The present disclosure relates generally to cold planers and, more particularly, to a rotor housing side plate for a cold planer having a pair of lift cylinders for controlling a vertical position and a rotational orientation of the rotor housing side plate relative to a rotor housing of the cold planer.
Many machines are mobile machines configured to perform one or more tasks while traveling over a work surface, such as a road surface. A cold planer is an example of such a mobile machine. The cold planer may include a grinding mechanism such as a rotor that grinds a top layer of the work surface as the cold planer moves in a machine travel direction. The cold planer may include a conveyor connected to a frame of the cold planer that receives the material that is ground from the road surface by the rotor. The conveyor may convey the material to another vehicle, such as a dump truck, traveling next to the cold planer.
The rotor may be surrounded by a rotor housing to contain ground material from the work surface so that the material may be removed by the conveyor. A portion of the rotor extends below the rotor housing so that it can dig into the work surface. The rotor housing may include side plates that extend below the rotor housing to further retain the material ground out of the work surface by the rotor. In known cold planers, the side plate may lie on the work surface under the force of gravity and be dragged by the cold planer in a floating condition. An example of an alternative side plate arrangement is provided in U.S. Patent Appl. Publ. No. 2013/0082508 published on Apr. 4, 2013 to Orefice. In the published application, a side plate arrangement for a milling device includes a milling roller box arranged on a frame of the milling device, a side plate whose height can be adjusted and a side plate support having a swivel bearing with a swivel axis around which the side plate can swivel against the frame in a swivel area. One element of the milling device is a guide curve running concentrically to the swivel axis, with the help of which the swivel movement of the side plate around the swivel axis is carried out. Height adjustment of the side plate occurs actively through a lifting device linked to the side plate, specifically through a one cylinder piston unit. After being positioned at the desired height, the side plate skids along a work surface and rotates about a swivel axis as the milling device passes over an uneven work surface.
In one aspect of the present disclosure, a cold planer is disclosed. The cold planer may include a rotor, a rotor housing partially enclosing the rotor and having a rotor housing side wall, a first side plate retention plate mounted on the rotor housing side wall and defining a rotor housing side plate space there between, a rotor housing side plate disposed within the rotor housing side plate space so that the rotor housing side plate can move vertically relative to the rotor housing and rotate about a horizontal axis that is perpendicular to a machine travel direction, a first rotor housing side plate lift cylinder having a first cylinder first end fixed relative to one of the rotor housing and a frame of the cold planer and a first cylinder second end connected to the rotor housing side plate, and a second rotor housing side plate lift cylinder having a second cylinder first end fixed relative to the one of the rotor housing and the frame and a second cylinder second end connected to the rotor housing side plate. The first rotor housing side plate lift cylinder and the second rotor housing side plate lift cylinder may operate to vary a vertical position of the rotor housing side plate and a rotation of the rotor housing side plate about the horizontal axis relative to the rotor housing.
In another aspect of the present disclosure, a method for adjusting a position of a rotor housing side plate relative to a rotor housing partially enclosing a rotor of a cold planer that moves in a machine travel direction over a work surface as the rotor is engaged to grind material from the work surface is disclosed. The method for adjusting may include engaging a rotor drive mechanism to drive the rotor, setting a rotor height of the rotor to a grinding height where the rotor will grind material from the work surface, engaging a cold planer drive mechanism to propel the cold planer in the machine travel direction, and sensing a distance to an upstream portion of the work surface upstream of the rotor housing side plate in the machine travel direction. The method for adjusting may further include determining, based on the distance to the upstream portion, a vertical position of the rotor housing side plate relative to the rotor housing and a rotational orientation of the rotor housing side plate about a horizontal axis perpendicular to the machine travel direction relative to the rotor housing to dispose a bottom edge of the rotor housing side plate proximate the upstream portion of the work surface when the rotor housing passes over the upstream portion of the work surface, and actuating rotor housing side plate actuators to dispose the rotor housing side plate at the vertical position and the rotational orientation when the rotor housing passes over the upstream portion of the work surface.
