The present invention relates to a cold rolling apparatus that cold-rolls a steel sheet.
Conventionally, in a cold rolling operation of a steel sheet, regardless of a cold rolling apparatus, such as a completely continuous cold tandem mill, a continuous tandem mill arranged subsequently to a pickling line, or a single-stand reverse mill, the steel sheet heated to a level of room temperature that is at most 40° C. is cold-rolled. This is because, even after considering that the deformation resistance of the steel sheet lowers along with the increase of a steel-sheet temperature, a demerit becomes large compared with a merit obtained by increasing the temperature of the steel sheet that is a material to be rolled. For example, as a merit obtained by increasing the temperature of the steel sheet, the decrease of the rolling power along with the decrease of the deformation resistance of the steel sheet can be designated. However, in the cold rolling operation of the steel sheet, this merit can be almost disregarded. On the other hand, there exists a large demerit attributed to the temperature increases of the steel sheet, such as the extremely large cost loss for increasing a steel-sheet temperature, or the handling problem of a hot steel sheet with respect to a labor environment.
When the steel sheet heated to a level of room temperature is cold-rolled as mentioned above, there exists the possibility that edge cracks occur in an end portion (hereinafter, referred to as “edge portion”) in the width direction of the steel sheet in the process of cold rolling. Particularly, a material difficult to be rolled, such as a silicon steel sheet containing 1% or more of silicon, a stainless steel sheet, or a high carbon steel sheet, is a brittle material as compared with a general steel sheet and hence, when the material difficult to be rolled is heated to a level of room temperature and cold-rolled, the edge cracks remarkably occur. When the extent of the edge crack is large, there exists the possibility that the steel sheet is broken from the edge crack as a starting point in the process of cold rolling.
As a method of overcoming such problems, for example, Patent Literature 1 discloses a method for cold-rolling a silicon steel sheet in which the silicon steel sheet at its edge portion heated to 60° C. or higher (ductile brittle transition temperature) is, in cold-rolling the silicon steel sheet, supplied to a rolling mill as a material to be rolled. Furthermore, Patent Literature 2 discloses a pair of induction heating devices each using a C-shaped inductor (heating inductor) as a means for increasing the temperature of an edge portion of a steel sheet by induction heating. The induction heating device described in Patent Literature 2 is constituted such that each of both the edge portions of the steel sheet in the width direction (hereinafter, referred properly to as “sheet width direction”) are inserted into a slit of the C-shaped inductor in a vertically sandwiched and spaced apart manner, a high frequency current is sent to the coil of the C-shaped inductor from a power unit to apply magnetic fluxes to the edge portions in the thickness direction of the steel sheet (hereinafter, referred properly to “sheet thickness direction”) and generate an induced current in the edge portions, and the edge portions are heated with the Joule heat that occurs by the induced current.
Here, in order to heat the edge portion of the steel sheet to a predetermined temperature, it is necessary that the length of the edge portion of the steel sheet overlapping with the C-shaped inductor whose slit inserts the edge portion thereinto in a vertically sandwiched and spaced apart manner in the sheet thickness direction (hereinafter, referred to as “overlapping length”) assume a predetermined value by setting the position of a carriage that supports the C-shaped inductor depending on the sheet width of the steel sheet. However, in an actual operation, a steel sheet moves in a meandering manner in the sheet width direction by a poor centering accuracy or a poor flatness of the steel sheet thus changing the overlapping length. When the overlapping length decreases, the occurrence of an eddy current that obstructs the flow of the magnetic flux decreases and hence, even when a power factor deteriorates to increase a wattless current and a high frequency current that flows into the coil of the C-shaped inductor increases to a rated value, it is impossible to achieve a predetermined output. As a result, there exists the possibility that the underheat of the edge portion occurs. There also exists the possibility that the situation of excessively heating a part of the edge portion (abnormal local heating) arises. In the case of the underheat, edge cracks occur in the edge portion while cold-rolling the steel sheet. The edge cracks cause the fracture of the steel sheet in the process of cold rolling as described above. On the other hand, in the case of the abnormal local heating, edge waves attributed to a deformation by a thermal stress occur in the edge portion of the steel sheet. When the extent of the edge wave is large, there exists the possibility that a drawing fracture occurs in the steel sheet in the process of cold rolling and hence, it is difficult to cold-roll the steel sheet stably. In this manner, when the edge portion of the steel sheet to be cold-rolled is heated to a predetermined temperature by induction heating, it is extremely important to control the overlapping length to an optimal value.
