The present disclosure relates generally to the field of thermally conditioned space and more particularly to the use of solar power to provide cooled space.
Often it is desirable to maintain items at a desired temperature or within a desired temperature range. When the ambient temperatures are different than the desired temperature or temperature range, whether the ambient temperature is variably or constantly different, such items are typically placed in a thermally conditioned space. Depending upon the difference between the desired temperature or temperature range and the ambient temperature, the thermally conditioned space may either have heat removed or added to it.
The need for such cool or cold space may arise in areas within which there is not a reliable source of electrical power to run the equipment or components necessary or required to cool the space. For example, there are many areas in the world which do not have any access to the power grid. There are others which have access, but the power grid is too expensive and/or unreliable with power being unavailable during periods of time.
While many different items may beneficially be kept within cool or cold spaces, one use of thermally conditioned spaces is to maintain perishable commodities, such as, milk, meat, eggs, vegetables, fruits, ornamental flowers and other floricultural products, which tend to perish when stored in natural environmental condition. When the prevailing natural environmental condition has high temperature, it is favorable for growth of micro-organisms. Hence, perishable commodities are required to be stored at a low temperature in order to retard the growth of micro-organisms and thus increasing their shelf life. This is because low temperature retards the activity and growth of micro-organisms and thus enables preserving perishable commodities in their natural state for a certain period of time. The degree to which the temperature is required to be lowered is dependent on storage time and the type of commodity to be stored.
In order to cater to the problem of storing perishable commodities, a storage space maintained at a low temperature is used for storing the perishable commodities. Conventionally, a storage room is formed within a thermally insulated housing having a cold air discharge port and a warm air return port provided at the base of the thermally insulated housing. The thermally insulated housing communicates with a machine room located under the thermally insulated housing through the cold air discharge port and the warm air return port. A cooling unit, having a cooler, a blower and a compressor is mounted in the machine room and helps in maintaining the temperature of the storage space at a desired low temperature. However, conventional arrangement of the storage room involves increased maintenance due to leakage of cold air between the thermally insulated housing and the machine room through openings provided for the cold air discharge port and the warm air return port. Further, the conventional storage room involves complicated mounting operations. The conventional storage room involves extensive usage of electrical energy and hence in areas where there is shortage of electrical energy, the working of the conventional storage room is required to be stalled until the supply of electrical energy is restored or is not a viable option. This results in commodities stored within the conventional storage room to perish or the cold storage facility to be unavailable or unsuitable for storing the perishable commodities. Also, the conventional spaces may not be located in the desired locations, such as a location of production for agricultural goods.
There is thus a need for a cool or cold thermally conditioned space which overcomes the drawbacks and deficiencies of conventional spaces.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present cold storage arrangement
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. First Exemplary Cold Storage Arrangement
With respect to
The insulated compartment (14) provides a storage space for storing of perishable commodities at a predetermined temperature, typically lower than ambient. The perishable commodities are accommodated within the insulated compartment (14) using stacking bins or shelves depending on the necessity of the perishable commodities. The insulated compartment (14) is provided with an insulated door (22), illustrated in
Non-insulated compartment (16) may be provided, and may house components such as the powering system (32), the refrigeration unit (28) and the air filtration unit (30). In the depicted embodiment, the refrigeration unit (28) houses a condenser, a compressor and an evaporator, enclosed within a high-density polyethylene shell which provides protection thereto. The structural and functional configuration of the refrigeration unit (28) may be as disclosed in U.S. Pat. No. 5,809,789, the disclosure of which is incorporated by reference herein. In the embodiment depicted, the refrigeration unit (28) is a cabinet partitioned into a cold cell and a warm cell by an insulated wall. The evaporator coil and the evaporator fan are situated within the cold cell and surrounded by the insulated wall while the compressor, the condenser and the evaporator fan motor are situated within the warm cell which is located outside the insulated wall. The refrigeration unit (28) being a compact self-contained cabinet enables easy installation, replacement and servicing.
