bend and does not have any cross curvature.
As used herein, “cold forming” refers to a process in which glass is shaped to have a curved or three-dimensional shape at a temperature below the glass transition temperature of the glass. Thus, according to one or more embodiments, in a cold forming process, the temperature is at least 200° C. below the glass transition temperature of the glass. In this disclosure, a glass article refers to a glass sheet that has been shaped to have multiple bend regions, as will be described herein. In one or more embodiments, a glass article includes a glass sheet that is subjected to cold forming or that is cold-formed. A cold formed glass sheet includes a first major surface comprising a first compressive stress and an opposing second major surface comprising a second compressive stress, wherein the first major surface is greater than the second compressive stress.
As used herein, “single curvature” bending is bending in at least a partial cylindrical-type shape that has a single radius of curvature. The axis running through the center of the cylindrical-type bend and perpendicular to the radius of curvature is designated herein as the “bend axis.” Line segments that are located on the surface of the bend region of the article and that run parallel to the bend axis are designated herein as “bend line segments.” As bend line segments are parallel to the associated bend axis, bend regions that have parallel or non-parallel bend axes will have parallel or non-parallel bend line segments, respectively.
As used herein, “double curvature” or “cross curvature” bending results from two interacting single curvatures that have overlapping bend axes, with each single curvature having its own bend axis and radius of curvature. Such configurations include synclastic and anticlastic configurations. In a synclastic configuration, all normal sections of the bend region are concave shaped or convex shaped, such as for a shell- or dome-shaped configuration. In an anticlastic configuration, some normal sections of the bend region will have a convex shape whereas others will have a concave shape, such as for a saddle-shaped configuration. The bend line segments for an article having double curvature will be curved due to the interaction of the two curvatures. Accordingly, the bend line segments for the two interacting curvatures in a double curvature are dependent and not independent.
As used herein, a “bend region” refers to a portion of an article that is curved in one or more directions. The bend region has non-zero curvature throughout the entire region. Bend regions can have single curvature or double curvature. In one or more embodiments, the bend region has single curvature and does not have any cross curvature. A bend region may be adjacent to another bend region or may be adjacent to a flat region.
As used herein, a “flat region” refers to a portion of an article that has substantially zero or zero curvature. As used herein, “substantially zero curvature” means a radius of curvature greater than about 1 m. A flat region can be located between two or more bend regions. In one or more embodiments, the minimum distance between two non-adjacent bend regions is at least 10 millimeters, and thus the flat region spans a distance of at least 10 millimeters. Exemplary flat regions can span distances including the following values or ranges defined therefrom: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 millimeters, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 meters.
Accordingly, one aspect of the disclosure pertains to a glass article comprising a cold-formed, complexly-curved continuous glass sheet having a first bend in a first portion of the sheet defining a first bend region and having a set of first bend line segments, and a second bend in a second portion of the sheet defining a second bend region and having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.
In one or more embodiments, the glass sheet may have a thickness of 7 millimeters or less, such as in the range of 25 micrometers and 5 millimeters. Exemplary thicknesses of the glass sheet include the following values or ranges defined therefrom: 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 micrometers, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 millimeters.
In one or more embodiments, the radius of curvature for one or more of the bends is greater than 20 millimeters, such as in the range of greater than 25 millimeters and less than 5 meters. Exemplary bend radii include the following values or ranges defined therefrom: 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 millimeters, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 meters. Each bend can have the same or different radius of curvature as another bend.
In one or more embodiments, the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa. Exemplary differentials for the stress magnitude between bend regions and flat regions include the following values or ranges defined therefrom: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 or 100 MPa. The difference in stress magnitudes between bend regions and flat regions can be the same or different for each bend.