Here, as a conventional technique with respect to the control of the overlapping length mentioned above, for example, there is disclosed an induction heating device provided with a heating coil that heats edge portion of a steel sheet transferred, a coil carriage body on which the heating coil is mounted, a movement mechanism that moves the coil carriage body in the direction orthogonal to the movement direction of the steel sheet, and guide rollers that are attached to the coil carriage body and brought into contact with the edge portion of the steel sheet (refer to Patent Literature 3). The induction heating device described in Patent Literature 3 operates the movement mechanism so that the guide rollers are brought into contact with the edge portion of the steel sheet while induction-heating the steel sheet, and always keeps the relative position relation between the steel sheet and the heating coil constant. On the other hand, there is disclosed a method of induction-heating control in which carriages each of which moves in the direction orthogonal to the movement direction of the steel sheet are located at the respective left-and-right side positions of the line through which the left-and-right edge portions of the steel sheet pass, inductors each of which inserts the edge portion of the steel sheet thereinto in a vertically sandwiched manner are arranged on the respective carriages located at left-and-right positions, and an automatic position controller of the carriage controls the overlapping length between the edge portion of the steel sheet and the inductor to heat the edge portion of the steel sheet (refer to Patent Literature 4). In the method of induction-heating control described in Patent Literature 4, the high frequency current that flows into the heating coil of each of the inductors located at left-and-right positions is detected, the deviation of an electric current value that is generated by the change of the overlapping length due to the meandering movement of the steel sheet is obtained, and a carriage position correction value is obtained based on a relation between a deviation electric current value stored in advance and a carriage position correction amount of the inductor that is required to set the deviation electric current value to zero. Subsequently, the carriage position correction value is subtracted from a carriage position initialized value on the large electric current value side of the carriage and, at the same time, the carriage position correction value is added to a carriage position initialized value on the small electric current value side of the carriage to obtain a carriage correction position on either side. Thereafter, the carriage correction position on the either side that is calculated as mentioned above is output to the automatic position controller of each carriage on either side and hence, the position of each carriage on the either side is corrected by the automatic position controller. Due to such a constitution, the overlapping length between each of the left-and-right edge portions of the steel sheet and each inductor on either side is controlled.
Patent Literature 1: Japanese Laid-open Patent Publication No. 61-15919
Patent Literature 2: Japanese Laid-open Patent Publication No. 11-290931
Patent Literature 3: Japanese Laid-open Patent Publication No. 53-70063
Patent Literature 4: Japanese Laid-open Patent Publication No. 11-172325
In the conventional techniques mentioned above, the overlapping length between the edge portion of the steel sheet and the inductor of the induction heating device is corrected depending on a position change of the edge portion that is attributed to the meandering movement of the steel sheet. That is, a feedback control that corrects the overlapping length depending on the position change of the edge portion is conventionally performed. However, a meandering movement speed of the steel sheet is comparatively higher than the travelling speed of the carriage that mounts the inductor thereon and hence, in the conventional techniques mentioned above, it is difficult to adapt sufficiently the feedback control of the overlapping length to the position change of the edge portion that is attributed to the meandering movement of the steel sheet. Accordingly, in heating the edge portion of the steel sheet before being cold-rolled to a predetermined temperature by induction heating, it is extremely difficult to control stably the overlapping length to an optimal value. As a result, in the steel sheet as a material to be rolled, the underheat or abnormal local heating of the edge portion occurs. When the steel sheet is cold-rolled in this state, the fracture of the steel sheet occurs due to the edge cracks generated by the underheat of the edge portion, or the drawing fracture of the steel sheet occurs due to the edge wave generated by the abnormal local heating of the edge portion. The occurrence of the fracture attributed to the edge cracks of the steel sheet or the drawing fracture attributed to the edge wave (hereinafter, referred collectively to as “steel-sheet fracture”, as needed) inhibits the cold rolling operation of the steel sheet and results in lower cold rolling production efficiency.