In a further aspect of the present disclosure, a cold planer is disclosed. The cold planer may include a rotor that grinds material from a work surface as the cold planer moves in a machine travel direction over the work surface, a rotor housing partially enclosing the rotor housing and having a rotor housing side wall, a first side plate retention plate mounted on the rotor housing side wall and defining a rotor housing side plate space there between, and a rotor housing side plate disposed within the rotor housing side plate space so that the rotor housing side plate can move vertically relative to the rotor housing and rotate about a horizontal axis that is perpendicular to the machine travel direction. The cold planer may further include a first rotor housing side plate lift cylinder having a first rotor housing side plate lift cylinder actuator, a first cylinder first end fixed relative to one of the rotor housing and a frame of the cold planer and a first cylinder second end connected to the rotor housing side plate, a second rotor housing side plate lift cylinder having a second rotor housing side plate lift cylinder actuator, a second cylinder first end fixed relative to the one of the rotor housing and the frame and a second cylinder second end connected to the rotor housing side plate, a first distance sensor mounted on one of the rotor housing and the frame of the cold planer upstream of the rotor housing side plate, and a controller operatively connected to the first rotor housing side plate lift cylinder actuator, the second rotor housing side plate lift cylinder actuator and the first distance sensor. The controller may be configured to receive first distance sensor signals from the first distance sensor indicating a distance to an upstream portion of the work surface upstream of the rotor housing side plate in the machine travel direction as the cold planer moves in the machine travel direction over the work surface, to determine from the first distance sensor signals a vertical position of the rotor housing side plate relative to the rotor housing and a rotational orientation of the rotor housing side plate about the horizontal axis perpendicular to the machine travel direction relative to the rotor housing to dispose a bottom edge of the rotor housing side plate proximate the upstream portion of the work surface when the rotor housing passes over the upstream portion of the work surface, and to transmit lift cylinder actuator control signals to the first rotor housing side plate lift cylinder actuator and the second rotor housing side plate lift cylinder actuator to cause the first rotor housing side plate lift cylinder and the second rotor housing side plate lift cylinder to position the rotor housing side plate at the vertical position and the rotational orientation when the rotor housing passes over the upstream portion of the work surface.
Additional aspects are defined by the claims of this patent.
The cold planer 10 may include a frame 16. The frame 16 may serve to tie together and support other components and systems of the cold planer 10. Such systems may include a support system 18 to support the cold planer 10 from the work surface 12 and a steering system 20 to steer the cold planer 10 while moving along the work surface 12. The support system 18 may include one or more front ground engaging components 22 and one or more rear ground engaging components 24 configured to move along the work surface 12.
The front ground engaging component 22 may be connected to the frame 16 by an undercarriage bracket 26 connected to the ground engaging component 22, and a strut 28 connected to and extending up from the undercarriage bracket 26. The strut 28 may be engaged to the frame 16 directly or through one or more other components (not shown) in a manner allowing a front portion of the cold planer 10 to be supported by the strut 28. The engagement between the strut 28 and the frame 16 may be such that it allows rotation of the strut 28, the undercarriage bracket 26 and the ground engaging component 22 about a front vertical axis 30 relative to the frame 16 to facilitate steering of the ground engaging component 22 and, correspondingly, the cold planer 10. The steering system 20 may have one or more actuators (not shown) for controlling the rotation of the strut 28, the undercarriage bracket 26, and the ground engaging component 22 about the front vertical axis 30. Similarly, an undercarriage bracket 32 and a strut 34 may connect the rear ground engaging component 24 to the frame 16 so that actuators (not shown) of the steering system 20 may rotate the rear ground engaging component 24 about a rear vertical axis 36 to further contribute to the steering of the cold planer 10.
The frame 16 may also support a material removal mechanism 38 that is configured to cut or grind the top layer of the work surface 12. In the embodiment shown in
A lower conveyor 58 may be positioned forwardly of the base plate 50, and may be coupled to and supported upon the base plate 50, for feeding material ground from the work surface 12 by the rotor 40 to an upper conveyor 60 projecting forwardly from frame 16. A positioning mechanism 62 may be coupled with the upper conveyor 60 to enable left and right, and potentially up and down, position control of the upper conveyor 60 for conventional purposes. The upper conveyor 60 may further convey the ground material to a location off of the cold planer 10, such as to a receiving machine (e.g., another truck separate from the cold planer 10). For example, the receiving machine (not shown) may be a dump truck having a dumping bed that will receive the ground material from the upper conveyor 60. The dump truck may drive next to or in front of the cold planer 10 during grinding of the work surface 12 by the rotor 40, and travel at approximately the same speed as the cold planer 10. The positioning mechanism 62 may position an end of the upper conveyor 60 above the dumping bed so that the ground material conveyed by the upper conveyor 60 may be dropped into the dumping bed.
