This application is related to U.S. Provisional Application No. 60/913,369, filed Apr. 23, 2007; U.S. patent application Ser. No. 12/038,159, filed Feb. 27, 2008 (which issued as U.S. Pat. No. 7,633,231); U.S. patent application Ser. No. 13/620,118, filed Sep. 14, 2012; and U.S. patent application Ser. No. 13/620,236, filed Sep. 14, 2012, each of which are herein incorporated by reference in their entireties.
1. Field of the Art
The present invention relates to devices and methods for cold plasma medical treatment, and, more particularly, to such devices and methods for cold plasma electroporation of medications and bioactive agents into cells.
2. Background Art
Cold plasmas (i.e., non-thermal plasmas) are produced by the delivery of pulsed high voltage signals to a suitable electrode. Cold plasma devices may take the form of a gas jet device or a dielectric barrier discharge (DBD) device.
Electroporation is the process of exposing cells to electrical fields, as illustrated in
One of the primary reasons to electroporate a cell, or group of cells, is to transport a molecule across the membrane that otherwise would be unable to cross this barrier, or would require cellular energy to pump/transport in the absence of applied energy. Therefore electroporation allows the cell membrane to become permeablized, and is frequently used to either insert proteins 110 into the cell membrane, introduce large 130 or small 120 molecules into the cell(s), induce cellular fusion 140, or to destroy the cell membrane 150 altogether.
Irreversible premeabilization can permanently damage a cell and lead to apoptosis or other mechanisms of cell death. Controllable apoptosis has been used in biofouling control, debacterialization, and drug-free cancer therapies.
Reversible electroporation is primarily used as a method of molecular delivery, transferring a wide array of molecules, such as drugs, ions, dyes, tracers, oligonucleotides, RNA, antibodies, proteins, etc., into and out of cells. There are several advantages to using electroporation-moderated molecular delivery over conventional methods. Electroporation is generally non-invasive, drug free, non-toxic and rapidly accomplished. Due to the fact that electroporation is a physical process between the supplied electric field and the cell membrane, it is less influenced by the specific cell type when compared to conventional methods.
Electroporation is demonstrably effective in both in vivo and in vitro clinical studies and applications, and has been employed for treating various cancers including lung, skin, breast, leukemia, specific bone cancers, and for DNA vaccination.
An embodiment is described of a method of applying a substance to a treatment area of a patient. The method also includes applying a cold plasma from a cold plasma device to the substance for a predetermined treatment time to thereby cause electroporation of the substance into cells of the patient.
A further embodiment is described of a method of generating a cold plasma from a cold plasma device. The method also includes passing the cold plasma from the cold plasma device via a nozzle to a treatment area of a patient for a predetermined treatment time. The nozzle includes an element (e.g., disk) positioned in the nozzle, the element (e.g., disk) including a substance. The passing of the cold plasma through the substance thereby causes electroporation of the substance into cells of the patient.
Cold temperature plasmas have attracted a great deal of enthusiasm and interest by virtue of their provision of plasmas at relatively low gas temperatures. The provision of plasmas at such a temperature is of interest to a variety of applications, including wound healing, anti-bacterial processes, various other medical therapies and sterilization. As noted earlier, cold plasmas (i.e., non-thermal plasmas) are produced by the delivery of pulsed high voltage signals to a suitable electrode. Cold plasma devices may take the form of a gas jet device or a dielectric barrier discharge (DBD) device. In the context of this application, the methods disclosed herein can be used with any platform for the generation of cold plasma. Accordingly, the methods are not limited to the use of a DBD device, a gas jet device, or a cold plasma generated using a multi-frequency harmonic-rich power supply.