The present invention has been made under such circumstances, and it is an object of the present invention to provide a cold rolling apparatus that is capable of suppressing the occurrence of a steel-sheet fracture as much as possible to achieve stable cold rolling of a steel sheet.
To solve the above-described problem and achieve the object, a cold rolling apparatus according to embodiments of the present invention heats a sequentially transferred steel sheet by using a heating device, and sequentially cold-rolls the steel sheet after being heated by using a cold rolling mill, and includes: a meandering-movement correction device arranged on an upstream side of the heating device in a transfer direction of the steel sheet, and configured to correct a meandering movement of the steel sheet transferred toward the heating device; and a meandering-movement suppression device arranged between the heating device and the cold rolling mill, and configured to suppress a meandering movement of the steel sheet attributed to the cold rolling of the steel sheet by using the cold rolling mill.
Moreover, in the cold rolling apparatus according to an embodiment of the present invention, the meandering-movement correction device includes: roll bodies configured to rotate while being brought into contact with the steel sheet so as to transfer the steel sheet; and a roll tilting unit configured to tilt the roll bodies so that a center axis of each of the roll bodies tilts with respect to a horizontal direction, and the meandering-movement suppression device includes a plurality of roll bodies arranged zigzag in the transfer direction of the steel sheet and configured to transfer the steel sheet toward an entrance side of the cold rolling mill from an exit side of the heating device and to sandwich the steel sheet from both sides of the steel sheet in a thickness direction so as to restrain the movement thereof in a width direction.
Moreover, in the cold rolling apparatus according to an embodiment of the present invention, the roll bodies in the meandering-movement correction device are bridle rolls configured to control a tensile force of the steel sheet.
Moreover, in the cold rolling apparatus according to an embodiment of the present invention, the heating device includes C-shaped inductors into which respective edge portions of the steel sheet in a width direction are inserted in a sandwiched and spaced apart manner in a thickness direction of the steel sheet, and the heating device heats both of the edge portions of the steel sheet by an induction heating system.
According to the present invention, it is possible to achieve advantageous effects that suppress the occurrence of a steel-sheet fracture as much as possible, and enable stable cold rolling of a steel sheet.
Hereinafter, the explanation is, in reference to attached drawings, specifically made with respect to a preferred embodiment of a cold rolling apparatus according to the present invention. Here, the present invention is not limited to the present embodiment.
First of all, the cold rolling apparatus according to the embodiment of the present invention is explained.
The uncoiler 2 takes steel sheets 15 from a coil formed by winding steel materials, such as hot rolled steel sheets, by uncoiling the coil to supply the steel sheets 15 sequentially to the transfer passage of a material to be rolled in the cold rolling apparatus 1. The steel sheets 15 taken from the uncoiler 2 pass through a pinch roll or the like to be transferred sequentially to the welding machine 3 located on the downstream side of the uncoiler 2 in the transfer direction of the steel sheets 15.