The cold planer 10 may also include one or more power sources (not shown) for powering the ground engaging components 22, 24, the material removal mechanism 38, the rotor positioning actuators 46, the conveyor 58, 60, and various other components and systems of the cold planer 10. For example, the cold planer 10 may include one or more internal combustion engines, batteries, fuel cells, or the like for providing power. The cold planer 10 may also include various provisions for transmitting power from such power sources to the material removal mechanism 38 and the various other components of the cold planer 10. Where the cold planer 10 includes an internal combustion engine as a power source, the cold planer 10 may include one or more mechanical or electrical power-transmission devices, such as, mechanical transmissions, hydraulic pumps and motors, electric generators and motors and other devices for transmitting power from the engine to the systems and mechanisms of the cold planer 10. For example, a propulsion system for driving the ground engaging components 22, 24 to propel the cold planer 10 may include a hydraulic pump (not shown) driven by a power source (not shown), one or more hydraulic motors (not shown) drivingly connected to ground engaging components 22, 24 to propel the cold planer 10.
The cold planer 10 may further include an operator control station 64 for an operator to perform control and monitoring of the various functions and components of the cold planer 10. To receive operator inputs for engagement of drive mechanisms for the ground engaging components 22, 24, the rotor 40 or the conveyors 58, 60, for positioning the material removal mechanism 38 relative to the work surface 12, or for other functions, the operator control station 64 may have corresponding operator input devices disposed therein and accessible to an operator. For example, as
When the rotor 40 is lowered to a cutting depth to grind material from the work surface 12, the rotor housing 42 partially encloses the rotor 40 from above and laterally to substantially capture the ground material and transfer the material to the lower conveyor 58. However, it is typically impractical to place the rotor housing 42 in too close proximity to the work surface 12 in a manner that will prevent material from escaping between a bottom edge of the rotor housing 42 and the work surface 12. The work surface 12 may be uneven and have obstacles that must be traversed such as manhole covers that will vary the distance between the bottom edge and the work surface 12 and may engage and damage the rotor housing 42 if it is positioned too low. This spacing between the bottom edge and the work surface 12 may allow ground material to escape laterally from the rotor housing 42, resulting in additional manpower requirements for clearing the escaped material from the work area.
The spaces at the lateral edges of the rotor housing 42 may be covered to further prevent loss of ground material by providing side plates that are capable of moving relative to the rotor housing 42 and being dispose more proximate to the work surface 12 as the rotor 40 operates to grind material from the work surface 12.
The rotor housing 42 may further include a first side plate retention plate 74 mounted on the rotor housing side wall 72 proximate a front end of the rotor housing 42, and a second side plate retention plate 76 mounted on the rotor housing side wall 72 proximate a rear end of the rotor housing 42. As seen more clearly in
It may be desirable to control the position of the rotor housing side plate 70 in accordance with the present disclosure within the rotor housing side plate space such that the rotor housing side plate 70 is maintained in close proximity to the work surface 12. Such control may require active movement of the rotor housing side plate 70 as the cold planer 10 travels over the work surface 12 and changes in the elevation of the work surface 12 are encountered. To effect control of the position of the rotor housing side plate 70, the cold planer 10 may include rotor housing side plate actuators such as a first rotor housing side plate lift cylinder 84 and a second rotor housing side plate lift cylinder 86. The first rotor housing side plate lift cylinder 84 may have a first cylinder first end 88 pivotally connected to one of the rotor housing 42 and the frame 16 of the cold planer 10, and a first cylinder second end 90 pivotally connected to the rotor housing side plate 70. Similarly, the second rotor housing side plate lift cylinder 86 may have a second cylinder first end 92 pivotally connected to the one of the rotor housing 42 and the frame 16, and a second cylinder second end 94 pivotally connected to the rotor housing side plate 70. As will be discussed more fully below, the side plate lift cylinders 84, 86 may be operated independently to extend and retract and thereby vary a vertical position of the rotor housing side plate 70 and a rotation of the rotor housing side plate 70 about the horizontal axis 82 relative to the rotor housing 42.