Electrochemotherapy is the combination of chemotherapy and electroporation during which an electric pulse generator is used to apply an electrical current through electrodes that are inserted into the body on either side of a cancerous tumor. A chemotherapy drug is then injected near the tumor site such that the chemotherapeutic surrounds the cell. Once the electric pulse is applied from the generator through the electrodes, the increase in cell membrane permeability allows access to the cytosol (intracellular fluid). If the pulsed current amplitude and duration is carefully moderated, then the pores of the cells can reseal (reversible electroporation) encapsulating the chemotherapeutic. A similar method might be employed with antibiotics and bacterium.
Current methods of electroporation in the application of vital medications, such as during electrochemotherapy, require the electrodes to be inserted into the patient, in addition to the physical introduction of the chemotherapeutic. These procedures can be painful, add extra steps and complexity to the treatment protocol, and are a potential source of infection transmission. Significant collateral cell death and low delivery efficiency have challenged traditional methods of electroporation (Andre, F. M., et al., 2010).
A commonly applied technique for drug delivery through the skin without the use of an injection needle is iontophoresis. Iontophoresis, also known as electromotive drug administration (EMDA), uses a relatively small electric charge to deliver a medication, a chemical agent, or a bioactive agent through a patient's skin. While traditional methods of inducing iontophoresis can be effective in specific circumstances, it is time consuming to administer, can create tingling, irritation or burning in the patient, has a markedly lower efficacy with nonpolar drugs, and requires an intact stratum corneum (outermost layer of the epidermis) for effective drug penetration, which means that it cannot be used on damaged skin. In the context of this disclosure, the word “electroporation” is used to include iontophoresis.
The cold plasma method (including, but not limited to, a multi-frequency harmonic-rich cold plasma treatment) of transdermal electroporation of medication is simple, painless, and an effective method of generating electroporation for the successful introduction of a multitude of medications or bioactive agents to a patient's body or cells. In U.S. Non-Provisional application Ser. No. 13/620,236, filed on Sep. 14, 2012, specific tips are described that are designed to produce plumes of plasma where the delivery of biological materials and agents (viral vectors, DNA, etc.), chemicals or drugs, and proteins in addition to the plasma itself is possible when desirable. The disclosure of U.S. patent application Ser. No. 13/620,236, filed Sep. 14, 2012, is included herein by reference in its entirety.
The prescribed biological materials and agents (viral vectors, DNA, etc.), chemicals or drugs, and/or proteins can be introduced into the patient's body in one of three main cold plasma techniques or methodologies, as described herein. First and simplest, the prescribed material (in liquid, gel, or powdered form) can be applied to the epidermis of the recipient (
A pulsed electrical energy source generates a cold plasma, and the cold plasma, carries a pulsed electrical energy field. When the cold plasma is directed over a recently applied prescribed material, one resulting effect is a controllable state of electroporation in the cells of the target substrate. The consequential increase in cell membrane permeability permits the transfer of the drug or chemical into the target cells.
Continuing to refer to
In an alternative embodiment (not shown), the exemplary cannula tube includes a plurality of apertures at the distal end of the cannula tube, and a porous foam element, which can be enriched with the appropriate chemical or drug substance. In various embodiments, the apertures can be at the end or placed at a variety of locations along a portion of the length of the cannula tube adjacent to the end of the cannula tube. In one of these embodiments, the distal end of the cannula tube can be sealed, with one or more apertures located along the body length. Cannula tube can be used for internal treatment along the length of any bodily lumen, cavum, vestibule, or buccal cavity. The placement of open-celled foam element 440 illustrated in
The type of material noted in open-celled foam element 440 (as illustrated in
In addition, various embodiments of the present invention are not limited to a particular cold plasma generation approach. For example, embodiments of the present invention may include cold plasma generation approaches, as well as multi-frequency harmonic-rich cold plasma generation approaches. In addition, different techniques of cold plasma generation are also included. For example, cold plasma generation can include gas-fed plasma generation devices that take as an input a source of an appropriate working gas (e.g., helium or any other suitable gas) and a source of high voltage electrical energy, and output a plasma plume. Previous work by the inventors in this research area has been described in U.S. Provisional Patent Application No. 60/913,369, U.S. Non-provisional application Ser. No. 12/038,159 (that has issued as U.S. Pat. No. 7,633,231) and the subsequent continuation applications (“the '369 application family”). Different high voltage power supplies may also be used to provide the resulting cold plasma (for example, but not limited to, a multi-frequency harmonic-rich supply as described in the '369 application family, and in U.S. patent application Ser. No. 13/620,118, filed Sep. 14, 2012, which is incorporated herein by reference in its entirety). As noted previously, in the context of this application, the methods disclosed herein can be used with any platform for the generation of cold plasma. Accordingly, the methods are not limited to the use of a DBD device, a gas jet device, or a cold plasma generated using a multi-frequency harmonic-rich power supply.