The welding machine 3 is constituted of a laser beam welding machine or the like and, as illustrated in
The looper 4 is a device for accumulating or supplying properly the steel strip 16 to which continuous processing, such as cold rolling, is applied. To be more specific, as illustrated in
The fixed rolls 4a, 4c, 4e, and 4g each of which is a transfer roll located at a fixed position are, as illustrated in
The looper 4 having the constitution mentioned above is, as illustrated in
The meandering-movement correction device 5 is, as illustrated in
Each of the bridle rolls 5a to 5d has a function as a roll body that transfers the steel strip 16, and a function as a roll body for controlling a tensile force applied to the steel strip 16. To be more specific, each of the bridle rolls 5a to 5d is arranged along the transfer passage of the steel strip 16 so that a wrapping angle of the steel strip 16 is equal to or larger than a predetermined value (90 degrees or larger, for example). Here, the wrapping angle is a central angle of each of the bridle rolls 5a to 5d, the central angle corresponding to a peripheral surface part of each bridle roll, the peripheral surface part being brought into contact with the steel strip 16. Each of the bridle rolls 5a to 5d arranged in this manner rotates, while being brought into contact with the steel strip 16 extended along and wrapped around the bridle rolls 5a to 5d, about the roll center axis thereof as a center by the operation of a drive unit (not illustrated in the drawings). Accordingly, the bridle rolls 5a to 5d transfer, while applying a tensile force to the steel strip 16 by the friction force generated between the peripheral surface of each bridle roll and the steel strip 16, the steel strip 16 from the looper-4 side to the heating-device-7 side in the transfer passage. In this case, the bridle roll 5a stretches the steel strip 16 in cooperation with the bridle roll 5b and, at the same time, transfers the steel strip 16 from the looper-4 side to the bridle-roll-5b side in the transfer passage. The bridle roll 5b stretches the steel strip 16 in cooperation with the bridle rolls 5a and 5c and, at the same time, transfers the steel strip 16 from the bridle-roll-5a side to the bridle-roll-5c side in the transfer passage. The bridle roll 5c stretches the steel strip 16 in cooperation with the bridle rolls 5b and 5d and, at the same time, transfers the steel strip 16 from the bridle-roll-5b side to the bridle-roll-5d side in the transfer passage. The bridle roll 5d stretches the steel strip 16 in cooperation with the bridle roll 5c and, at the same time, transfers the steel strip 16 from the bridle-roll-5c side to the heating-device-7 side in the transfer passage. As described above, the tensile force applied to the steel strip 16 by the bridle rolls 5a to 5d is controlled by adjusting a rotational speed of each of the bridle rolls 5a to 5d.
Furthermore, the bridle rolls 5a to 5d have a steering function capable of correcting the meandering movement of the steel strip 16. To be more specific, the bridle rolls 5a to 5d are supported by the roll tilting unit 5e in a state that each of the bridle rolls 5a to 5d is capable of rotating about the roll center axis thereof as a center of rotation. The roll tilting unit 5e tilts the bridle rolls 5a to 5d so that the roll center axis of each of the bridle rolls 5a to 5d tilts with respect to the horizontal direction.
The steel strip 16 transferred from the above-mentioned meandering-movement correction device 5 is sequentially transferred to the heating device 7 positioned on the upstream side of the meandering-movement suppression device 8 in the transfer direction of the steel strip 16 through the sheet width meter 6 arranged on the exit side of the meandering-movement correction device 5.
The sheet width meter 6 is, as illustrated in
The heating device 7 heats the steel strip 16 transferred sequentially before the steel strip 16 is cold-rolled. In the present embodiment, the heating device 7 is, as illustrated in
Furthermore, the heating device 7 is, as illustrated in
In the present embodiment, as illustrated in
The meandering-movement suppression device 8 is, as illustrated in
The entrance side roll 8a, the exit side roll 8b, and the central roll 8c are, as illustrated in
The entrance side roll 8a, the exit side roll 8b, and the central roll 8c sandwich the steel strip 16 from both sides of the steel strip 16 in the sheet thickness direction by the operation of the roll movement unit 8d so as to restrain the movement of the steel strip 16 in the sheet width direction.