In one or more embodiments, the glass article may include a glass sheet that is strengthened (prior to being shaped into the embodiments of the glass article described herein). For example, the glass sheet may be heat strengthened, tempered glass, chemically strengthened or strengthened by a combination thereof. In one or more embodiments, strengthened glass sheets have a compressive stress (CS) layer extending from a surface thereof to a compressive stress depth of layer (DOL). As used herein, “thermally strengthened” refers to articles that are heat treated to improve the strength of the article, and “thermally strengthened” includes tempered articles and heat-strengthened articles, for example tempered glass and heat-strengthened glass. Tempered glass involves an accelerated cooling process, which creates higher surface compression and/or edge compression in the glass. Factors that impact the degree of surface compression include the air-quench temperature, volume, and other variables that create a surface compression of at least 10,000 pounds per square inch (psi). Heat-strengthened glass is produced by a slower cooling than tempered glass, which results in a lower compression strength at the surface and heat-strengthened glass is approximately twice as strong as annealed, or untreated, glass.
In chemically strengthened glass sheets, the replacement of smaller ions by larger ions at a temperature below that at which the glass network can relax produces a distribution of ions across the surface of the glass that results in a stress profile. The larger volume of the incoming ion produces a CS extending from a surface and tension (central tension, or CT) in the center of the glass. T
In strengthened glass sheets, the depth of the compressive stress is related to the central tension by the following approximate relationship (Equation 1)
where thickness is the total thickness of the strengthened glass sheet and compressive depth of layer (DOL) is the depth of the compressive stress. Unless otherwise specified, central tension CT and compressive stress CS are expressed herein in megaPascals (MPa), whereas thickness and depth of layer DOL are expressed in millimeters or microns.
In one or more embodiments, a strengthened glass sheet can have a surface CS of 300 MPa or greater, e.g., 400 MPa or greater, 450 MPa or greater, 500 MPa or greater, 550 MPa or greater, 600 MPa or greater, 650 MPa or greater, 700 MPa or greater, 750 MPa or greater or 800 MPa or greater. The strengthened glass sheet may have a compressive depth of layer 15 micrometers or greater, 20 micrometers or greater (e.g., 25, 30, 35, 40, 45, 50 micrometers or greater) and/or a central tension of 10 MPa or greater, 20 MPa or greater, 30 MPa or greater, 40 MPa or greater (e.g., 42 MPa, 45 MPa, or 50 MPa or greater) but less than 100 MPa (e.g., 95, 90, 85, 80, 75, 70, 65, 60, 55 MPa or less). In one or more specific embodiments, the strengthened glass sheet has one or more of the following: a surface compressive stress greater than 500 MPa, a depth of compressive layer greater than 15 micrometers, and a central tension greater than 18 MPa.
The strengthened glass sheets described herein may be chemically strengthened by an ion exchange process. In the ion-exchange process, typically by immersion of a glass sheet into a molten salt bath for a predetermined period of time, ions at or near the surface(s) of the glass sheet are exchanged for larger metal ions from the salt bath. In one embodiment, the temperature of the molten salt bath is from about 375° C. to about 450° C. and the predetermined time period is in the range from about four to about eight hours. In one example, sodium ions in a glass sheet are replaced by potassium ions from the molten bath, such as a potassium nitrate salt bath, though other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. In another example, lithium ions in a glass sheet are replaced by potassium and/or sodium ions from the molten bath that may include potassium nitrate, sodium nitrate or a combination thereof, although other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. According to particular embodiments, smaller alkali metal ions in the glass sheet can be replaced by Ag+ions. Similarly, other alkali metal salts such as, but not limited to, sulfates, phosphates, halides, and the like may be used in the ion exchange process.
In chemically strengthened substrates, CS and DOL are determined by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Luceo Co., Ltd. (Tokyo, Japan), or the like, and methods of measuring CS and depth of layer are described in ASTM 1422C-99, entitled “Standard Specification for Chemically Strengthened Flat Glass,” and ASTM 1279 (1979) “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass,” the contents of which are incorporated herein by reference in their entirety. Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2008), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method.