Devices, other than the gas-fed cold plasma generation device described above, can also generate cold plasma. For example, cold plasma can also be generated by a dielectric barrier discharge device, which relies on a different process to generate the cold plasma. A dielectric barrier discharge (DBD) device contains at least one conductive electrode covered by a dielectric layer. The electrical return path is formed by the ground that can be provided by the target substrate undergoing the cold plasma treatment or by providing an in-built ground for the electrode. Energy for the dielectric barrier discharge device can be provided by a high voltage power supply, such as that mentioned above. More generally, energy is input to the dielectric barrier discharge device in the form of pulsed DC electrical voltage to form the plasma discharge. By virtue of the dielectric layer, the discharge is separated from the conductive electrode and electrode etching and gas heating is reduced. The pulsed DC electrical voltage can be varied in amplitude and frequency to achieve varying regimes of operation. Any device incorporating such a principle of cold plasma generation (e.g., a DBD electrode device) falls within the scope of various embodiments of the present invention.
The above embodiments also facilitate an approach that allows for the administration of a cold plasma treatment protocol while the patient is simultaneously undergoing treatment with a systemic drug. When a systemic drug is being prescribed to a patient (such as oral or intravenous (IV) antibiotics or chemotherapy), it may be desirable to also treat a specific area, or multiple areas, with cold plasma. The cold plasma could be applied with or without chemical agents being delivered through electroporation. This combined methodology would allow for the cold plasma to be used at a specific site to treat an infection or tumor with the systemic drug treatment method for a cumulative healing effect.
Referring to
In step 610, appropriate biological materials and agents (viral vectors, DNA, etc.), chemicals or drugs, and/or proteins are applied to the porous foam element. In step 620, an appropriate delivery nozzle containing the treated porous foam element is attached to the cold plasma treatment device. In step 630, the predetermined cold plasma treatment protocol is applied to the patient, thereby administering the prescribed drug or chemical into the target cells of the patient via electroporation delivered by the plasma.