The movement of the rotor housing side plate 70 may be further controlled by constraining the movement of the rotor housing side plate 70 relative to the rotor housing side wall 72. Referring to
The movement of the rotor housing side plate 70 is constrained by a rotor housing side wall guide slot 108 defined in the rotor housing side wall 72. The rotor housing side wall guide slot 108 may be configured to receive the seal plate 98 therein. The seal plate 98 may be able to slide up and down within the rotor housing side wall guide slot 108 to restrict the side plate swivel bearing 96 and the rotor housing side plate 70 to translational motion along the side wall guide slot 108, and to substantially prevent the rotor housing side plate 70 from translating parallel to the machine travel direction 14.
In addition to constraining the movement of the rotor housing side plate 70, the seal plate 98 may also assist in retaining the ground material within the rotor housing 42 after the rotor 40 grinds the material out of the work surface 12. Referring to
As shown in the cross-sectional view of
To facilitate free movement of the rotor housing rear door 110 relative to the other components of the rotor housing 42, the rotor housing rear door 110 may be spaced from an inner wall 72a of the rotor housing side wall 72, and thereby define a rotor housing gap 122 there between. In the area where the cross-section of
Returning to
Utilization of two side plate lift cylinders 84, 86 may provide the opportunity for enhanced control of the position of the rotor housing side plate 70 relative to the work surface 12, and in particular for moving the rotor housing side plate 70 to account for unevenness in the work surface 12 and obstacles that must be traversed such as manhole covers as the cold planer 10 passes over the work surface 12. Actuation of the side plate lift cylinders 84, 86 can raise, lower and rotate the rotor housing side plate 70 to track the contour of the work surface 12 as it passes under the rotor housing 42. The contour of the work surface 12 upstream from the rotor housing side plate 70 may be determined as the material removal mechanism 38 moves in the machine travel direction 14. Knowing the approaching contour of the work surface 12, the position of the rotor housing side plate 70 may be adjusted by the side plate lift cylinders 84, 86 to minimize impacts with the work surface 12 while maintaining the rotor housing side plate 70 close to the work surface 12 so that minimal amounts of ground material escape from the cutting chamber 44.
To determine the contour of the approaching work surface 12, the cold planer 10 in the embodiment of
The distance sensors 130, 132 may be any appropriate type of distance sensor known in the art that transmits an electromagnetic field or beam and detects changes in the field or a return signal from which distance to a point on the work surface 12 may be determined. In response, the distance sensors 130, 132 may output distance sensor signals having values indicative of the sensed distance to the work surface 12. The sensed distances may then be used to determine a vertical position and rotational orientation of the rotor housing side plate 70 necessary for the rotor housing side plate 70 to remain above that portion of the work surface 12 when it passes under the rotor housing 42 and in close proximity for retention of the ground material. Processes for controlling the position of the rotor housing side plate 70 based on the information from the distance sensors 130, 132 are discussed in greater detail below.
Referring now to
The controller 140 electrically connects to the control elements of the cold planer 10, as well as various input devices for commanding the operation of the cold planer 10 and monitoring the performance of the cold planer 10. As a result, the controller 140 may be electrically connected to input devices detecting operator input and providing control signals to the controller 140 that may include the steering input sensor 150, a speed input sensor 152, a rotor height input sensor 154, a rotor engagement input sensor 156, and the distance sensors 130, 132. The steering input sensor 150 may be operatively connected to the steering input device 66 (
The speed input sensor 152 may be operatively connected to a speed input device (not shown) in the operator control station 64, such as a gas pedal or accelerator, that is manipulated by the operator to regulate the speed of the cold planer 10 over the work surface 12. The speed input sensor 152 may sense a displacement of the speed input device indicative of a desired speed of the cold planer 10, and may respond by outputting a speed input sensor signal to the controller 140 that corresponds to the displacement of the speed input device. A value transmitted in the speed input sensor signal will correspond to the magnitude of the displacement of the speed input device, and the controller 140 may be configured to interpret the speed input sensor signal.