The materials for the glass articles may be varied. The glass sheets used to form the glass articles can be amorphous articles or crystalline articles. Amorphous glass sheets according to one or more embodiments can be selected from soda lime glass, alkali aluminosilicate glass, alkali containing borosilicate glass and alkali aluminoborosilicate glass. Examples of crystalline glass sheets can include glass-ceramics, sapphire or spinel. Examples of glass-ceramics include Li2O—Al2O3—SiO2 system (i.e. LAS-System) glass ceramics, MgO—Al2O3—SiO2 System (i.e. MAS-System) glass ceramics, glass ceramics including crystalline phases of any one or more of mullite, spinel, α-quartz, β-quartz solid solution, petalite, lithium dissilicate, β-spodumene, nepheline, and alumina.
Glass sheets may be provided using a variety of different processes. For example, exemplary glass sheet forming methods include float glass processes and down-draw processes such as fusion draw and slot draw. A glass sheet prepared by a float glass process may be characterized by smooth surfaces and uniform thickness is made by floating molten glass on a bed of molten metal, typically tin. In an example process, molten glass that is fed onto the surface of the molten tin bed forms a floating glass ribbon. As the glass ribbon flows along the tin bath, the temperature is gradually decreased until the glass ribbon solidifies into a solid glass sheet that can be lifted from the tin onto rollers. Once off the bath, the glass sheet can be cooled further and annealed to reduce internal stress.
Down-draw processes produce glass sheet having a uniform thickness that possess relatively pristine surfaces. Because the average flexural strength of the glass sheet is controlled by the amount and size of surface flaws, a pristine surface that has had minimal contact has a higher initial strength. When this high strength glass sheet is then further strengthened (e.g., chemically), the resultant strength can be higher than that of a glass sheet with a surface that has been lapped and polished. Down-drawn glass sheet may be drawn to a thickness of less than about 2 millimeters. In addition, down drawn glass sheet have a very flat, smooth surface that can be used in its final application without costly grinding and polishing.
The fusion draw process, for example, uses a drawing tank that has a channel for accepting molten glass raw material. The channel has weirs that are open at the top along the length of the channel on both sides of the channel When the channel fills with molten material, the molten glass overflows the weirs. Due to gravity, the molten glass flows down the outside surfaces of the drawing tank as two flowing glass films. These outside surfaces of the drawing tank extend down and inwardly so that they join at an edge below the drawing tank. The two flowing glass films join at this edge to fuse and form a single flowing glass sheet. The fusion draw method offers the advantage that, because the two glass films flowing over the channel fuse together, neither of the outside surfaces of the resulting glass sheet comes in contact with any part of the apparatus. Thus, the surface properties of the fusion drawn glass sheet are not affected by such contact.
The slot draw process is distinct from the fusion draw method. In slow draw processes, the molten raw material glass is provided to a drawing tank. The bottom of the drawing tank has an open slot with a nozzle that extends the length of the slot. The molten glass flows through the slot/nozzle and is drawn downward as a continuous sheet and into an annealing region.
Exemplary compositions for use in the glass sheets will now be described. One example glass composition comprises SiO2, B2O3 and Na2O, where (SiO2+B2O3)≥66 mol. %, and Na2O≥9 mol. %. Suitable glass compositions, in some embodiments, further comprise at least one of K2O, MgO, and CaO. In a particular embodiment, the glass compositions can comprise 61-75 mol. % SiO2;7-15 mol. % Al2O3; 0-12 mol. % B2O3; 9-21 mol. % Na2O; 0-4 mol. % K2O; 0-7 mol. % MgO; and 0-3 mol. % CaO.
A further example glass composition comprises: 60-70 mol. % SiO2; 6-14 mol. % Al2O3; 0-15 mol. % B2O3; 0-15 mol. % Li2O; 0-20 mol. % Na2O; 0-10 mol. % K2O; 0-8 mol. % MgO; 0-10 mol. % CaO; 0-5 mol. % ZrO2; 0-1 mol. % SnO2; 0-1 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 12 mol. %≤(Li2O+Na2O+K2O)≤20 mol. % and 0 mol. % (MgO+CaO)≤10 mol. %.