On the other hand, the above-mentioned roll movement unit 8d moves the central roll 8c in the sheet thickness direction (upper side) of the steel strip 16 as needed so as to move the central roll 8c in the direction away from the entrance side roll 8a and the exit side roll 8b. As a result, the central roll 8c can release a state of restraining the movement of the steel strip 16 in the sheet width direction (refer to
The cold rolling mill 9 is a tandem rolling mill that continuously cold-rolls the sequentially transferred steel strip 16, and is constituted of a plurality of rolling mills installed next to each other in the transfer direction of the steel strip 16. In the present embodiment, the cold rolling mill 9 is, as illustrated in
The flying shear 10 is, as illustrated in
The controller 12 controls a meandering-movement correction operation of the steel strip 16 performed by the meandering-movement correction device 5, and a meandering-movement suppression operation of the steel strip 16 performed by the meandering-movement suppression device 8. To be more specific, the controller 12 controls operations of the roll tilting unit 5e of the meandering-movement correction device 5 based on a meandering-movement amount of the steel strip 16 that is obtained by the sheet width meter 6, and controls a tilting angle and a tilting direction of the bridle rolls 5a to 5d in the meandering-movement correction device 5 with respect to the horizontal direction via the control of the roll tilting unit 5e. In this manner, the controller 12 causes the meandering-movement correction device 5 to correct (modify) a meandering-movement amount of the steel strip 16 so that a meandering-movement amount of the steel strip 16 before being transferred to the heating device 7 corresponds to a value within an allowable range. The allowable range of the meandering-movement amount is a range of the meandering-movement amount of the steel strip 16 in which each of the overlapping lengths La and Lb between the inductors 71a and 71b of the heating device 7 and the respective edge portions 16a and 16b of the steel strip 16 illustrated in
Here, the steel strip 16 is a strip-shaped steel sheet formed by joining the tail end portion of a preceding material and the distal end portion of a succeeding material in the plurality of steel sheets 15 transferred sequentially, and one example of a steel sheet as a material to be rolled in the present embodiment. Furthermore, as each steel sheet 15 that constitutes the steel strip 16, a material difficult to be rolled such as a silicon steel sheet containing 1% or more of silicon, a stainless steel sheet, or a high carbon steel sheet is used.
The steel strip 16 to be cold-rolled generally includes defects in shape such as center buckle or uneven elongation that are formed in a hot-rolled coil (hot rolled sheet steel) serving as a base material of the steel strip 16 when hot-rolling. Accordingly, in the cold rolling apparatus 1, when the steel strip 16 is sequentially transferred toward the heating device 7, the meandering movement occurs in the steel strip 16 being transferred, by the bending moment that acts due to the tension distribution in the sheet width direction occurring depending on the shape of the steel strip 16. Assuming that the meandering-movement correction device 5 is not arranged at the preceding stage of the heating device 7, the meandering movement depending on the shape of a base material occurs occasionally in the steel strip 16 on the entrance side of the heating device 7. Particularly, in the joint portion between respective steel sheets that constitute the steel strip 16, a rapid meandering movement occurs in the steel strip 16. In this manner, when the meandering movement occurs in the steel strip 16, it is difficult to induction-heat uniformly the edge portions 16a and 16b of the steel strip 16 by the heating device 7. Due to such circumstances, the underheat or the abnormal local heating of the edge portions 16a and 16b of the steel strip 16 occurs and, as a result, a steel-sheet fracture occurs while cold-rolling the steel strip 16.