The rotor height input sensor 154 may be operatively connected to a rotor height input device (not shown) in the operator control station 64, such as a rotor height adjust lever, that is manipulated by the operator to position the rotor 40 relative to the work surface 12. The rotor height input sensor 154 may sense a displacement of the rotor height input device indicative of a desired height of the rotor 40 or movement of the rotor 40 toward or away from the work surface 12, and may respond by outputting a rotor height input sensor signal to the controller 140 that corresponds to the displacement of the rotor height input device. A value transmitted in the rotor height input sensor signal will correspond to the direction and the magnitude of the displacement of the rotor 40, and the controller 140 may be configured to interpret the rotor height input sensor signal.
The rotor engagement input sensor 156 may be operatively connected to a rotor engagement input device (not shown) in the operator control station 64, such as a switch or lever, that is manipulated by the operator to engage a rotor drive system of the cold planer 10 and cause rotation of the rotor 40. The rotor engagement input sensor 156 may sense a displacement of the rotor engagement input device indicative of a desire to engage or disengage the rotor drive system, and may respond by outputting a rotor engagement input sensor signal to the controller 140 that corresponds to the displacement of the rotor engagement input device. The controller 140 may be configured to interpret the rotor engagement input sensor signal, and to engage or disengage the rotor drive system based on the value of the rotor engagement input sensor signal.
In alternative implementations, some of the functions of the cold planer 10 may be automated and controlled by the controller 140 instead of being directly controlled by an operator. For example, the cold planer 10 may be provided with an input device having a graphical user interface at the operator control station 64, such as a touchpad, that may allow the operator to enter variables for grinding material from the work surface 12. Such variables may include a cutting depth for grinding material from the work surface 12, a speed of the cold planer 10 over the work surface 12 as the rotor 40 is grinding material, and the like. The programmed variables may be used by a control program stored in the memory 144 when the operator initiates execution of the control program to control functions of the cold planer 10 without relying on operator input. In such cases, control signals for factors such as the rotor height, rotor engagement and speed of the cold planer 10 may be generated at the controller 140 instead of at the corresponding sensors 152, 154, 156 as described above.
The controller 140 may also be electrically connected to output devices to which control signals are transmitted to execute the functions requested by the signals from the sensors 150, 152, 154, 156. Steering actuators 158 of the steering system 20 may be operatively coupled to the struts 28, 34 to cause rotation of the struts 28, 34 and correspondingly the ground engaging components 22, 24, respectively, in response to receiving steering control signals from the controller 140. Machine speed actuators 160 may receive machine speed control signals from the controller 140 and control propulsion system components such as an engine and transmission to propel the cold planer 10 over the work surface 12 at the commanded speed. The rotor positioning actuators 46 discussed above may receive rotor height control signals from the controller 140 and raise and lower the rotor 40 and rotor housing 42 in response. Rotor engagement actuators 162 may receive rotor engagement control signals from the controller 140 and respond by causing the rotor drive system to engage or disengage from the rotor 40, such as by manipulating transmissions or clutches of the rotor drive system.
A first side plate lift cylinder actuator 164 and a second side plate lift cylinder actuator 166 may be operatively connected to the side plate lift cylinders 84, 86, respectively, to control the extension and retraction of the side plate lift cylinders 84, 86 and, correspondingly, the position of the rotor housing side plate 70. The side plate lift cylinder actuators 164, 166 may be, for example, actuators of control valves (not shown) that control the flow of pressurized hydraulic fluid to the side plate lift cylinders 84, 86 to cause the side plate lift cylinders 84, 86 to extend or retract. The controller 140 may transmit lift cylinder actuator control signals to the side plate lift cylinder actuators 164, 166 to cause the side plate lift cylinders 84, 86 to move the rotor housing side plate 70 to a vertical position with a rotational orientation determined based on the contour of the work surface 12 indicated by the signals from the distance sensors 130, 132 while the rotor 40 is grinding material from the work surface 12 as discussed further below.
Control may then pass to a block 174 where the height of the rotor 40 may be set to the cutting depth so that the rotor 40 will grind out a prescribed depth of material from the work surface 12. The rotor height input sensor 154 may sense displacement of the rotor height input device by the operator and respond by outputting the rotor height input sensor signals to the controller 140. The controller 140 may respond to the rotor height input signals by outputting rotor height control signals to the rotor positioning actuators 46 to lower the rotor 40 to the commanded cutting depth for removal of the material from the work surface 12.