A still further example glass composition comprises: 63.5-66.5 mol. % SiO2; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 0-5 mol. % Li2O; 8-18 mol. % Na2O; 0-5 mol. % K2O; 1-7 mol. % MgO; 0-2.5 mol. % Ca0; 0-3 mol. % ZrO2; 0.05-0.25 mol. % SnO2; 0.05-0.5 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 14 mol. %≤(Li2O+Na2O+K2O)≤18 mol. % and 2 mol. %≤(MgO+CaO)≤7 mol. %.
In a particular embodiment, an alkali aluminosilicate glass composition comprises alumina, at least one alkali metal and, in some embodiments, greater than 50 mol. % SiO2, in other embodiments at least 58 mol. % SiO2, and in still other embodiments at least 60 mol. % SiO2, wherein the ratio ((Al2O3+B2O3)/Σmodifiers)>1, where in the ratio the components are expressed in mol. % and the modifiers are alkali metal oxides. This glass composition, in particular embodiments, comprises: 58-72 mol. % SiO2; 9-17 mol. % Al2O3; 2-12 mol. % B2O3; 8-16 mol. % Na2O; and 0-4 mol. % K2O, wherein the ratio((Al2O3+B2O3)/Σmodifiers)>1.
In still another embodiment, the glass article may include an alkali aluminosilicate glass composition comprising: 64-68 mol. % SiO2; 12-16 mol. % Na2O; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 2-5 mol. % K2O; 4-6 mol. % MgO; and 0-5 mol. % CaO, wherein: 66 mol. %≤SiO2+B2O3+CaO≤69 mol. %; Na2O+K2O+B2O3+MgO+CaO+SrO>10 mol. %; 5 mol. %≤MgO+CaO+SrO≤8 mol. %; (Na2O+B2O3)−Al2O3≤2 mol. %; 2 mol. %≤Na2O−Al2O3≤6 mol. %; and 4 mol. %≤(Na2O+K2O)−Al2O3≤10 mol. %.
In an alternative embodiment, the glass sheet may comprise an alkali aluminosilicate glass composition comprising: 2 mol % or more of Al2O3 and/or ZrO2, or 4 mol % or more of Al2O3 and/or ZrO2.
In some embodiments, the compositions used for a glass article may be batched with 0-2 mol. % of at least one fining agent selected from a group that includes Na2SO4, NaCl, NaF, NaBr, K2SO4, KCl, KF, KBr, and SnO2.
The glass articles may be a single glass sheet or a laminate. According to one or more embodiments of the disclosure, a laminate refers to opposing glass substrates separated by an interlayer, for example, poly(vinyl butyral) (PVB). A glass sheet forming part of a laminate can be strengthened (chemically, thermally, and/or mechanically) as described above. Thus, laminates according to one or more embodiments comprise at least two glass sheets bonded together by an interlayer in which a first glass sheet defines an outer ply and a second glass sheet defines an inner ply. In vehicle applications such as automotive glazings, the inner ply is exposed to a vehicle or automobile interior and the outer ply faces an outside environment of the automobile. In vehicle applications such as automotive interiors, the inner ply is unexposed and placed on an underlying support (e.g., a display, dashboard, center console, instrument panel, seat back, seat front, floor board, door panel, pillar, arm rest etc.), and the outer ply is exposed to the vehicle or automobile interior. In architectural applications, the inner ply is exposed to a building, room, or furniture interior and the outer ply faces an outside environment of the building, room or furniture. In one or more embodiments, the glass sheets in a laminate are bonded together by an interlayer such as a polymer interlayer selected from the group consisting of polyvinyl butyral (PVB), ethylenevinylacetate (EVA), polyvinyl chloride (PVC), ionomers, and thermoplastic polyurethane (TPU).
Another aspect of the disclosure pertains to methods of cold forming the complexly curved glass articles described herein. In various embodiments, the cold forming involves bending a continuous glass sheet about a preform with a first bend region having a set of first bend line segments, and a second bend region having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.