On the other hand, the cold rolling apparatus 1 according to the present embodiment is, as illustrated in
On the other hand, when the above-mentioned steel strip 16 is cold-rolled by the cold rolling mill 9, there exists the case where a meandering movement occurs, depending on rolling conditions, in the steel strip 16 while being cold-rolled. For example, when the sheet thickness varies in a sheet-thickness profile in the sheet width direction of a hot-rolled steel sheet that is a base material of the steel strip 16 (a case where a sheet thickness on one end side in the sheet width direction is larger than that on the other end side in the sheet width direction, or the like), even when work rolls of the cold rolling mill 9 are parallel to the steel strip 16 at the pressing-down position, the rolling reduction of a large sheet thickness portion in the steel strip 16 becomes large and hence a meandering movement occurs in the steel strip 16 while being cold-rolled. Such a meandering movement of the steel strip 16 attributed to the cold rolling influences a successive steel strip part succeeding the steel strip 16 while being cold-rolled; that is, the steel strip 16 before being cold-rolled located on the entrance side of the cold rolling mill 9. To be more specific, the meandering movement of the steel strip 16 attributed to the cold rolling causes a meandering movement of the steel strip 16 heated by the heating device 7 located at the preceding stage of the cold rolling mill 9. Accordingly, the overlapping lengths La and Lb between the inductors 71a and 71b of the heating device 7 and the respective edge portions 16a and 16b of the steel strip 16 (refer to
On the other hand, the cold rolling apparatus 1 according to the present embodiment is, as illustrated in
Assuming that a device that corrects a meandering movement of the steel strip 16 with the steering function of the bridle rolls 5a to 5d (hereinafter, referred to as “steering mechanism”) such as the meandering-movement correction device 5 mentioned above is arranged between the heating device 7 and the cold rolling mill 9 in place of the meandering-movement suppression device 8, a very large space for arrangement is required as compared with the meandering-movement suppression device 8. In addition, in order for the steering mechanism to sufficiently correct a meandering movement of the steel strip 16 by the steering of each roll body, it is necessary that a wrapping angle of the steel strip 16 for each roll body is made to be equal to or larger than a predetermined value (90 degrees or larger, for example). Thus, a temperature of the steel strip 16 after being heated by the heating device 7 (particularly, a temperature of each of the edge portions 16a and 16b) decreases due to natural cooling until the steel strip 16 is transferred from the heating device 7 to the cold rolling mill 9. The temperature of the steel strip 16 after being heated also decreases due to heat transfer along with the contact between the each roll body of the steering mechanism and the steel strip 16. In order to ensure that a temperature of the cold-rolled steel strip 16 is equal to or higher than a predetermined value (equal to or higher than a ductile brittle transition temperature), it is necessary that a temperature of the steel strip 16 heated by the heating device 7 is previously set higher in consideration of the above-mentioned temperature decrease. This processing has a problem in energy efficiency. On the other hand, the meandering-movement suppression device 8 according to the present embodiment causes, as illustrated in
Next, an example of the present invention is explained. In the present example, the cold rolling apparatus 1 illustrated in
Furthermore, in comparative examples 1 and 2 with respect to the present example, the cold rolling apparatus 1 changed the setting conditions of the meandering-movement correction device 5, the heating device 7, and the meandering-movement suppression device 8, and cold-rolled the steel strip 16. To be more specific, in the comparative example 1, the cold rolling apparatus 1 enabled a meandering-movement correction function of the steel strip 16 by the meandering-movement correction device 5 mentioned above, but lifts up the central roll 8c in the meandering-movement suppression device 8 so as not to restrain the movement of the steel strip 16 in the sheet width direction. The cold rolling apparatus 1 heated, while maintaining this state, both of the edge portions 16a and 16b of the steel strip 16 by using the heating device 7. On the other hand, in the comparative example 2, the cold rolling apparatus 1 disabled both of the meandering-movement correction function of the steel strip 16 by the meandering-movement correction device 5 and the restraint function (meandering-movement suppression function) of the steel strip 16 by the meandering-movement suppression device 8 mentioned above. The cold rolling apparatus 1 heated, while maintaining this state, both of the edge portions 16a and 16b of the steel strip 16 by using the heating device 7. The other conditions in the comparative examples 1 and 2 were set identical with those in the present example.