With the rotor 40 engaged at the block 172 and lowered to specified cutting depth for grinding material at the block 174, control may pass to a block 176 where the cold planer drive mechanism for the cold planer 10 may be engaged to propel the cold planer 10 over the work surface 12 as the rotor 40 grinds material from the work surface 12. The operator in the operator control station 64 may actuate a clutch or other drive engagement input device to connect a power source of the cold planer 10 to the ground engaging components 22, 24 via a transmission or other power transfer device. The speed input sensor 152 may detect displacement of the speed input device by the operator and respond by outputting speed input sensor signals to the controller 140. The controller 140 may respond to the speed input signals by outputting speed control signals to the machine speed actuators 160 to begin propelling the cold planer 10 in the machine travel direction as the rotor 40 grinds material from the work surface 12.
As discussed above, the rotor housing 42 may not be lowered all the way to the work surface 12, and instead the rotor housing side plate 70 is lowered to a position where a bottom edge is disposed proximate the work surface 12 as shown in
As shown in
As the controller 140 receives the distance sensor signals from the distance sensors 130, 132, control may pass to a block 190 of the routine 170 of
With the height and orientation determined at the block 190, control may pass to a block 192 where the side plate lift cylinder actuators 164, 166 may be actuated to cause the side plate lift cylinders 84, 86 to position the rotor housing side plate 70 at the required height and orientation. In order to control the machine speed actuators 160 and the speed of the cold planer 10, the controller 140 may receive machine speed sensor signals from a machine speed sensor (not shown). The speed of the cold planer 10 in the machine travel direction may allow the controller 140 to calculate when the positions 182, 186 of the work surface 12 will pass under the rotor housing side plate 70, and correspondingly when the rotor housing side plate 70 should be at the height and orientation determined at the block 190. Using that information, the controller 140 may transmit lift cylinder actuator control signals to the lift cylinder actuators 164, 166 at the appropriate time.
When the control signals are transmitted, the side plate lift cylinder actuators 164, 166 may cause the side plate lift cylinders 84, 86, respectively, to move to the commanded positions. As shown in
With the rotor housing side plate 70 positioned at the block 192, control may pass to a block 194 where the controller 140 may evaluate whether the cold planer drive mechanism is still engaged to propel the cold planer 10. If the drive mechanism is not engage, the cold planer 10 is no longer travelling over the work surface 12 and the height of the work surface 12 is not changing under the rotor housing side plate 70. In this condition, no further adjustment to the height and orientation of the rotor housing side plate 70 is necessary, and the routine 170 may end. If the drive mechanism is still engaged at the block 194, control may pass to a block 196 to determine whether the rotor 40 is still engaged and lowered to the cutting depth to grind material from the work surface 12. If the rotor 40 is disengaged and raised, the rotor housing side plate 70 is no longer proximate the work surface 12 and may not need to be adjusted. As with the disengagement of the drive mechanism, no further adjustment to the height and orientation or the rotor housing side plate 70 may be necessary, and the routine 170 may end.
If the drive mechanism is engaged at the block 194 and the rotor 40 is still engaged and lowered into position at the block 196, control may pass back to the block 178 to continuously detect the work surface distance, determine the necessary height and orientation of the rotor housing side plate 70 to accommodate the contour or the work surface 12, and actuate the side plate lift cylinders 84, 86 to position the rotor housing side plate 70 accordingly. Consequently, as shown in
While the preceding text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of protection is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the scope of protection.
It should also be understood that, unless a term was expressly defined herein, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to herein in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning.
Number | Name | Date | Kind |
---|---|---|---|
6923508 | Holl et al. | Aug 2005 | B2 |
7370916 | Ley et al. | May 2008 | B2 |
8899690 | Kotting et al. | Dec 2014 | B2 |
20130082508 | Orefice | Apr 2013 | A1 |
20140035343 | Berning | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
104631294 | May 2015 | CN |
2112275 | Oct 2009 | EP |
2374937 | Oct 2011 | EP |
Entry |
---|
PM102 Cold Planner, CAT, Cat® C7 Engine with ACERT, 16 pages. |
Leading through passion, Cold Milling Machines, W 100 CFi W 120 CFi W 130 CFi, 16pages. |
Number | Date | Country | |
---|---|---|---|
20170254032 A1 | Sep 2017 | US |