Non-limiting exemplary techniques for cold forming the complexly curved glass article include:
In one or more embodiments, the cold forming is performed at a temperature below the glass transition temperature. Exemplary temperatures include room temperature (e.g. about 21° C.) or slightly elevated temperatures such as temperatures less than 200° C. In one or more embodiments, the temperature during cold forming is less than or equal to any of the following temperatures: 300, 250, 200, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 55, 50, 45, 40, 35, 30, 25 or 20° C. In one or more embodiments, the cold forming is performed at a certain temperature relative to the glass transition temperature of the glass, such as at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900 or 1,000° C. below the glass transition temperature.
In one or more embodiments, at least one bend is formed according to a cold forming process, and at least one bend is formed according to another process such as a hot form process. In alternate embodiments, all bends are formed according to cold forming processes.
In one or more embodiments, two or more bends are both formed according to cold forming processes, but the bends are introduced in sequential cold forming processes rather than simultaneously forming both bends. In other embodiments, all bends are formed simultaneously during the same cold forming process.
According to another aspect of the disclosure, a vehicle interior component includes a complexly curved glass article as described herein. Exemplary vehicles include: motor vehicles such as motorcycles, automobiles, trucks, buses; railed vehicles such as trains and trams; watercraft such as ships and boats; aircraft such as airplanes and helicopters; and spacecraft. In one or more embodiments, the vehicle is an automobile. The vehicle interior component can also comprise the glass article on a support surface. Exemplary vehicle interior components include a display, a center console, a dashboard, a door panel, a pillar, a floor board, an arm rest and an instrument cluster cover. The support surface can include, but is not limited to, fabric, leather, polymer, wood, metal and combinations thereof. The glass article can have one or more coatings such as an anti-glare coating, an anti-reflective coating, an oleophobic coating, an anti-scratch coating or an ink coating. The glass article can have different coatings on opposite surfaces, such as an ink coating on a first surface and an anti-reflective coating on a second surface.
According to one or more embodiments of the disclosure, a glass instrument cluster cover comprises a complexly curved glass article as described herein. According to one or more embodiments, a vehicle's instrument cluster houses various displays and indicators that enable an operator to operate the vehicle. Among these are several gauges, non-limiting examples including a speedometer, odometer, tachometer, oil pressure gauge, fuel gauge, etc. In addition, the vehicle's instrument cluster may include indicators for system malfunctions and warnings. Instrument clusters provide vehicle operators with a centralized and easily viewable location for displaying all critical system information. As used herein, “instrument cluster cover” includes a cover that covers the dashboard instrument cluster and/or the center console, which may include other components such as a radio, GPS, heater controls, etc.
Another aspect of the present disclosure pertains to a vehicle comprising a cabin and an interior, the interior comprising a vehicle interior component including a complexly curved glass article as described herein.
It will be understood that the disclosure further provides for at least the following embodiments:
A first embodiment pertaining to a glass article comprising a cold-formed, complexly-curved continuous glass sheet having a first bend in a first portion of the sheet defining a first bend region and having a set of first bend line segments, and a second bend in a second portion of the sheet defining a second bend region and having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.
In a second embodiment, the first embodiment includes the feature of a first portion of the sheet includes the first bend region and a second portion of the sheet includes the second bend region.
In a third embodiment, the second embodiment includes the feature of the first portion has a plurality of bend regions having a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.
In a fourth embodiment, the third embodiment includes the feature of second portion has a plurality of bend regions having a plurality of second portion bend axes, wherein at least two of the first portion bend axes are parallel.
In a fifth embodiment, the fourth embodiment includes the feature of the first portion includes an S-curve.
In a sixth embodiment, the fifth embodiment includes the feature of the second portion includes an S-curve.
In a seventh embodiment, the sixth embodiment includes the feature of the first bend region and the second bend region are separated by a flat region that is not curved for a distance of at least 10 millimeters.