The non-insulated compartment (16) provides security and protection against the environment, such as the weather, to the powering system (32), the refrigeration unit (28) and the air filtration unit (30). The solar panels (20) are located on the roof (18) of the chamber (12). The battery bank (34) is positioned within the non-insulated compartment (16) so as to be in close proximity to the solar panels. The proximity of the solar panels (20) to the battery bank (34) minimizes the losses involved in the length of the electrical wiring involved and hence reduces the losses involved in transmitting electrical power from the solar panels (20). The non-insulated compartment (16) is provided with an entry door (26) to allow secure and easy access to the non-insulated compartment (16), thus, facilitating maintenance of the powering system (32), the refrigeration unit (28) and the air filtration unit (30).
The non-insulated compartment (16) includes a pair of spaced apart vents (11) for fluidly communicating atmospheric air into and out of the non-insulated compartment (16). The pair of opposing vents (11) may be positioned on opposite walls of the non-insulated compartment (16) to enable cross flow of the atmospheric air. The air filtration unit (30) is positioned in the path of the atmospheric air coming in through one of the vents (11) to enable filtering of the incoming atmospheric air of dust and debris before being admitted into the condenser of the refrigeration unit (28). Partitions may be included to separate the air inlet side of the condensing coils from the air outlet side so that only filtered air is drawn into the inlet. This helps in eliminating a potential build-up of dust and debris on the condenser and thus maintains the heat transfer efficiency of the refrigeration unit (28) for an increased time period and prevents the compressor from being damaged due to overheating.
The refrigeration unit (28), powered by the powering system (32), receives filtered atmospheric air from the air filtration unit (30) to transfer heat from the condenser and thereby cooling the refrigerant within the refrigeration unit (28). In a refrigeration cycle, the refrigerant is expanded downstream of the condenser, dropping the temperature of the refrigerant so that the refrigerant can absorb heat from the air flowing across the evaporator coils as the refrigerant flows therethrough. The air within the insulated compartment (14) is continuously cooled by being circulated, by a fan, across the evaporator coils of the refrigeration unit (28), hence forming refrigerated dehumidified air. If necessary, any moisture which condenses out of the air on the evaporator coils or other components of the refrigeration unit (28) may be directed to flow to any suitable location.
The refrigerated dehumidified air is recirculated through the refrigeration unit (28) so as to maintain the temperature within the insulated compartment (14) at a desired level. The refrigerated dehumidified air flowing from the evaporator coils of the refrigeration unit (28) is guided to the insulated compartment (14) via a duct (15), illustrated in
The structural and functional configuration of the refrigeration unit (28) enables separation of heated portions and cold portions of the refrigeration unit (28) which capacitates the refrigeration unit (28) to deliver refrigerated cold air into the insulated compartment (14) with increased efficiency. The cold cell of the refrigeration unit (28) may be positioned within an opening provided on the insulating partition wall (13), and may extend partially into the insulated compartment (14), while the warm cell of the refrigeration unit (28) may be positioned within the non-insulated compartment (16). The separation of heated portions and cold portions of the refrigeration unit (28) results in reduction of energy consumption by 25% in comparison to traditional refrigeration systems, thus maximizing the use of the solar electric power generated by the solar panels (20). Further, the high-density polyethylene shell and the components of the refrigeration unit (28) housed therein are substantially recyclable, making the refrigeration unit (28) ecofriendly and affordable.
Non-insulated compartment (16) may be provided, and may house components such as the powering system (32), the refrigeration unit (28) and the air filtration unit (30). In the depicted embodiment, the refrigeration unit (28) houses a condenser (33a), a compressor (33b) and an evaporator (33c), enclosed within a high-density polyethylene shell which provides protection thereto. The structural and functional configuration of the refrigeration unit (28) may be as disclosed in U.S. Pat. No. 5,809,789, the disclosure of which is incorporated herein by reference. In the embodiment depicted, the refrigeration unit (28) is a cabinet (35a) partitioned into a cold cell (35b) and a warm cell (35c) by an insulated wall (35d). The evaporator coil (35e) and the evaporator fan (35f) are situated within the cold cell (35b) and surrounded by the insulated wall (35d) while the compressor (33b), the condenser (33a) and the evaporator fan motor (35g) are situated within the warm cell (35c) which is located outside the insulated wall (35d). The refrigeration unit (28) being a compact self-contained cabinet enables easy installation, replacement and servicing.