In each of the present example and the comparative examples 1 and 2, the steel strips 16 of 500 coils were cold-rolled, and a fracture occurrence rate of the steel strip 16 cold-rolled was examined. The results of examinations are illustrated in Table 1.
As illustrated in Table 1, the fracture occurrence rate of the steel strip 16 in the present example was 0.2% that is a lower value as compared with the fracture occurrence rate (=0.6%) of the steel strip 16 in the comparative example 1 and the fracture occurrence rate (=1.2%) of the steel strip 16 in the comparative example 2. Particularly, the results of the examinations have indicated that the fracture occurrence rate of the steel strip 16 in the present example is decreased to one sixth that of the comparative example 2 in which the meandering-movement correction function of the steel strip 16 by the meandering-movement correction device 5, and the restraint function of the steel strip 16 by the meandering-movement suppression device 8 were disabled. This means that correcting a meandering movement of the steel strip 16 on the entrance side of the heating device 7 by the steering function of the meandering-movement correction device 5 and, at the same time, suppressing a meandering movement of the steel strip 16 attributed to the cold rolling on the exit side of the heating device 7 by the meandering-movement suppression device 8 results in the stationary control of the overlapping lengths La and Lb between the heating device 7 and the steel strip 16 thus ensuring that the temperature of each of the edge portions 16a and 16b of the steel strip 16 is equal to or higher than the ductile brittle transition temperature so as to cold-roll the steel strip 16. That is, a synergetic effect of the meandering-movement correction function of the steel strip 16 by the meandering-movement correction device 5 and the restraint function of the steel strip 16 by the meandering-movement suppression device 8 mentioned above is extremely effective in stationarily controlling the overlapping lengths La and Lb between the heating device 7 and the steel strip 16 so as to stably heat both of the edge portions 16a and 16b of the steel strip 16. Furthermore, the synergetic effect is extremely effective in preventing the underheat and the abnormal local heating of both of the edge portions 16a and 16b so as to reduce the occurrence of the steel-sheet fracture (fracture attributed to edge cracks, drawing fracture attributed to edge waves, or the like) when the steel strip 16 is cold-rolled.
As explained heretofore, in the embodiment of the present invention, the meandering-movement correction device that is arranged on the upstream side in the transfer direction of a steel strip than the heating device heating a sequentially transferred steel strip corrects a meandering movement of a steel strip transferred to the heating device, and the meandering-movement suppression device that is arranged between the cold rolling mill sequentially cold-rolling a steel strip after being heated and the heating device suppresses a meandering movement of a steel strip that is attributed to the cold rolling of the steel strip by the cold rolling mill.
Accordingly, it is possible to correct a meandering-movement amount of the steel strip on the entrance side of the heating device to a value within the allowable range with respect to the heating device and, at the same time, to eliminate the influence of a meandering movement of the steel strip attributed to the cold rolling upon the steel strip passing through the heating device. Thus, it is possible to maintain a state where a meandering movement of the steel strip has been corrected in the period of heating the steel strip by the heating device. As a result, it is possible to stationarily control the overlapping length between the heating device and the steel strip to an optimal value for the cold rolling of the steel strip and stably heat both of the edge portions of the steel strip to a temperature equal to or higher than the ductile brittle transition temperature. Accordingly, it is possible to suppress the occurrence of the steel-sheet fracture attributed to the underheat (edge crack) or the abnormal local heating (edge wave) of both of the edge portions of the steel strip as much as possible to achieve the stable cold rolling of the steel strip.