In an eighth embodiment, the first embodiment includes the feature of the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.
In a ninth embodiment, the eighth embodiment includes the feature of the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.
In a tenth embodiment, the first embodiment includes the feature of the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.
In an eleventh embodiment, the first embodiment includes the feature of at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.
In a twelfth embodiment, the eleventh embodiment includes the feature of both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.
In a thirteenth embodiment, the first embodiment includes the feature of the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.
In a fourteenth embodiment, the first through thirteenth embodiments include the feature of the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.
In a fifteenth embodiment, the first through fourteenth embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.
In a sixteenth embodiment, the first through fourteenth embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminoborosilicate glass composition.
In a seventeenth embodiment, the first through sixteenth embodiments include the feature of the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.
In an eighteenth embodiment, the seventeenth embodiment includes the feature of the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.
In a nineteenth embodiment, the eighteenth embodiment includes the feature of the CS is in the range of 600 MPa to about 1000 MPa.
In a twentieth embodiment, the first through nineteenth embodiments include the feature of the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.
A twenty-first embodiment pertains to a vehicle interior component comprising the glass article of any of the first through nineteenth embodiments.
In a twenty-second embodiment, the twenty-first embodiment includes the feature of a support surface and the glass article on the support surface.
In a twenty-third embodiment, the twenty-second embodiment includes the feature of being selected from the group consisting of a display, a center console, a dashboard, a door panel, a pillar, a floor board, an arm rest and an instrument cluster cover.
In a twenty-fourth embodiment, the twenty-second embodiment includes the feature of the glass article further includes one or more of an anti-glare coating, an anti-reflective coating, an oleophobic coating, an anti-scratch coating and an ink coating.
In a twenty-fifth embodiment, the twenty-second embodiment includes the feature of the support surface comprises fabric, leather, polymer, wood, metal and combinations thereof.
A twenty-sixth embodiment pertains to a vehicle comprising a cabin and an interior, the interior comprising the vehicle interior component of any of the twentieth through twenty-fifth embodiments.
A twenty-seventh embodiment pertains to an automobile interior component comprising a cold-formed, complexly-curved continuous glass sheet having a first portion having a first bend defining a first bend region with a set of first bend line segments, and a second portion having a second bend defining a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect, at least one of the first portion and the second portion comprises a flat region that is not curved for a distance of at least 10 millimeters, and the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.
A twenty-eighth embodiment pertains to a method of forming a complexly curved glass article comprising cold forming a continuous glass sheet about a preform having a first bend region with a set of first bend line segments, and a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.
In a twenty-ninth embodiment, the twenty-eighth embodiment includes the feature of the glass sheet has a glass transition temperature and the cold forming is performed at a temperature below the glass transition temperature.
In a thirtieth embodiment, the twenty-ninth embodiment includes the feature of the cold forming is performed at a temperature of less than 200° C.
In a thirty-first embodiment, the twenty-eighth embodiment includes the feature of the glass sheet prior to cold forming has a shape including a first portion and a second portion that intersect to form the continuous sheet.
In a thirty-second embodiment, the thirty-first embodiment includes the feature of the glass sheet prior to cold forming has a shape selected from the group consisting of an L-shape, a T-shape, an I-shape, a C-shape, an H-shape, a V-shape and an X-shape.
In a thirty-third embodiment, the thirty-second embodiment includes the feature of the cold forming imparts a first bend along a first bend axis in the first portion and a second bend along a second bend axis is the second portion.
In a thirty-fourth embodiment, the thirty-third embodiment includes the feature of the cold forming imparts a plurality of bends in the first portion along a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.
In a thirty-fifth embodiment, the thirty-fourth embodiment includes the feature of the cold forming imparts a plurality of bends in the second portion along a plurality of second portion bend axes, wherein at least two of the second portion bend axes are parallel.
In a thirty-sixth embodiment, the thirty-fifth embodiment includes the feature of the first portion includes an S-curve after cold forming.