It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/747,871, filed Dec. 31, 2012 and entitled “Cold Plasma Electroporation of Medication and Associated Methods,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2927322 | Simon et al. | Mar 1960 | A |
3432722 | Naydan et al. | Mar 1969 | A |
3487414 | Booker | Dec 1969 | A |
3735591 | Burkhart | May 1973 | A |
4088926 | Fletcher et al. | May 1978 | A |
4365622 | Harrison | Dec 1982 | A |
4380320 | Hollstein et al. | Apr 1983 | A |
4422013 | Turchi et al. | Dec 1983 | A |
4781175 | McGreevy | Nov 1988 | A |
5079482 | Villecco et al. | Jan 1992 | A |
5216330 | Ahonen | Jun 1993 | A |
5225740 | Ohkawa | Jul 1993 | A |
5304888 | Gesley et al. | Apr 1994 | A |
5698164 | Kishioka et al. | Dec 1997 | A |
5876663 | Laroussi | Mar 1999 | A |
5883470 | Hatakeyama et al. | Mar 1999 | A |
5909086 | Kim et al. | Jun 1999 | A |
5961772 | Selwyn | Oct 1999 | A |
5977715 | Li et al. | Nov 1999 | A |
6096564 | Denes et al. | Aug 2000 | A |
6099523 | Kim et al. | Aug 2000 | A |
6113851 | Soloshenko et al. | Sep 2000 | A |
6204605 | Laroussi et al. | Mar 2001 | B1 |
6225593 | Howieson et al. | May 2001 | B1 |
6228330 | Herrmann et al. | May 2001 | B1 |
6262523 | Selwyn et al. | Jul 2001 | B1 |
6441554 | Nam et al. | Aug 2002 | B1 |
6455014 | Hammerstrom et al. | Sep 2002 | B1 |
6520950 | Hofmann | Feb 2003 | B1 |
6611106 | Monkhorst et al. | Aug 2003 | B2 |
6667007 | Schmidt | Dec 2003 | B1 |
6956329 | Brooks et al. | Oct 2005 | B2 |
6958063 | Soll et al. | Oct 2005 | B1 |
7006874 | Knowlton et al. | Feb 2006 | B2 |
7011790 | Ruan et al. | Mar 2006 | B2 |
7037468 | Hammerstrom et al. | May 2006 | B2 |
7081711 | Glidden et al. | Jul 2006 | B2 |
7094314 | Kurunczi | Aug 2006 | B2 |
7192553 | Crowe et al. | Mar 2007 | B2 |
7215697 | Hill | May 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7300436 | Penny et al. | Nov 2007 | B2 |
7608839 | Coulombe et al. | Oct 2009 | B2 |
7633231 | Watson | Dec 2009 | B2 |
7683342 | Morfill et al. | Mar 2010 | B2 |
7691101 | Davison et al. | Apr 2010 | B2 |
7719200 | Laroussi | May 2010 | B2 |
7777151 | Kuo | Aug 2010 | B2 |
7785322 | Penny et al. | Aug 2010 | B2 |
7799290 | Hammerstrom et al. | Sep 2010 | B2 |
8267884 | Hicks | Sep 2012 | B1 |
8294369 | Laroussi | Oct 2012 | B1 |
8460283 | Laroussi et al. | Jun 2013 | B1 |
20020129902 | Babayan et al. | Sep 2002 | A1 |
20030222586 | Brooks et al. | Dec 2003 | A1 |
20050088101 | Glidden et al. | Apr 2005 | A1 |
20050179395 | Pai | Aug 2005 | A1 |
20060189976 | Karni et al. | Aug 2006 | A1 |
20070161924 | Dolphin et al. | Jul 2007 | A1 |
20080159925 | Shimizu et al. | Jul 2008 | A1 |
20090188626 | Lu et al. | Jul 2009 | A1 |
20100018524 | Jinks et al. | Jan 2010 | A1 |
20100133979 | Lu | Jun 2010 | A1 |
20100139663 | O'Neil | Jun 2010 | A1 |
20100145253 | Gutsol et al. | Jun 2010 | A1 |
20100275950 | Mack | Nov 2010 | A1 |
20110022043 | Wandke et al. | Jan 2011 | A1 |
20110112528 | Stieber | May 2011 | A1 |
20110190372 | Tomic-Canic | Aug 2011 | A1 |
20120100524 | Fridman et al. | Apr 2012 | A1 |
20120187841 | Kindel et al. | Jul 2012 | A1 |
20120259270 | Wandke et al. | Oct 2012 | A1 |
20120288934 | Weltmann | Nov 2012 | A1 |
20130022514 | Morfill et al. | Jan 2013 | A1 |
20130053762 | Rontal et al. | Feb 2013 | A1 |
20130068226 | Watson et al. | Mar 2013 | A1 |
20130068732 | Watson | Mar 2013 | A1 |
20130134878 | Selwyn | May 2013 | A1 |
20130199540 | Buske | Aug 2013 | A1 |
20130204068 | Gnanashanmugam | Aug 2013 | A1 |
20140000810 | Franklin et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 2005084569 | Sep 2005 | WO |