The battery bank (34) supplies the required power for operation of the refrigeration unit (28) through an inverter (38). The output of inverter (38) may be of any surge, continuous power, output voltage and waveform suitable for the refrigeration unit (28). One such inverter suitable for the embodiment depicted is a Samlex America model SAM-2000-12 with 10.5 v to 15 v input, 115 VAC pure sine wave output, 2000 watts continuous and 4000 watts surge. Or a Samlex America PST-200S-12A may be used. Inverter (38) is a pure wave form inverter, also known as a true sine wave, and has low idle current drain of less than 1 amp, providing peak efficiency of 85%.
The non-insulated compartment (16) includes a pair of spaced apart vents (11) for fluidly communicating atmospheric air into and out of the non-insulated compartment (16). The pair of opposing vents (11) may be positioned on opposite walls of the non-insulated compartment (16) to enable cross flow of the atmospheric air. The air filtration unit (30) is positioned in the path of the atmospheric air coming in through one of the vents (11) to enable filtering the incoming atmospheric air of dust and debris before being admitted into the condenser (33a) of the refrigeration unit (28). Partitions may be included to separate the air inlet side of the condensing coils (35e) from the air outlet side so that only filtered air is drawn into the inlet. This helps in eliminating a potential build-up of dust and debris on the condenser (33a) and thus maintains the heat transfer efficiency of the refrigeration unit (28) for an increased time period and prevents the compressor (33b) from being damaged due to overheating.
The refrigeration unit (28), powered by the powering system (32), receives filtered atmospheric air from the air filtration unit (30) to transfer heat from the condenser (33a) and thereby cooling the refrigerant within the refrigeration unit (28). As is known with a refrigeration cycle, the refrigerant is expanded downstream of the condenser (33a), dropping the temperature of the refrigerant so that the refrigerant can absorb heat from the air flowing across the evaporator coils (35e) as the refrigerant flows therethrough. The air within the insulated compartment (14) is continuously cooled by being circulated, by a fan, across the evaporator coils (35e) of the refrigeration unit (28), hence forming refrigerated dehumidified air. If necessary, any moisture which condenses out of the air on the evaporator coils (35e) or other components of the refrigeration unit (28) may be directed to flow to any suitable location.
The refrigerated dehumidified air is recirculated through the refrigeration unit (28) so as to maintain the temperature within the insulated compartment (14) at a desired level. The refrigerated dehumidified air flowing from the evaporator coils (35e) of the refrigeration unit (28) is guided to the insulated compartment (14) via a duct (15), illustrated in
The structural and functional configuration of the refrigeration unit (28) enables separation of heated portions and cold portions of the refrigeration unit (28) which capacitates the refrigeration unit (28) to deliver refrigerated cold air into the insulated compartment (14) with increased efficiency. The cold cell (35b) of the refrigeration unit (28) may be positioned within an opening provided on the insulating partition wall (13), and may extend partially into the insulated compartment (14), while the warm cell (35c) of the refrigeration unit (28) may be positioned within the non-insulated compartment (16). The separation of heated portions and cold portions of the refrigeration unit (28) results in reduction of energy consumption by 25% in comparison to traditional refrigeration systems, thus maximizing the use of the solar electric power generated by the solar panels (20). Further, the high-density polyethylene shell and the components of the refrigeration unit (28) housed therein are substantially recyclable, making the refrigeration unit (28) ecofriendly and affordable.