In a thirty-seventh embodiment, the thirty-sixth embodiment includes the feature of the second portion includes an S-curve after cold forming.
In a thirty-eighth embodiment, the thirty-third embodiment includes the feature of at least one of the first portion and the second portion comprises a flat region after cold forming that is not curved for a distance of at least 10 millimeters.
In a thirty-ninth embodiment, the thirty-eighth embodiment includes the feature of the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.
In a fortieth embodiment, the thirty-ninth embodiment includes the feature of the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.
In a forty-first embodiment, the thirty-third embodiment includes the feature of the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.
In a forty-second embodiment, the twenty-eighth embodiment includes the feature of the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.
In a forty-third embodiment, the twenty-eighth embodiment includes the feature of at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.
In a forty-fourth embodiment, the twenty-eighth embodiment includes the feature of both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.
In a forty-fifth embodiment, the twenty-eighth embodiment includes the feature of the glass sheet is coated prior to cold forming.
In a forty-sixth embodiment, the twenty-eighth embodiment includes the feature of the coating comprises one or more of an anti-glare coating, an anti-reflection coating, an oleophobic coating, an anti-scratch coating and an ink coating.
In a forty-seventh embodiment, the twenty-eighth through forty-sixth embodiments include the feature of the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.
In a forty-eighth embodiment, the twenty-eighth through forty-seventh embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.
In a forty-ninth embodiment, the twenty-eighth through forty-seventh embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminoborosilicate glass composition.
In a fiftieth embodiment, the twenty-eighth through forty-ninth embodiments include the feature of the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.
In a fifty-first embodiment, the twenty-eighth through forty-sixth embodiments include the feature of the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.
In a fifty-second embodiment, the fifty-first embodiment includes the feature of the CS is in the range of 600 MPa to about 1000 MPa.
In a fifty-third embodiment, the twenty-eighth through fifty-seventh embodiments include the feature of the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.
Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present disclosure without departing from the spirit and scope of the disclosure. Thus, it is intended that the present disclosure include modifications and variations that are within the scope of the appended claims and their equivalents.
This application is a national stage entry of International Patent Application Serial No. PCT/US2017/021069 filed on Mar. 7, 2017, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Serial No. 62/328,165 filed on Apr. 27, 2016 and U.S. Provisional Application Serial No. 62/305,795 filed on Mar. 9, 2016, the contents of each are relied upon and incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/021069 | 3/7/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/155932 | 9/14/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Jendrisak | Aug 1952 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5300184 | Masunaga | Apr 1994 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Okahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee et al. | May 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey et al. | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
10649267 | Tuan et al. | May 2020 | B2 |
10712850 | Brandao et al. | Jul 2020 | B2 |
10732753 | Boggs et al. | Aug 2020 | B2 |
10788707 | Ai et al. | Sep 2020 | B2 |
10976607 | Huang et al. | Apr 2021 | B2 |
11016590 | Brandao et al. | May 2021 | B2 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck et al. | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka et al. | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury et al. | Jan 2014 | A1 |
20140036428 | Seng et al. | Feb 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140234581 | Immerman et al. | Aug 2014 | A1 |
20140308464 | Levasseur et al. | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang et al. | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150322270 | Amin et al. | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner et al. | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160207290 | Cleary et al. | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder et al. | Dec 2016 | A1 |
20160355091 | Lee et al. | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher et al. | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170126865 | Lee | May 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux et al. | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170327402 | Fujii et al. | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik et al. | Feb 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik et al. | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Jacques | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar et al. | Jul 2018 | A1 |
20180188869 | Boggs et al. | Jul 2018 | A1 |
20180208131 | Mattelet et al. | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar et al. | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200301192 | Huang et al. | Sep 2020 | A1 |
20210055599 | Chen et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