WO 2006116252 | Nov 2006 | WO |
WO 2007124910 | Nov 2007 | WO |
WO 2010107722 | Sep 2010 | WO |
WO 2011055368 | May 2011 | WO |
WO 2011055369 | May 2011 | WO |
WO 2011076193 | Jun 2011 | WO |
WO 2012106735 | Aug 2012 | WO |
WO 2012153332 | Nov 2012 | WO |
WO 2013101673 | Jul 2013 | WO |
Entry |
---|
International Search Report issued Mar. 21, 2014 for Appl. No. PCT/US2013/078523, 3 pages. |
Written Opinion of the International Searching Authority issued Mar. 21, 2014 for Appl. No. PCT/US2013/078523, 6 pages. |
Misra et al., “Nonthermal Plasma Inactivation of Food-Borne Pathogens,” School of Food Science and Environmental Health at Dublin Institute of Technology, 32 pages (2011). |
Dumé, Belle, “Cold Plasmas Destroy Bacteria,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysicsWeb website using Internet <URL:http://physicsweb.org/articles/news7/4/19>. |
Gould, Phillip and Eyler, Edward, “Ultracold Plasmas Come of Age,” article [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysicsWeb website using Internet <URL:http://physicsweb.org/articles/world/14/3/3>. |
Schultz, James, “Cold Plasma Ignites Hot Applications,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the Old Dominion University website using Internet <URL:http://www.odu.edu/ao/instadv/quest/coldplasma.html>. |
Lamba, Bikram, “Advent of Cold Plasma,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysOrg.com website using Internet <URL:http/www.physorg.com/printnews.php?newsid=6688>. |
Book of Abstracts, 3rd International Conference on Plasma Medicine (ICPM-3), Sep. 19-24, 2010, International Society for Plasma Medicine. |
International Search Report issued Aug. 6, 2008 for Appl. No. PCT/US2008/061240, 1 page. |
Written Opinion of International Searching Authority issued Aug. 6, 2008 for Appl. No. PCT/US2008/061240, 6 pages. |
Extended European Search Report issued Feb. 8, 2012 for European Patent Appl. No. EP08746627.2, 7 pages. |
Pointu et al., “Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside Small Diameter Tubes,” Plasma Process. Polym. 5:559-568, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008). |
Chakravarthy et al., “Cold Spark Discharge Plasma Treatment of Inflammatory Bowel Disease in an Animal Model of Ulcerative Colitis,” Plasma Medicine (1)1:3-19, Begell House, Inc. (2011). |
Fridman et al., “Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria,” Plasma Processl Polym., 4, 370-375, 6 pages, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007). |
Alexander Fridman, “Plasma Chemistry,” pp. 263-271, Cambridge University Press, 2008, 9 pages. |
O'Connell et al., “The role of the relative voltage and phase for frequency coupling in a dual-frequency capacitively coupled plasma,” Applied Physics Letters, 93 081502, 3 pages, American Institute of Physics (Aug. 25, 2008). |
Nie et al., “A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine,” New Journal of Physics, 11 115015, 14 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Pompl et al., “The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging,” New Journal of Physics, 11 115023, 11 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (Nov. 26, 2009). |
Walsh et al., “Three distinct modes in a cold atmospheric pressure plasma jet,” J. Phys. D.: Appl. Phys. 43 075201, 14 pages, IOP Publishing Ltd (Feb. 3, 2010). |
Ricci et al., “The effect of stochastic electrical noise on hard-to-heal wounds,” Journal of Wound Care, 8 pages, 19:3 Mark Allen Publishing Ltd ( Mar. 2010). |