II. Second Exemplary Cold Storage Arrangement
With respect to
An electrical breaker (not shown), such as a fuse or breaker switch, is electrically connected to AC and DC power outlets (160, 162) and configured to inhibit electrical draw from the AC and DC power outlet (160, 162) greater than a predetermined maximum limit to preserve sufficient power for cooling system (156). Electrical breaker (not shown) is positioned within a utility room (164) (see
Cooling system (156) includes a pair of inlet vents (170) mounted through rear end wall (158) and a pair of outlet vents (172) mounted through lateral walls (157) for respective refrigeration units (28) shown with respect to
Within each inner cabinet space (186), inlet and outlet vents (170, 172) as well as air filtration unit (30) are positioned for direct fluid communication with refrigeration unit (28) while inhibiting air leakage into the remainder of inner cabinet space (186). Thereby, each refrigeration unit (28) pulls ambient air from the environment through inlet vent (170) rather than from inner cabinet space (186) and similarly discharges exhaust air directly back into the environment through outlet vent (176) rather than into inner cabinet space (186). An intermediate wall (190) is shown in the present example to extend between refrigeration unit (28) and lateral wall (157) to further fluidly seal in exhaust air (176). Such direct venting of ambient and exhaust air improves the efficiency and increases the useful of refrigeration units (28). In the present example, each refrigeration cabinet (178) is fluidly sealed from a remainder of utility room (164) to further increase efficiency and the useful life of refrigeration units (28), particularly given that some cooling occurs within inner cabinet space (186) through partition wall (13) for cooling refrigeration unit (28) during use.
Each refrigerated air duct (188) fluidly connects refrigeration unit (28) to duct (15) (see
In the event that only one refrigeration unit (28) is provided within utility room (164), each refrigeration cabinet (178) remains fluidly sealed from the remainder of utility room (164). In addition, a plug (not shown) is positioned within refrigeration air duct (188) that is not connected to refrigeration unit (28) to inhibit leakage for cooled, refrigerated air from within insulated compartment (14) (see
As discussed briefly above, PCU (168) is aligned with viewing window (166). More particularly, PCU (168) positioned inward and between refrigeration cabinets (178) and on partition wall (13). Partition wall (13) thereby cools PCU (168) during use as cooling within insulated compartment (14) (see
A lower compartment (194) within utility room (164) includes battery bank (34) of powering system (150) as well as collection and treatment systems (152, 154) shown in
Collection system (152) further includes a spigot valve (212) mounted on lateral wall (157) and a liquid conduit (214) in fluid communication between spigot valve (212) and storage tank (210). Spigot valve (212) selectively opens to drain liquid water from storage tank (210) for any desirable use by the user. By way of example, the liquid water collected in storage tank (210) may be used for washing products to be refrigerated and/or maintenance of cold storage arrangement (110), such as for cleaning solar panels (20) of dust and other debris that may otherwise reduce the effectiveness of solar panels (20). A liquid pump (216) may also be fluidly connected to liquid conduit (214) between spigot valve (212) and storage tank (210) to deliver liquid water at increased pressure relative pressure for use. Liquid pump (216) shown with respect to
In addition to providing liquid water that is untreated from collection system (152), treatment system (154) is also fluidly connected to collection system (152) and thereby configured to provide treated water for use. With respect to
It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The above-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Date | Country | Kind |
---|---|---|---|
3121/MUM/2012 | Oct 2012 | IN | national |
This application claims priority to Provisional Patent Application Ser. No. 62/531,075 filed on Jul. 11, 2017 entitled “Cold Storage Arrangement and Related Methods,” and is a continuation-in-part of Non-provisional patent application Ser. No. 14/439,331 filed on Apr. 29, 2015 entitled “Solar Powered Thermally Conditioned Space,” which is a U.S. National Phase of International Application No. PCT/US2013/067291 filed on Oct. 29, 2013 entitled “Solar Powered Thermally Conditioned Space,” which claims priority to Indian Patent Application No. 3121/MUM/2012 filed on Oct. 29, 2012, the disclosures of which are hereby expressly incorporated by reference herein, in their entireties.
Number | Date | Country | |
---|---|---|---|
62531075 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14439331 | Apr 2015 | US |
Child | 16029935 | US |