103136490 | Jun 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
204111583 | Jan 2015 | CN |
102566841 | Apr 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107613809 | Jan 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109135605 | Jan 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
0076924 | Apr 1983 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
418700 | Jan 1994 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
664210 | Feb 2001 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Sep 2009 | FR |
3012073 | Apr 2015 | FR |
805770 | Dec 1958 | GB |
991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Jul 1979 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
3059337 | Jun 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004-284839 | Oct 2004 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2010-145731 | Jul 2010 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
2015-162184 | Sep 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016031696 | Mar 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
05976561 | Aug 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016173794 | Sep 2016 | JP |
2016-207200 | Dec 2016 | JP |
2016203609 | Dec 2016 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
58334 | Jul 2018 | VN |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
1998001649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
2015085283 | Jun 2015 | WO |
2015084902 | Jun 2015 | WO |
WO-2015084902 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017158031 | Sep 2017 | WO |
2017155932 | Sep 2017 | WO |
20174155932 | Sep 2017 | WO |
2018015392 | Jan 2018 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019074800 | Apr 2019 | WO |
2019075065 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
Entry |
---|
“Corning® Gorilla® Glass for Automotive Featured in Curved Cover Lens Applications at the Paris Motor Show”; Corning Incorporated; Sep. 30, 2016; 3 Pages; http://www.corning.com/worldwide/en/about-us/news-events/news-releases/2016/09/corning-gorilla-glass-for-automotive-featured-in-curved-cover-lens-applications-at-the-paris-motor-show.html. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron, vol. 52 (2007); No. ½; pp. 123-146. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi et al; “Optimal Cold Bending of Laminated Glass”; International Journal of Solids and Structures; 67-68 (2015) pp. 231-243. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2017/021069 dated Jun. 20, 2017; 19 Pages; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2017/042606 dated Nov. 17, 2017; 18 Pages; European Patent Office. |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center CNSOLE Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Vakar et al; “Cold Bendable, Laminated Glass-New Possibilities in Design”; Structural Engineering International; Feb. 2004; Structural Design in Glass; pp. 95-97. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/012215 dated Aug. 1, 2018; 21 Pgs; European Patent Office. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/041062 dated Nov. 13, 2018; 15 Pgs; European Patent Office. |
Invitation to Pay Additional Fees of the International Searching Authority; PCT/US2018/012215; dated May 11, 2018; 13 Pages; European Patent Office. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Taiwanese Patent Application No. 106123977, Search Report dated Feb. 9, 2021, 2 pages (English Translation Only); Taiwanese Patent Office. |
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation C770-16, 2016. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass” Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. ½ Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics” Chapter 1 In “Materials Research for Manufacturing: an Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Photodon, “Screen Protectors For Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave-Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Chinese Patent Application No. 201780016307.2, Office Action dated Nov. 4, 2020, 11 pages (English Translation Only); Chinese Patent Office. |
Doyle et al; “Manual on Experimental Stress Analysis; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages”. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages. |
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015) 285-300. |
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass-New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages. |
Weide; “Graduation Plan”; Jan. 2017; 30 Pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages. |
Chinese Patent Application No. 201780016307.2, Office Action dated Mar. 15, 2021, 11 pages (English Translation Only); Chinese Patent Office. |
European Patent Application No. 17712334.6, Office Action dated Apr. 13, 2021; 6 pages; European Patent Office. |
Japanese Patent Application No. 2018-546626, Office Action dated Feb. 24, 2021, 10 pages (5 pages of English Translation and 5 pages of Original Document); Japanese Patent Office. |
Chinese Patent Application No. 201780016307.2, Office Action dated Aug. 19, 2021, 17 pages (10 pages of English Translation and 7 pages of Original Document), Chinese Patent Office. |
Qilin Zhang, “Glass Curtain Wall Structure Design”, Tongji University Press, 2007, 8 pages. (5 pages of English Translation and 3 pages of original Document). |
Japanese Patent Application No. 2020-502678, Office Action dated Jul. 21, 2021, 12 pages (7 pages of English Translation and 12 pages of Original Document), Japanese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20190039935 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62328165 | Apr 2016 | US | |
62305795 | Mar 2016 | US |