The cold rolling apparatus according to an embodiment of the present invention is used not only for a general steel sheet but also for any types of materials to be rolled, such as a silicon steel sheet that is a material difficult to be rolled, or a strip-shaped steel sheet (steel strip) having a joint portion between a precedence material and a succeeding material thus suppressing both the meandering movement of a material to be rolled that occurs due to the rapid change of the shape of the material to be rolled or the change of a roll crown. Since a meandering-movement suppression action of the material to be rolled is performed on the entrance side and the exit side of the heating device, the overlapping length of the material to be rolled in the heating device is stationarily controlled to an optimal value thus heating stably both the edge portions of the material to be rolled to a target temperature. As a result, it is possible to avoid both a situation in which a fracture occurs in the material to be rolled while being cold-rolled, due to the edge cracks attributed to the underheat of the edge portion, and a situation in which a drawing fracture occurs in the material to be rolled while being cold-rolled, due to the edge wave attributed to the abnormal local heating of the edge portion thus improving the operation efficiency and the production efficiency of the cold rolling.
Here, in the embodiment mentioned above, although the cold rolling apparatus constituted of the completely continuous cold tandem mill in which the steel sheets supplied from the coil are continuously cold-rolled and thereafter, wound in a coiled shape is exemplified, the present invention is not limited to this example.
The cold rolling apparatus according to the present invention may be an apparatus constituted of a tandem mill other than a completely continuous cold tandem mill, such as a continuous tandem mill arranged subsequently to a pickling line and a single-stand reverse mill.
Furthermore, in the embodiment mentioned above, although the cold rolling mill constituted of four rolling mills arranged next to each other in the transfer direction of the steel strip is used, the present invention is not limited to this example. That is, in the present invention, any number of rolling mills (any number of roll stands) in the cold rolling apparatus, and any number of roll stages may be applicable.
Furthermore, in the embodiment mentioned above, although the steel strip is exemplified as one example of the material to be rolled, the present invention is not limited to this example. The cold rolling apparatus according to the present invention are applicable to any of a general steel sheet, a strip-shaped steel sheet (steel strip) composed of a plurality of steel sheets joined to each other, and a material difficult to be rolled such as a silicon steel sheet. That is, in the present invention, any of a steel grade, a joint state, and a shape of the steel sheet as a material to be rolled may be applicable.
Furthermore, in the embodiment mentioned above, although the meandering-movement correction device provided with four bridle rolls is exemplified, the present invention is not limited to this example. The meandering-movement correction device of the cold rolling apparatus according to the present invention may be a device capable of correcting the meandering movement of the material to be rolled by the steering function of a roll body. In this case, the roll body of the meandering-movement correction device is not limited to the bridle roll, and may be a steering roll. In addition, the number of roll bodies arranged in the meandering-movement correction device is not limited to four, and a plurality of roll bodies may be applicable.
Furthermore, in the embodiment mentioned above, although the meandering-movement suppression device provided with three roll bodies is exemplified, the present invention is not limited to this example. In the meandering-movement suppression device according to the present invention, the number of roll bodies that are arranged zigzag in the transfer direction of a material to be rolled, sandwiching the material to be rolled is not limited to three, and a plurality of roll bodies may be applicable.
Furthermore, the present invention is not limited to the embodiment and the example that are mentioned above, and the present invention includes a case of constituting the above-mentioned respective constitutional features arbitrarily by combining with each other. In addition, various modifications, applications, or the like made by those skilled in the art based on the embodiment mentioned above are arbitrarily conceivable without departing from the gist of the present invention.
As mentioned above, the cold rolling apparatus according to the present invention are useful for the cold rolling of the steel sheet, and particularly suitable for suppressing the occurrence of steel-sheet fractures as much as possible, and cold-rolling a steel sheet stably.
Number | Date | Country | Kind |
---|---|---|---|
2014-008020 | Jan 2014 | JP | national |
This is the U.S. National Phase application of PCT International Application No. PCT/JP2015/050532, filed Jan. 9, 2015, and claims priority to Japanese Patent Application No. JP 2014-008020, filed Jan. 20, 2014, the disclosures of each of these applications being incorporated herein by reference in their entireties for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/050532 | 1/9/2015 | WO | 00 |