U.S. Appl. No. 61/485,747, filed May 13, 2011, inventor Thomas J. Sheperak, 14 pages. |
Liu et al., “Sub-60° C. atmospheric helium-water plasma jets: modes, electron heating and downstream reaction chemistry,” J. Phys. D: Appl. Phys. 44 345203, 13 pages, IOP Publishing Ltd. (Aug. 11, 2011). |
Pei et al., “Inactivation of a 25.5 μm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet,” J. Phys. D. Appl. Phys., 45 165205, 5 pages, IOP Publishing Ltd (Apr. 4, 2012). |
Walsh et al., “Chaos in atmospheric-pressure plasma jets,” Plasma Sources Sci. Technol., 21 034008, 8 pages, IOP Publishing Ltd (May 2, 2012). |
Banu, et al., “Cold Plasma as a Novel Food Processing Technology,” International Journal of Emerging trends in Engineering and Development, Issue 2, vol. 4, ISSN 2249-6149, pp. 803-818, 16 pages (May 2012). |
Dobrynin, et al., “Live Pig Skin Tissue and Wound Toxicity of Cold Plasma Treatment,” Plasma Medicine, 1(1):93-108, 16 pages, Begell House, Inc. (2011). |
Fernández, et al., “The inactivation of Salmonella by cold atmosphere plasma treatment,” Food Research International, 45:2, 678-684, 7 pages, Elsevier Ltd. (Mar. 2012). |
Tien, et al., “The Bilayer Lipid Membrane (BLM) Under Electrical Fields,” IEEE Transactions on Dielectrics and Electrical Institute, 10:5, 717-727, 11 pages (Oct. 2003). |
Jayaram, et al.., “Optimization of Electroporation Waveforms for Cell Sterilization,” IEEE Transactions on Industry Applications, 40:6, 1489-1497, 9 pages (2004). |
Fridman, et al., “Use of Non-Thermal Atmospheric Pressure Plasma Discharge for Coagulation and Sterilization of Surface Wounds,” IEEE International Conference on Plasma Science, Abstract, p. 257, 1 page (Jun. 2005). |
Fridman, et al., “Use of Non-Thermal Atmospheric Pressure Plasma Discharge for Coagulation and Sterilization of Surface Wounds,” 6 pages (Jun. 2005). |
Fridman, et al., “Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air,” Plasma Chem Plasma Process, 26: 425-442, 18 pages, Springer Science Business Media, Inc. (2006). |
Gurol, et al., “Low Temperature Plasma for decontamination of E. coli in milk,” International Journal of Food Microbiology, 157 : 1-5, 5 pages, Elsevier B.V. (Jun. 2012). |
Lado, et al., “Alternative food-preservation technologies: efficacy and mechanisms,” Microbes and Infection, 4: 433-440 8 pages, Elsevier SAS (2002). |
Leduc, et al., “Cell permeabilization using a non-thermal plasma,” New Journal of Physics, 11: 115021, 12 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Machado, et al., “Moderate electric fields can inactivate Escherichia coli at room temperature,” Journal of Food Engineering, 96: 520-527, 8 pages, Elsevier Ltd. (2009). |
Li, et al., “Optimizing the distance for bacterial treatment using surface micro-discharge plasma,” New Journal of Physics, 14: 023058, 11 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (Feb. 2012). |
Morfill, et al., “Nosocomial infections—a new approach towards preventive medicine using plasmas,” New Journal of Physics, 11: 115019, 10 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Nian, et al., “Decontamination of Salmonella on Sliced Fruits and Vegetables Surfaces using a Direct-Current, Atmospheric-Pressure Cold Plasma,” IEEE International Conference on Plasma Science, p. 1, 1 page (Jun. 2011). |
Toepfl, et al., “High intensity pulsed electric fields applied for food preservation,” Chemical Engineering and Processing, 46: 537-546, 10 pages, Elsevier B.V. (2007). |
Number | Date | Country | |
---|---|---|---|
20140188071 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61747871 | Dec 2012 | US |